
Using Separation of Concerns for Embedded Systems
Design ∗

Ethan K. Jackson
Institute for Software Integrated Systems

Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

ejackson@isis.vanderbilt.edu

Janos Sztipanovits
Institute for Software Integrated Systems

Vanderbilt University
Box 1829, Station B
Nashville, TN 37235

janos.sztipanovits@vanderbilt.edu

ABSTRACT
Embedded systems are commonly abstracted as collections
of interacting components. This perspective has lead to
the insight that component behaviors can be defined sep-
arately from admissible component interactions. We show
that this separation of concerns does not imply that compo-
nent behaviors can be defined in isolation from their envi-
sioned interaction models. We argue that a type of behav-
ior/interaction co-design must be employed to successfully
leverage the separation of these concerns. We present for-
mal techniques for accomplishing this co-design and describe
tools that implement these formalisms.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering—Design Tools and
Techniques; D.3.1 [Software]: Programming Languages—
Formal Definitions and Theory

General Terms
Design, Languages, Theory

Keywords
Models of Computation, Embedded Systems, Multiple-Aspect
Modeling, Separation of Concerns

1. INTRODUCTION
Embedded systems theory lacks a formal compositional

semantics that is both sufficiently general and analyzable.
Researchers coped with this absence by defining many less
general, but nonetheless analyzable, semantics. The goal
then became one of stitching back together less general se-
mantics to create broader semantic domains that remained
amenable to analysis. A fundamental insight was that a

∗This research was supported by NSF grant CCR-0225610.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

semantics can be divided into two parts: component be-
havior and component interaction. This separation of con-
cerns made it possible to hierarchically compose semantics
by defining the internal behavior of a component with a dif-
ferent semantics than the interaction model.

Separating behavior from interaction has been essential in
reconciling the disparity between semantics, but it may lead
embedded system designers to make a wrong conclusion:
Intended component behaviors can be designed in isolation
from their intended interaction models. We show that this
is not true with a simple proof by contradiction. Consider
the example in Figure 1. This function contains a typical

1. T Transform (T obj, String name) {
2. if (obj != NULL)
3. return (P(obj) ? TR(obj) : obj);
4. else if (name != NULL)
5. return (P(Get(name)) ? TR(Get(name))
6. : Get(name));
7. else return NULL;
8. }

Figure 1: Function applies a transformation TR() to
an object if the property P() holds.

sequence of operations: Check an object for a property P,
and if P holds then transform the object with TR and return
the transformed object. If the property P does not hold
then return the untransformed object (lines 3, 5 - 6). We
also add a primitive type of polymorphism to this function.
If Transform is passed a non-null object of type T through
the obj parameter, then apply the sequence to obj (line
2). Alternatively, if Transform is passed a string identifier
through the name parameter, then look up the object called
name and apply the operations to this object (line 4).

A developer might consider Transform to be a useful com-
ponent, and attempt to use it under various interaction mod-
els. However, even this simple component cannot be sensibly
used under some interaction models, and this contradicts
that component behaviors can be constructed in isolation
from interaction models.

Let the Transform component be a unit of black-box be-
havior, and use it inside a synchronous programming lan-
guage [3],[13] like SIGNAL [14]. In the notation of SIGNAL,
we might say out := Transform(in1,in2), meaning that
the output signal out is the result of applying Transform

to the input signals in1 and in2. This construct implies
that both in1 and in2 are synchronized, i.e. their clocks

25

are the same (ˆin1 = ˆin2). Therefore the only use-case al-
lowed is that which calls Transform with both a reference
and a name, but the intended use was to pass Transform

either a reference or a name. It may be argued that the
NULL reference is a value, so the streams should be syn-
chronized, but testing for NULL carries the same meaning as
testing for absence and NULL has no meaning as an object.
The problem is that the component behavior uses a seman-
tic construct (testing for absence) that is also provided by
the interaction model. If we do not carry this semantic con-
struct up into the interaction level, then the semantics of
interaction may interfere with the intended component be-
havior. We correct this in the SIGNAL case by creating
a correlation between an absent clock and the NULL value:

out :=(Transform(in1,NULL) when in1) default
(Transform(NULL,in2) when in2).

Testing for absence is not a boundary case that inter-
feres with all interaction models. For example, consider
the Transform component in a time-triggered language like
Giotto [15]. For our purposes this interaction model has
two interesting properties: First, data is read and written
through global buffers of size 1. Second, components are ex-
ecuted periodically, and they read data from global buffers
at the beginning of the period and write data at the end of
the period. In this environment the Transform component
works as expected. When the component is activated it will
read from the buffers in1 and in2, and the data in these
buffers may or may not be NULL. The component may or
may not write an object to the output buffer out. This works
without confusion because the Giotto interaction model does
not define a notion of absence, so this environment does not
interfere with the component’s notion of absence.

These examples show that though parts of an embedded
system can be independently specified at the behavior and
interaction layers, the combined effect of the layering may
not produce the intended results. Trickier still, the unin-
tended behavior in the previous example is not technically
an error behavior, so techniques like composition of interface
automata would not have detected this mistake.

Problems like these also occur when the interaction model
is decomposed into untimed and timed pieces. A similar
claim has been made that the topology of a system and the
time model used to schedule a topology are orthogonal con-
cerns that can be separated. However, typically the same
system topology cannot be arbitrarily reused across varying
time models. At the very least, some static analysis must
be performed on the untimed topology to decide if some
schedule exists for the system. This also suggests that the
term orthogonal is not accurate for these concerns. We argue
that, in general, separate concerns like behavior and interac-
tion, topology and scheduling, are not orthogonal, i.e. these
pieces of a system should not be constructed in isolation
from each other.

In this paper we reexamine the embedded system design
flow assuming the nonorthogonality of a set of concerns
that are traditionally considered to be orthogonal (behavior,
topology, time/scheduling). Our fundamental result is that
the interdependencies between nonorthogonal concerns can
be managed by reasonable changes to design abstractions
and tools. In Section 2 we describe our general methodology
for handling interdependent concerns. Section 3 relates our
work to previous work on MoCs and separation of concerns.

Section 4 shows a non-trivial application of our approach
to the synchronous reactive MoC. Section 5 discusses sim-
ulators and modeling environments built from MoCs with
interdependent concerns. Finally, Section 6 describes our
conclusions and future work.

2. APPROACH
First and foremost we wish to incorporate our assumption

of nonorthogonal concerns into the design abstractions used
for embedded systems design (MoCs) so that:

1. there exists some amount of “independent” reasoning
within each concern,

2. the interdependencies between concerns are explicit,

3. interference of semantic constructs is detectable and
hence preventable.

The first requirement preserves the notation of “separation”.
There should be some reasoning that can be done within a
concern that has consequences only inside the scope of that
concern. If this is not the case, then the concerns should
not be separated. The second requirement builds the inter-
dependencies into the MoC, so that they are explicitly part
of the design abstractions. This allows the designer to ex-
plicitly reason about the interactions between concerns. The
final requirement characterizes how semantic constructs are
split across concerns. This requirement may disallow some
systems that would have been valid had there not been any
separation of concerns. As we will show later, this crite-
ria would make the mistake in the previous example a de-
tectable error.

Though there may not be a unique solution to these re-
quirements, we propose a generic and novel abstract seman-
tics that meets these requirements and can be specialized
into several important MoCs. Our abstract semantics is
partitioned into three layers, so that there is a layer for the
component behavior, topology, and scheduling/time con-
cern. The topology and time layers form the interaction
model which describes how and when components commu-
nicate and fire. The topology layer is an untimed and opera-
tional interaction model [4] that schedules components and
mediates data communication. This provides the developer
with an untimed interpretation of the system and allows
some amount of untimed intuition during design. There is
a timed and operational [4] layer that modulates the un-
timed execution, and provides a timeline for events. The
untimed execution of the system corresponds to a plant,
and the timed execution corresponds to a controller that ob-
serves and modulates the execution of that plant. Both the
untimed and timed layers may have restrictions on the sys-
tems that can be constructed at these layers, and each layer
may impose constraints on the other. A particular model of
computation (MoC) is specified by untimed and timed op-
erational interaction models, the constraints on each layer,
and the constraints that each layer imposes on the other.

This approach makes explicit two types of interdependen-
cies. First, there is the “operational interdependency” that
is the feedback loop between the timed “controller” and the
untimed “plant”. The timed system modulates the untimed
system via a set of controllable actions, and the untimed sys-
tem affects the timed system through variables that are ob-
served by the controller. Second, there are the “constraint-

26

based interdependencies” that are restrictions that the sys-
tem at one layer can impose on the system at another layer.

We have incorporated nonorthogonal concerns into the
MoCs, and so we can explore how this affects tools based on
MoCs. Specifically, we examine the ramifications on simu-
lators and modeling environments. Though many ramifica-
tions can be considered, we chose to investigate how inter-
dependencies affect simulator construction and reuse. Our
primary result is that we can construct an “abstract simu-
lator” from our abstract semantics. This abstract simulator
contains most of the necessary structure and implementa-
tion to simulate the three layers. It also implements the
operational interdependencies so that each layer correctly
influences the others. A simulator for a particular MoC is
constructed by filling in some concrete details. This allows
the implementation of the abstract simulator to be highly
reusable, and may allow some reuse of concrete simulators.
This shows that it is possible to construct simulators with
little effort (by just adding the concrete details), even though
the MoC is complicated by interdependent concerns.

At the modeling level we show that modeling tools can
be used to mitigate the additional modeling complexity in-
curred by interdependent concerns. We use multi-aspect
modeling [6] to associate an aspect with each concern. A
system is then built concurrently in each aspect and this
allows the co-design of the timed and untimed parts of the
system, as well as the immediate observation of layer interac-
tions. Multiple-aspect modeling can manage the constraint-
based interdependencies by performing design-time checking
of constraints in and across modeling aspects.

3. BACKGROUND
Our work relates to previous work on the heterogeneous

composition of semantics, and to the design of MoC ori-
ented tool architectures. We begin by discussing the for-
mer. Semantics are composed hierarchically by specifying
an interaction model M under which a set of components
c1, c2, . . . , cn interact with each other. Inside a component
ci there maybe another network of components c′1, c

′

2, . . . , c
′

n

that interact according to a different interaction model M ′,
and this hierarchy can be arbitrarily deep. Several impor-
tant questions arise when composing interaction models hi-
erarchically: Which interaction models can be composed?
How should data cross component boundaries? How should
time be coordinated across component boundaries? Which
known properties are preserved when components are con-
nected under interaction model M? Which new properties
emerge when components are connected under M?

Different approaches have been used to decide if two MoCs
can be composed. One approach is to define a non-restrictive
means of connecting components so that components and
their corresponding MoCs can be arbitrarily composed. Anal-
ysis of a particular component topology may then reveal if
the system uses only valid compositions. Behavioral types
and interface automata have been used for such analyses
[11]. However, analysis can be skipped if the user is will-
ing to risk a run-time failure of the system. This approach
is general, but may allow invalid compositions that may or
may not be detectable at design time. A second approach is
to define a family of related MoCs using an abstract seman-
tics. Formal composition operators can then be defined for
any two members of the semantic family [9]. This approach
is not as general as the first, but it provides formal reason-

ing about the meaning of compositions. Abstract semantics
approaches of this sort can be easily incorporated into tools
that support the first methodology.

Researchers have gravitated towards different layering ap-
proaches to answer different questions and to develop differ-
ent tools. We now describe some representative approaches
and their associated tools. Ptolemy II is (among many
things) an exploration in heterogeneous modeling and sim-
ulation of embedded systems [10]. Components in Ptolemy
II are called actors, and the actor topology is primarily a
syntactic construct. Ptolemy II places all of the semantics
of communication and timing into directors. A director is
an operational construct that analyzes the actor topology to
generate a schedule, and without a director the actor topol-
ogy does not have a well-defined meaning.

The IF tool suite focuses on the representation and verifi-
cation of embedded systems [12]. Formal reasoning is re-
quired so IF uses an abstract semantics that is built on
top of timed-automata extended with dynamic priorities.
IF separates a MoC into two parts: The interaction model
is a denotational semantics that places constraints on how
components can interact with each other. The scheduler is
an operational semantics that coordinates the execution of
timed automata . Unlike Ptolemy II, a component topology
in IF has a well-defined meaning even without defining the
scheduler.

Metropolis is a tool suite for platform-based design [1]. It
provides techniques for mapping an abstracted (e.g. func-
tional) description of a system onto a platform that is built
from components with non-negotiable properties and char-
acteristics (e.g. processor speeds, bounded buffers, a par-
ticular bus protocol, etc...). This goal requires Metropolis
to define the interaction model, and this is done partially
by the Metropolis Meta-model (e.g. processes, media), and
partially by the user using constructs like Quantity Man-
agers. Metropolis advocates the separation of concerns, but
it does not fix the way in which concerns must be separated.
We see Metropolis as a framework for implementing various
layering strategies.

The separation of concerns is advocated in all of these
methodologies, as is the view that these concerns are orthog-
onal: Plotemy II claims that “actor-oriented design orthog-
onalizes component definition and component composition,
allowing them to be considered independently.” [5] Simi-
larly, in IF “the proposed composition distinguishes clearly
between two different and orthogonal aspects of systems
modeling: behavior and interaction (architecture).” [9] The
Metropolis Meta-model makes similar claims that behavior
and architecture “are fairly orthogonal.” [8] We argue that
these concerns are interdependent and we present a method-
ology for managing this interdependence for embedded sys-
tems design.

4. SYNCHRONOUS REACTIVE EXAMPLE
We introduce our work by reformulating the synchronous

reactive (SR) MoC according to the layering that we pre-
viously described. This is a large non-trivial example, with
some interesting ramifications on designing SR systems. First,
we define an untimed operational semantics, BFlow, that
schedules components in bounded memory dataflow net-
works. Second, we define a timed operational semantics,
DRModes, that modulates the execution of the untimed
plant so that determinism and reactivity are guaranteed.

27

Third, we describe the constraints in and across the layers,
and show how these layers fit together to define the SR MoC.
Finally, we show how this layering prevents interference of
semantic constructs, and we show how it can be leveraged
in tools. The result is a formulation of the SR MoC that
meets the requirements for the separation of nonorthogonal
concerns.

4.1 Untimed Dataflow with BFlow

Some synchronous programming languages (e.g. Lustre
and Signal) describe computation in terms dataflow graphs.
We will use this approach because there is a simple un-
timed operational semantics for dataflow graphs: An n-ary
dataflow operator has n inputs, and if the operator observes
a data token on each of these inputs, then it consumes these
tokens and produces a token on its output. To be more pre-
cise, the untimed execution is a sequence of runs. Figure 2.a
describes what can occur during a run, and how a run ends.
The first three properties are common, while properties 4-6
generalize the notion that tokens are conserved. Instead of
requiring that every created token must be consumed (i.e.
conservation of tokens), we require that every token wait-
ing at the input of an operator must be consumed. Any
token that is not waiting at an input is irrelevant and will
be discarded at the end of a run.

In addition to the properties of a run, we allow additional
features in the dataflow graphs, as summarized by Figure
2.b (To avoid excessive arrows, let the inputs be to the left
of an operator and the outputs to the right.) The fan-out

1. Fire Once: An operator can fire at most once per
run.

2. Eventually Fire: An operator that can fire will
eventually fire.

3. Write Once: A connection can carry at most one token
per run.

4. Consumption: A token waiting at an input, must be
consumed during the run in which it was produced.

5. End: A run ends after neither (2) nor (4) can occur.

6. Reset: After a run ends, all unconsumed tokens are
discarded.

(a)

A

+ Inc

B

A

E

D

C

+

B

A

C+
(0)

C

B

A

D+

iii. Cycles iv. Delay

i. Fan-out ii. Fan-in

(b)

Figure 2: (a) Properties of a run (b) Features of
BFlow

feature (2.b.i) means that an output token can be replicated
and passed down additional connections. The fan-in feature
(2.b.ii) means that several tokens can simultaneously arrive
on different connections, where they will be merged into
one connection. The merge procedure non-deterministically
chooses a token to be passed along, and consumes the re-
maining tokens. Merging must be applied in accordance to
the write once rule. For example, in Figure 2.b.ii, if a token
from B had already been passed to the adder, then any to-
ken from C would have to be consumed, but not forwarded,
so as to not pass two different tokens the second adder in-
put. The cycle feature (2.b.iii) means that operators can sit
inactive because they are in an unbreakable dependency cy-
cle. Cycles do not contradict any properties of a run, unless
they receive tokens from operators that are not in a cycle.
In this case, they cannot consume these tokens. This prob-
lem occurs in Figure 2.b.iii because the adder can receive a
token from the A operator, but it cannot consume this to-
ken. Finally, the delay feature (2.b.iv) allows connections to
have state. Connections drawn with dotted lines transmit
tokens that they have observed in previous runs. Delayed
connections must have an initial value that can be transmit-
ted on the first run. A delay connection consumes the token
that is written to it, but transmits a token that it has previ-
ously observed, and these two actions occur independently.
Therefore, a cycle with a delay connection is not really a
cycle.

These properties and features imply that a dataflow graph
is malformed if there exists a dataflow operator o such that
only some of the inputs of o will receive tokens. Conversely,
well-formedness means that if some operator p writes to in-
put iok

of operator o, then all inputs io1
, io2

, . . . , ion
of op-

erator o must be written by operators that can be sched-
uled. If this is not the case for every operator o, then the
dataflow graph is malformed. Though not implied by the ex-
ecution rules, an operator with dangling inputs is consider
malformed, because such an operator can never be sched-
uled.

In order to complete the operational definition of BFlow,
we must describe how a controller can manipulate the un-
timed execution. First, a controller must be able to observe
whether a run has ended, and it must be able to “peek” at
the vector of tokens waiting at the external inputs of the un-
timed system. We will call these operations RunEnded and
Peek. The controller must be able to start a run, and to
clear off state information that accumulated from previous
runs. The RunStart and Clear operations accomplish these
tasks. Note the behaviors of Peek, RunStart, and Clear are
not defined during a run. All of these operations are typi-
cal, but we now add one atypical action that a controller can
take. A controller can remove an operator from a dataflow
graph. If the Remove action is performed on a dataflow op-
erator before a run is started, then the run proceeds as if
that operator were never in the dataflow graph. (Note that
the connections around the removed operator remain in the
graph.) Of course, a Remove operation may result in a mal-
formed dataflow graph. Therefore, a Remove operation is
valid only if the resulting graph is well-formed. Finally, if a
Remove operation is called during a run, then its behavior is
undefined.

The untimed semantics we have presented here resembles
an extended form of synchronous data flow (SDF) (which
should not be confused with the synchronous reactive MoC).

28

It is important to observe that BFlow contains many fea-
tures that are not allowed in the SR MoC. First, the merging
feature is non-deterministic and this type of non-determinism
is not permitted by the SR MoC. Second, there may be
deadlock due to zero-delay cycles, and this contradicts reac-
tivity. The major exceptional property of BFlow is that all
well-formed dataflow graphs use bounded memory, and the
memory requirements can be decided statically. (We call
it BFlow to emphasize the boundedness of memory.) This
is guaranteed by the consumption requirement, which en-
sures that all relevant tokens will be consumed, and allows
irrelevant tokens to be discarded.

4.2 Timed Controllers with DRModes

Modes capture the notion that a system has multiple and
distinct global behaviors. A single mode is a configuration
of the entire system, and when the system switches from
one mode to another it reconfigures itself according to the
new mode [7]. After a system is configured, it evolves ac-
cording to that configuration. We consider a controller to
be an entity that reconfigures the untimed dataflow graph.
A controller, which we call a structurally constrained modal
model (SCMM), is specified by a set of modes, along with
a set of criteria for deciding which mode to apply in given
situation. Our modes differ from other work on modal mod-
els, because our modes cannot arbitrarily reconfigure the
system; i.e. their structure is constrained.

A SCMM is a set of system configurations, and the op-
erational semantics for a SCMM explains how to select the
current mode, and how to reconfigure the system accord-
ing to this mode. In order to make the discussion concrete,
we will use an untimed system that computes C = A · B.
However, the operational semantics of this untimed system
was described in the previous section. A SCMM does not
know how to execute an untimed plant, but only knows how
to reconfigure a plant according to modes. The interplay
between untimed execution, and system reconfiguration will
be used to create the SR MoC.

Figure 3.a shows a set of modes that can be applied to the
untimed component C = A · B (Figure 3.b.1). Each mode
is a graph that has the same topology as the underlying un-
timed dataflow graph. The dataflow graph structurally con-
strains the modes by placing requirements on mode topol-
ogy. (This will be fully explored in the next section.) Notice
that each mode has three types of entities: There are inputs,
shown to the left of a mode, rectangular elements in the cen-
ter of the mode, and an output at the right end of a mode.
Each of these has a special meaning in the context of a mode,
which is different from its meaning in the context of the un-
timed dataflow. The inputs represent criteria for applying
a mode. If an input k in mode M is colored solid white,
then mode M cannot be applied unless input k is declared
to have some value (e.g. a token must be waiting at that
input in the untimed dataflow). Conversely, if k is colored
solid black, then mode M cannot be applied unless input
k is declared to not have any value. For example, in 3.a.1,
both inputs are white, which means that Mode 1 cannot be
activated unless both A and B have external tokens in the
corresponding untimed dataflow graph. Similarly, Mode 3
in 3.a.3 requires input A to be absent and input B to be
present.

If a mode can be applied, then its application reconfigures
the corresponding untimed dataflow graph. The rectangu-

Mode 3. Second input present Mode 4. No inputs present

Mode 1. Both inputs present Mode 2. First input present

(a)

B

B

A

C

A

Graph 3. Second input present Graph 4. No inputs present

Graph 1. Both inputs present Graph 2. First input present

(b)

Figure 3: (a) Four modes and (b) the dataflow
graphs induced by these modes.

lar elements correspond to computational elements in the
underlying dataflow graph. If an element is black, then its
matching untimed component is removed from the graph
when the mode is applied. Once a mode is applied, the
same removal rules hold true for inputs and outputs. Fig-
ure 3.b shows how each mode reconfigures the underlying
dataflow graph. Note that output elements have special
meaning when hierarchically composing SCMMs, but for the
sake of brevity, we will not discuss hierarchical composition
in this paper. Modes also have edges, however these edges
do not represent the flow of data, but rather describe de-
pendency on data. Thus, there are edges that indicate a
data dependency that must be resolved during the applica-
tion of the mode. These are drawn with a solid line, and
correspond to non-delay edges in the untimed component.
There are also edges that indicate a data dependency that
was resolved in a previous application of some other mode.
These are drawn with a dashed line, and correspond to delay
edges.

The presence or absence of external tokens can effect which
mode is applied to the untimed component. However, this
mechanism alone is not sufficiently expressive to capture the
SR MoC. We must also be able to select a mode based on the
data contained in the tokens. It is sufficiently expressive to
consider only boolean data, so to each input element k, we
associate a boolean input variable ik. Let I = {i1, i2, . . . , in}
be the set of input variables, then we define a mode entry
constraint to be a boolean function F over a subset I ′ of
these variables. A mode with an entry constraint can be
entered only if F (I ′) = true. If a mode M requires input
element k to be absent, then ik cannot be in I ′, because ik
is neither true nor false. If input element k is absent, then
the associated input variable ik has no value at all.

The SR MoC has several more features that must be
added to this model. First, synchronous languages allow
constant data to be used in the dataflow. In addition to an

29

unchanging value, constants are special because their values
can be present or absent, depending on context. Constants
will be denoted as gray filled boxes. Second, many situa-
tions arise where the absence or presence of certain data is
irrelevant to the mode. We call such requirements don’t care
requirements, and we denote them with an “X” written on
top of the input element. If mode M has a don’t care re-
quirement on input element k, then mode M can be entered
regardless of whether input k has data.

The untimed dataflow contains features that are not al-
lowed by the SR MoC. We must utilize a controller to dis-
able these features. The two features that must be disabled
are the non-deterministic merge and the deadlocked zero-
delay cycle. A non-deterministic merge occurs when mul-
tiple dataflow operators write to the same edge. We can
disable this behavior by reconfiguring the dataflow graph
to remove all but at most one of these operators. Simi-
larly, a zero-delay cycle can be broken by removing one or
more operators in the cycle, and the controller must do this.
(We will formulate these rules more precisely in the next
section.) Finally, we must say how the semantics provides
a timeline for events. This is easy to do in the SR case.
The controller examines the system inputs using a Peek op-
eration and decides which mode to apply; this takes zero
time. The controller reconfigures the dataflow graph us-
ing Remove operations; this take zero time. The controller
indicates that the dataflow graph should be executed by us-
ing the RunStart operation. The controller waits until the
RunEnded operation returns true. The time between when
the run begins and ends is exactly one unit of logical time.
This process repeats indefinitely, or until the system is reset
by an external Clear operation.

4.3 Interdependencies
The previous two sections described the operational se-

mantics of the untimed and timed systems, and described
the operational interdependencies between these systems.
We also eluded to some of the constraint-based interdepen-
dencies that act at and between these layers, and now we
describe them all and discuss their ramifications. Poten-
tially, each layer can constrain itself and the other layers,
so there are n2 possible sets of constraints, where n is the
number of layers.

The behavioral layer is where the internals of a compo-
nent are defined. Inside a component there may be C code,
another SR system, or a system defined under some other
MoC. Depending upon what is inside the component, it may
be possible to formally project constraints up to the interac-
tion layers. In another words, it may be possible to detect if
an environment is interacting with a component incorrectly.
While these constraints are important, they are largely or-
thogonal to this discussion. The example in the introduc-
tion interfaced with the Transform component correctly, but
nonsensically. We do not use constraints to ensure adher-
ence to a component’s interface protocol, but to ensure that
certain semantic constructs are only used at specific layers
or not used at all. Therefore, we will not discuss constraints
induced by the behavioral layer.

The untimed layer places interesting constraints on all
three layers. The behavioral layer is constrained so that no
dataflow operator outputs a NULL value. This forces compo-
nent behaviors to use the notion of presence/absence that
is put in place by the interaction model, regardless of the

model of computation used inside the component.

∀o ∈ Operators ¬(Output(o) = NULL) (1)

The untimed layer also places constraints on itself. As dis-
cussed earlier, a dataflow graph must not have dangling in-
puts.

∀o ∈ Operators (NumConnected(o) = Arity(o)) (2)

where NumConnected counts the number of operator inputs
that are connected to the output of at least one other dataflow
operator. Additionally, if an operator will receive a token
on one input, then it must receive a token on all inputs.

∀o, o′ ∈ Operators ∃p ∈ Operators

CanSchedule(p) ∧ Connected(p, o) ∧ Connected(o′, o) ⇒
CanSchedule(o′)

(3)
Finally, the untimed layer constrains modes in the timed
layer. Given a dataflow graph d, all mode topologies must
be isomorphic to d 1.

∃φ ∀m ∈ Modes (φ(m) ∼= d) ∧
∀i ∈ Inputs(m) (φ(i) ∈ Inputs(d)) ∧
∀o ∈ Outputs(m) (φ(o) ∈ Outputs(d))

(4)

No mode can reconfigure a dataflow graph so that it violates
constraint 2 or 3. This means that if an operator is present,
all of its inputs must be present (or some may be constant)2.

∀o, o′ ∈ Operators DeclaredPresent(o) ∧ Connected(o′, o)
⇒

DeclaredPresent(o′) ∨ DeclaredConstant(o′)
(5)

The constraints that the timed layer places on itself ensure
that non-determinism and zero-delay cycles are removed
from the dataflow graph. The timed layer must disable all
zero-delay loops.

∀m ∈ Modes

∀c ∈ Cycles(m)

{

(∃v ∈ c DeclaredAbsent(v)) ∨
(∃e ∈ c IsDelayEdge(φ(e)))

(6)

Removing non-determinism means that if multiple operators
write to the same edge, then at most one is declared present.

∀m ∈ Modes ∀o, o′ ∈ Operators(m) ∀e ∈ Edges(m)
¬DeclaredAbsent(o) ∧ WritesEdge(o, e) ⇒
DeclaredAbsent(o′) ∨ ¬WritesEdge(o′, e)

(7)

Finally, the controller cannot introduce any control non-
determinism. This means that if more than one mode can
be applied, then these modes must reconfigure the dataflow
graph in the same way. Let the mapping ψ map from modes
to dataflow graphs, so that ψ(m, d) maps to the dataflow
graph that is the configuration of d with mode m.

∀s ∈ Stimulus ∀m, m′ ∈ Modes

CanApply(s, m) ∧ CanApply(s, m′) ⇒
ψ(m, d) = ψ(m′, d)

(8)

The operational semantics provide constructs for system
design and the constraints ensure that these constructs are

1Really dataflow graphs are multigraphs with other special
properties, and we extend graph isomorphism to these ob-
jects without further discussion.
2This is a simplification of the full constraint. The complete
constraint is an extended exercise in first-order logic.

30

partitioned into specific layers, or not use at all. (The con-
straints also enforce well-formedness rules inside a layer.)
This partitioning exposes the intricacies of the MoC, pro-
vides the developer with an operational interpretation at
every layer, and provides a formal means to enforce correct
usage of the semantic constructs. Every feature discussed
can be seen in the following example of a simple up-counter
with asynchronous reset and non-volatile read (Figure 4).
The reset signal Rs and the count signal Cn are boolean-

Cn
RsRs Q + 0

11
x

y

z

y

z

Input Operators

Output Operator

Add Operator

Constant Value
Operators

Zero-Delay
Buffer Operators

Component Library

(a)

Cn

Rs

Q+

1 0

x

y

z (0)

Untimed counter component

: Asynchronously resets
counter regardless of
count signal.

: Up counts by one
if true; non-volatile read
if false.

Rs

Cn

(b)

Cn

Rs

Q

1 0

x

y

z

true

Cn

Rs

Q

1 0

x

y

z

F(Cn) := Cn

Cn

Rs

Q

1 0

x

y

z

true

Cn

Rs

Q

1 0

x

y

z

F(Cn) := NOT(Cn)

Mode 3. Reset counter Mode 4. Do nothing

Mode 1. Increment counter Mode 2. Read counter

(c)

Figure 4: (a) A library of components (b) Compo-
nents assembled into a counter (c) The modes that
control the counter.

valued signals. If reset is present then it resets the counter
regardless of the count signal. Assuming reset is absent, if
count has a true value then the counter increments, other-
wise the counter is read. Notice how semantic constructs
are partitioned across the layers:

1. Behavioral layer: Data transformation (adder opera-
tor, constant value operator).

2. Untimed layer: Data movement (all edges in counter
graph), Data merge (x-y-z merging), Intercomponent
state (delay edge y-Q).

3. Timed layer: Presence/Absence testing (entry condi-
tions on mode inputs), Data-dependent control flow

(mode entry constraints in modes 1,2), Deterministic
data movement (control of x,y,z components), logical
time axis (one reaction per mode)

This suite of semantic constructs is not unique to our for-
mulation of the SR MoC, but is available in one form or an-
other in (almost) every synchronous language. This means
that a user of such a language must keep track of all of these
constructs and understand the way in which they interact.
The intractability of causality analysis and global effects of
local changes on the clock calculus does not make this any
easier. Our approach provides semantic constructs through
a layered set of operational semantics, and then uses ex-
plicit operational and constraint-based interdependencies to
explain construct interactions and to enforce their correct
usage. This provides the system designer with a clear and
formal paradigm for MoC usage that can have tool support,
as we will show in the next section.

Before we conclude our SR example, we should mention
that previous work has tried to integrate the synchronous
language Signal into an actor-oriented system like Ptolemy
II [2]. This work proposed creating an actor for every Sig-
nal construct, so that these actors could run concurrently,
albeit under some global scheduling mechanism, and receive
tokens asynchronously. It was discovered that additional
control signals were needed when converting constructs like
default. By layering the semantics, we have implemented
these constructs in an actor-like dataflow language (recall
the operational definition of BFlow) without defining any
special dataflow operators. In the up-counter example, the
default operator was implemented by zero-delay buffers, and
the additional control signals are a consistent part of our lay-
ering. These signals are not special case interactions specific
to deterministic merge. In fact without any special dataflow
operators we can handle every SR construct, including ad-
vanced features like time-based undersampling and oversam-
pling. This is not completely obvious since we do not have
space to fully describe all of the features of structurally con-
strained modal models.

5. TOOLS
We have presented a complex and well-known MoC to il-

lustrate our approach. However, our work goes beyond the
SR MoC in several ways. First, we have formalized our lay-
ering into a generalized actor-like dataflow semantics and a
generalized SCMM controller semantics. The result is an
abstract operational semantics that can be specialized for a
particular MoC. BFlow and DRModes are the specializa-
tions needed for the SR MoC. Instead of presenting the al-
gebraic formalization here, which is mainly of mathematical
interest, we will present the applications of this formaliza-
tion, which is of methodological interest.

Generalizing the operational interdependencies has a di-
rect effect on simulator design. We have constructed a sim-
ulator called TinyModes that contains an implementation of
our generalized abstract semantics. The component-based
architecture of the TinyModes simulator is shown in Figure
5. The Untimed component contains the abstract opera-
tional semantics of the actor-like portion of the layering.
Similarly, the Timing component contains the abstract op-
erational semantics for the SCMM controller portion of the
layering. The Interaction component coordinates commu-
nication between the simulators and corresponds to the for-

31

Untimed

Interaction

Timing
F F

F F

F F

R R

R R

u1

u2 u

t1

t2 t

i1 i1 i2 i2

Figure 5: The Component-based architecture of
TinyModes simulator

mal composition of the two layers. The simulator compo-
nents interact through well-defined facets and receptacles.
In order to construct a working simulator, these abstract
components need to be specialized so that they implement
a particular MoC. It is interesting to note that the actual
C++ code for the abstract semantics uses abstract classes,
and the act of specializing the semantics corresponds exactly
to specializing abstract classes in the simulator code.

We have performed this specialization for the SR MoC,
and so we can show the result of simulating the up-counter
example with and without the SCMM controller. The gray

 t f

t t f f t f t f t t t t

Rs

Cn

Q No controller

Controller

0

1

2

3

4

5

Figure 6: Simulation of up-counter with and without
timed controller

line (Figure 6) shows the response of the counter when there
is no controller. Notice how non-determinism results in a
random application of either increment, read, or reset. This
phenomenon can be thought of as plant behavior that must
be controlled by the modal model. The dashed line shows
the correct behavior of the counter when the controller is in
place. Again, this type of reasoning is possible because of the
layering, and the these two simulations are easily generated
because of the simulator architecture. This architecture is
also useful for simulator reuse. For example, we have imple-
mented a time-triggered MoC, much like that implemented
in Giotto, by reusing the same BFlow and attaching a dif-
ferent specialization of SCMM controllers.

Our use of constraint-based interdependencies to enforce
partitioning of semantic constructs may seem like a burden
to the developer. However, with multiple-aspect modeling
the developer can rely on the modeling tool to either guar-

antee satisfaction of constraints via correct-by-construction
approaches, or to find constraint violations and alert the
user. The developer does not need to actively keep track of
all the constraints, as this is managed by the tool, but the
developer does need to understand the meaning of a viola-
tion and the correct way to fix a violation.

In the multiple-aspect modeling approach each layer be-
comes an aspect, which is a global view of the system from
that layer. This means that there are two aspects: untimed,
and timed. (There is no behavior aspect because the view
inside a component is an entirely different from the system
in which the component is used.) A system is modeled in
both aspects concurrently and changes in one aspect dynam-
ically affect the other aspect. This allows all the views of
the system to attempt to make themselves consistent with
modifications to a single view, or to report that they cannot
be made consistent.

We have developed a generic modeling architecture for
our abstract semantics using the multiple-aspect modeling
and constraint checking facilities of the meta-programmable
tool GME [6]. GME is a configurable modeling editor that
uses a meta-model to configure itself for a particular model-
ing language. We have incorporated our abstract semantics
into GME by constructing a meta-model that describes the
modeling entities, aspects, and constraints necessary for our
approach. This meta-model describes an abstract modeling
language, so it cannot be directly used for modeling under
a particular MoC. The abstract meta-model must be spe-
cialized for a particular MoC through specialization mech-
anisms like meta-model inheritance. This process is analo-
gous to specializing the simulator components so that they
implement a particular MoC. The result of this specializa-
tion is a ready-to-use multiple-aspect modeling tool with
constraint management and correct-by-construction capa-
bilities for layer co-design.

A particular realization of this abstract modeling lan-
guage is SMOLES (Synchronous Modeling Language for
Embedded Systems), which implements the SR MoC in
GME. A part of the metamodel for untimed SMOLES is
shown in Figure 7; it can be read much like a UML class
diagram. This part of the SMOLES metamodel explains
that a component contains exactly one dataflow graph and a
number of input and output ports (CmpInterfaceIn, CmpIn-
terfaceOut). A dataflow graph contains operators, and also
has input and output ports that have an abstract superclass
called PortFCO. GME uses UML stereotypes to explain how
instances of a class will be visualized in the modeling lan-
guage. The <<Model>> stereotype indicates that instances
may contains other objects, and the <<Atom>> stereo-
type indicates that instances cannot contain other objects.
Figure 8 shows the untimed dataflow graph for the counter
example as it appears in the SMOLES/GME modeling en-
vironment. This figure is also the view of the component
from the untimed aspect (or Dataflow Aspect as it is called
in SMOLES).

The SMOLES metamodel also defines a timed language
for SMOLES in the style of structurally constrained modal
models. Figure 9 shows part of the metamodel for timed
SMOLES, and it explains that a component contains a set
of modes via an object called ModeSet. An individual mode
can contain objects of type ModeInput, ModeOperator, and
ModeOutput. These classes have stereotype <<Reference>>

meaning that an instance points to some other object in the

32

Figure 7: Selected part of the metamodel for un-
timed SMOLES.

Figure 8: SMOLES/GME dataflow graph for the
untimed aspect of the counter example.

model. This reference mechanism maintains a one-to-one
mapping (per mode) between objects in a mode and ob-
jects in the dataflow graph. Also notice that each instance
of a mode object asserts whether or not its associated ob-
ject should take place in the computation. For example the
ShouldUseOp attribute asserts if the referenced dataflow op-
erator should be used when the system is in that particular
mode. This approach maintains a strict separation be-
tween untimed and timed information, and it allows both
parts of the metamodel to be reused in the specification of
other MoCs. Figure 10 shows the counter modes when view-
ing the counter system in the Mode Aspect. Note that dark
gray indicates a don’t care input and light gray indicates a
constant value.

The SMOLES modeling environment manages MoC con-
straints using the facilities of GME. For example, mode
topology must match the dataflow topology. This constraint
is always correct by construction because GME automati-
cally updates the Mode Aspect when changes in the Dataflow
Aspect are made. During the construction of the graph
in Figure 8, GME created the graphs in Figure 10. The
only additional information the user had to supply was the
absent/present information for each mode object. The ac-
tive design-time maintenance of the aspects allows design-
ers to codesign the untimed and timed parts of the system,
while maintaining a conceptual separation between these
two parts. Other constraints, like synchrony constraints,

Figure 9: Selected part of the metamodel for timed
SMOLES.

must be checked. GME will check constraints at a myriad
of modeling events, and constraint violations have varying
levels of severity that can range from a warning message to
forcing an undo operation on the offending modeling action.
For example, a simple synchrony constraint violation would
occur if an operator asserted to be present received input
from an operator asserted to be absent. This is captured in
the SMOLES metamodel with the OCL constraint in Fig-
ure 11. This constraint appears formidable, but this is only
because it must handle the details of model navigation. The
logic is straightforward: If a mode object is present, then
this implies that the input ports of the present object are
not connected to the output ports of an absent object. The
SMOLES metamodel contains a number of these constraints
and this gives designers immediate feedback about the va-
lidity of their systems.

We believe that these tools illustrate the efficacy of our
nonorthogonality assumption. If explicitly nonorthogonal
approaches were shown to be too cumbersome to use, then
the first order approximation of orthogonal concerns would
be reasonable. However, we have shown that the additional
complexity created by nonorthogonal concerns can be miti-
gated by multiple-aspect modeling approaches and interact-
ing simulator architectures. The result of this nonorthogonal
approach is a MoC that is carefully delineated into interact-
ing parts, such that each part imposes clear constraints on
the others. We believe that this approach to separated con-
cerns will be more useful to designers because it produces a
refined approximation of the design-time view of the system.

33

Figure 10: Counter modes in SMOLES/GME.

(self.ShouldUseOp = #Yes) implies
self.parent().oclAsType(gme::Model).
parts(ModeOperator)->forAll(o:ModeOperator|
(o.ShouldUseOp <> #No) or
(not(self.refersTo().oclAsType(gme::Model).
parts(PrIn)->exists(pi:PrIn|pi.connectedFCOs("src",
ModeExOutToExIn).intersection(
o.refersTo().oclAsType(gme::Model).parts(PrOut))
.size()>0))))

Figure 11: OCL constraint navigates model neigh-
borhood to check for synchrony violations.

6. CONCLUSIONS AND FUTURE WORK
In conclusion, we provided evidence that component be-

havior, system topology, and scheduling concerns should
not be considered as orthogonal or independent. We devel-
oped criteria for any MoC that considers these concerns to
be nonorthogonal, and we presented a particular abstract
semantics that meets these criteria. Our abstract seman-
tics divides the interaction model into untimed and timed
pieces, each of which is operational. We explored the con-
sequences of nonorthogonal concerns on tools in the design
flow. We showed that strategies based on abstract semantics
can be used to build reusable simulators, and that multiple-
aspect modeling can mitigate the additional complexities of
nonorthogonal concerns. We conclude that the nonorthogo-
nality assumption is a reasonable and useful refinement for
separation of concerns, and that nonorthogonal concerns can
be managed by design tools.

Future and on-going work will extend these principles to
more models of computation. This work has driven new
multiple-aspect modeling enhancements that can be expected
in future versions of GME. The modularization of the sim-
ulator is a design pattern that will be reused in future “se-
mantic libraries” that will come with GME. Finally, the re-
lationship between constraint-based dependencies in aspects
and the operational dependencies in simulators is also under
study for further methodological interest.

7. ACKNOWLEDGMENTS
Special thanks to Albert Benveniste and Benôıt Caillaud

at IRISA for their invaluable input on this approach, and

to the Columbus project for making this collaboration pos-
sible.

8. REFERENCES
[1] The metropolis meta model version 0.4. Tech. Rep.

UCB/ERL M04/38, University of California, Berkeley,
September 2004.

[2] A. Benveniste, P. Caspi, S. E. N. H.-P. L. G.,

and de Simone, R. The synchronous languages
twelve years later. Proceedings of the IEEE 91, 1
(2003), 64–83.

[3] Boussinot, F., and de Simone, R. The esterel
language. Proceedings of the IEEE 79 (September
1991), 1293–1304.

[4] E. Lee, A. S.-V. A unified framework for comparing
models of computation. IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems 17,
12 (December 1998), 1217–1229.

[5] E. Lee, S. N., and Wirthlin, M. J. Actor-oriented
design of embedded hardware and software systems.
Journal of Circuits, Systems, and Computers 12, 3
(2003), 231–260.

[6] G. Karsai, J. Sztipanovits, A. L. T. B.

Model-integrated development of embedded software.
Proceedings of the IEEE 91, 1 (January 2003),
145–164.

[7] G. Szedo, S. Neema, J. S., and Bapty, T.

Reconfigurable target recognition system. Proceedings
of the FPGA Monterey, CA, Feburary 2000 (2000).

[8] G. Yang, Y. Watanabe, F. B. A. S.-V. Separation
of concerns: Overhead in modeling and efficient
simulation techniques. In Fourth ACM International
Conference on Embedded Software (EMSOFT’04)
(September 2004).

[9] Goessler, G., and Sifakis, J. Composition for
component-based modeling. In Proceedings of
FMCO02 (November 2002), vol. 2852, LNCS,
pp. 443–466.

[10] Lee, E. Overview of the ptolemy project. Tech. Rep.
No. UCB/ERL M03/25, University of California,
Berkeley, CA USA 94720, July 2003.

[11] Lee, E., and Xiong, Y. A behavioral type system
and its application in ptolemy ii. Formal Aspects of
Computing Journal 16, 3 (August 2004), 210–237.

[12] M. Bozga, S. Graf, I. O. I. O., and Sifakis, J.

The if toolset. Formal Methods for the Design of
Real-Time Systems (September 2004), 237–267. LNCS
3185.

[13] N. Halbwachs, P. Caspi, P. R., and Pilaud, D.

The synchronous data flow programming language
lustre. Proceedings of the IEEE 79 (September 1991),
1305–1320.

[14] P. Le Guernic, T. Gautier, M. L. B., and Maire,

C. L. Programming real-time applications with signal.
Proceedings of the IEEE 79 (September 1991),
1321–1336.

[15] T. A. Henzinger, C. M. Kirsch, M. A. S., and

Pree, W. From control models to real-time code using
giotto. Control Systems Magazine 2, 1 (2003), 50–64.

34

