
A Formal Approach to Fault Tree Synthesis for the
Analysis of Distributed Fault Tolerant Systems

Mark L. McKelvin, Jr.∗, Gabriel Eirea∗, Claudio Pinello†, Sri Kanajan†,
and Alberto L. Sangiovanni-Vincentelli∗

∗Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720

†General Motors Berkeley Lab
Berkeley, CA 94703

mckelvin@eecs.berkeley.edu, geirea@eecs.berkeley.edu,
claudiopinello@cal.berkeley.edu, sri.kanajan@gm.com, alberto@eecs.berkeley.edu

ABSTRACT
Designing cost-sensitive real-time control systems for safety-
critical applications requires a careful analysis of both per-
formance versus cost aspects and fault coverage of fault tol-
erant solutions. This further complicates the difficult task of
deploying the embedded software that implements the con-
trol algorithms on a possibly distributed execution platform
(for instance in automotive applications). In this paper, we
present a novel technique for constructing a fault tree that
models how component faults may lead to system failure.
The fault tree enables us to use existing commercial anal-
ysis tools to assess a number of dependability metrics of
the system. Our approach is centered on a model of com-
putation, Fault Tolerant Data Flow (FTDF), that enables
the integration of formal verification techniques. This new
analysis capability is added to an existing design framework,
also based on FTDF, that enables a synthesis-based, correct-
by-construction, design methodology for the deployment of
real-time feedback control systems in safety critical applica-
tions.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided de-
sign (CAD); C.4 [Performance of Systems]: Fault toler-
ance, Reliability, availability, and serviceability

General Terms
Algorithms, Design, Reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

Keywords
Fault tree construction, system analysis, design exploration,
feedback control applications

1. INTRODUCTION
The aerospace and automotive industries are increasingly

using electronic hardware and software content that must
be designed to be safe and available despite faults that may
occur. Hence, the recent strong interest in these industrial
sectors to use fault tolerance as a way of coping with strict
reliability requirements. Fault tolerance is an attribute that
ensures the system remains operational in the presence of
a particular set of faults. The formulation of the problem
often relates to fault tolerance when the entire functionality
of the system has to be guaranteed when faults occur. We
focus on cases where only a subset of the functionalities has
to be guaranteed while others are not crucial to the safety of
the operation of the system. In this case, we must make sure
that this subset is operational under the potential faults of
the architecture. This case is of interest in the automotive
domain.

Typically, fault tolerance is achieved by duplicating some-
what blindly hardware and software components, a solution
that is often more expensive than needed especially when we
consider the limited functionality requirement. In [13], the
problem of introducing redundancy automatically to meet
dependability and timing requirements was addressed. An
interactive design methodology was proposed to explore the
redundancy/cost trade-off. The flow was founded on a new
Model of Computation (MoC), Fault Tolerant Data Flow
(FTDF), that enables the use of formal techniques for syn-
thesis and validation of the implementation. The central
part of that flow is a set of automatic synthesis techniques
that process simultaneously the algorithm specification, the
characteristics of the chosen execution platform, and the
corresponding fault model. This information is used to (1)
automatically deduce the necessary software process replica-
tion, (2) distribute each process on the execution platform,
and (3) derive an optimal scheduling of the processes on each
electronic control unit (ECU) to satisfy the overall timing

237

and fault tolerance constraints. Together, replication, map-
ping, and scheduling result in the automatic deployment of
the embedded software on the distributed execution plat-
form. This paper is motivated by the following scenario.
If the designer explores two alternative solutions of com-
parable cost and both meet the fault tolerance and timing
constraints, can we assess which of the two has a better fault
tolerance coverage? In other words, we want to refine our
ability to analyze the synthesized deployment in the depend-
ability dimension. In this paper, we propose the use of fault
tree analysis [16] to achieve this goal.

Fault tree analysis (FTA) is a top-down approach to fail-
ure analysis: it starts with an undesirable event called a
top-level event, then determines ways the event may occur
in the system. The top-level event of a fault tree is an ab-
straction of a system failure or malfunction, and it repre-
sents the root of the fault tree. FTA uses fault trees as the
data structures to represent the relationship between poten-
tial hazards and their influence on system reliability. Static
fault trees uses combinatorial relationships that can be ex-
pressed by Boolean functions. Dynamic fault trees, on the
other hand, model failures that may not be expressed by
combinatorial logic, like the use of Markov Chains to retain
history of component failures. Fault trees have been used
extensively to perform various kinds of dependability anal-
yses [15]. For example, fault trees can be used to derive the
system failure rate, or the sets of faults necessary to achieve
a system failure (i.e. cut sets). Fault trees also indicate
the system sensitivity to faults and to their failure rates and
failure modes. Once a fault tree is generated, existing com-
mercial tools can be used to perform these types of analyses
automatically.

Although fault trees enable powerful analysis, typically
they are constructed manually by subject matter experts.
For complex hardware/software systems, this process can
be tedious and time consuming. The construction of fault
trees, in the general case, requires knowledge of the system
behavior and components used to implement the system.
However, since our approach is based on FTDF, the task of
constructing fault trees can be formalized. In fact, FTDF
also specifies how faults propagate and how they affect the
execution of the controller. This formal infrastructure allows
the use of a synthesis-based technique for generating the
fault tree automatically, corresponding to the synthesized
deployment.

There has been prior work in the area of fault tree synthe-
sis and design flows for safety critical systems such as [12]
[14] [7]. The work most closely related to this paper is [12],
where a methodology is presented that enables fault tree
synthesis based on a composition of both a hazard analy-
sis1 on the architectural components and a functional fault
tree annotated with the functional components2. Having the
composition of the two enables the system level fault tree
to be synthesized. The basic fault events of the architec-
tural components are assumed to be either output omission,
timing failures or value domain failures.

Our proposal differs in the sense that we have a formal
model of computation of the functionality that describes

1Hazard analysis is a systematic method of finding out the
manner in which an architectural component fails.
2Component here is defined as a functional component that
has a specific input and output interface.

controller

embedded software

plant
sensor

sensor

actuator

actuator

execution platform

sensor
driver

sensor
driver

actuator
driver

actuator
driver

control law algorithms

RTOS & middleware

hardware architecture

ECU

ECU

ECU

ECU

ECU

ECU

ECU

ECU

Figure 1: A real-time control system.

how a function can fail, how the architectural fault modes3

are manifested in the functionality and also how the faults of
the mapped components are composed together. Our fault
tree also comprehends how architectural failures are propa-
gated through the functional data dependencies. Since there
is a formal definition of how the functionality behaves when
mapped onto a shared architecture, common mode failures
are easily reflected in the fault tree as multiple events of
the same type in different fault tree branches. The general
underlying methodology also differs in the sense that we
account for the timing and performance constraints of the
architecture on the functionality during the mapping phase.

In [14], focus was given on how to create a descriptive
modeling language (RIDL, Reliability embedded Design Lan-
guage) that can enable fault tree synthesis. This gives a nat-
ural modeling environment for reliability engineers to work
and also removes the ambiguity in interpretation of compo-
nent reliability requirements. Primitives such as single point
failure components, support component, repeated compo-
nents are available in the environment to encode a variety of
systems from a reliability stand point. Since these primitives
in the modeling language have precise semantics, a fault tree
can be synthesized. This work differs from our methodology
in two aspects: (1) The language already assumes a mapped
system as the input design while in our methodology there is
a formal separation of functionality and architecture. This
is an issue especially in an automotive domain since reuse
of functional models across different architectures is a ma-
jor requirement. (2) The RIDL language assumes a specific
model of computation that is imposed on the mapped sys-
tem rather than on just the functionality.

The rest of the paper is organized as follows. In Section 2
we briefly present the formulation of the synthesized deploy-
ment. For a detailed description of the synthesis algorithm,
the reader is referred to [13]. In Section 3 we present FTDF
and some of the basic terminology used to describe FTDF
graphs. In Section 4 we formulate the fault tree synthesis
problem and illustrate how the specification, along with the
synthesized deployment, can be used to synthesize a fault
tree for the dependability analysis. In Section 5 we apply
these techniques on a simple inverted pendulum controller
example. Finally, in Section 6 we offer some conclusions.

3In this version of the implementation, we assumed the ar-
chitecture can only fail silently.

238

CH1

CH0

ECU0 ECU1 ECU2

Figure 2: A simple platform graph.

m

m
fine

control
task

coarse
control

task
m

m

m

m

m

sensor

inputsensor

sensor

arbiter

m

output

actuator

m actuator

inverted pendulum
(the plant)

Figure 3: Controlling an inverted pendulum.

2. THE PROPOSED DESIGN
METHODOLOGY

For the sake of simplicity, in the fault model that is used
in this paper we assume fail silence: components either pro-
vide correct results or do not provide any result at all. Re-
cent work shows that fail silent platforms can be realized
with limited area overhead and virtually no performance
penalty [1]. The fail silence assumption can be relaxed if
invalid results are detected otherwise, as in the case of CRC-
protected communication and voted computation [4]. In our
work, fail silence allows us to validate our fault tree synthesis
method with high confidence. Furthermore, we use software
replication to achieve fault tolerance: critical routines are
replicated statically (at compile time) and executed on sep-
arate ECUs and the processed data are routed on multiple
communication paths to withstand channel failures.

The design methodology generates a valid fault tolerant
deployment of a feedback control system given as a FTDF
graph by specifying the fault tolerant binding. A fault toler-
ant binding guarantees that for each fault scenario, or fail-
ure pattern [5], the execution of a corresponding subset of
the actors in FTDF graph, G must be guaranteed. Fig-
ure 3 illustrates a FTDF graph for a paradigmatic feedback-
control application, the inverted pendulum control system.
In the example, the controller is described as a bipartite
directed graph G where the vertices, called actors and com-
munication media, represent software processes and data
communication. In addition, Figure 2 is a possible plat-
form graph PG, where vertices represent ECUs and com-
munication channels and edges describe their interconnec-
tions. The example repeats the following sequence at each
period Tmax: (1) sensors are sampled, (2) software routines
are executed, and (3) actuators are updated with the newly-
processed data. In order to guarantee correct operation, the
worst-case execution time (WCET) among all possible iter-
ations must be smaller than the given period Tmax (our real-
time constraint). Moreover, the control algorithms must be
executed in spite of the possible platform faults.

Figure 4: Proposed Design Flow.

Figure 4 illustrates the proposed interactive design flow
where designers

• specify the controller (the top-left FTDF graph);

• assemble the execution platform (the top-right PG);

• specify a set of failure patterns (subsets of PG);

• specify the fault tolerance binding (fault behavior);

A synthesis tool automatically derives a fault tolerant de-
ployment. Finally, a verification tool checks whether the
fault tolerant behavior and the timing constraints are met.

If more than one solution is found, we would like to assess
precisely their dependability to correctly explore the fault
tolerance/cost trade-off. In this paper, we propose a synthe-
sis method to automatically generate a fault tree model for
each of the correct deployments. Existing fault-tree analysis
tools, such as the Item Toolkit [6], can then be used to an-
alyze the deployments and score them on the dependability
dimension.

3. FAULT TOLERANT DATA FLOW
Fault Tolerant Data Flow (FTDF) is a synchronous [3]

model of computation (MoC) where every actor executes
once per iteration, satisfying the precedence order dictated
by the data dependencies. Then, the next iteration may
start. This section reviews the fundamental components of
an FTDF model: tokens, actors, and communication me-
dia. An FTDF graph provides the structural dependencies
amongst components in a FTDF model. As described in
Section 3.3, FTDF applications are fault model independent.

239

3.1 Tokens
Tokens are encapsulations of data that is transferred be-

tween functional components in a FTDF graph. Since this
paper focuses on the construction of fault trees and tokens
are specified as part of the operational semantics of FTDF,
the reader is referred to [13] for a detailed assessment.

3.2 Actors
In an actor-oriented design framework [9], actors are func-

tional components that execute and communicate with other
actors in a model. An actor contains ports that are con-
nected via an abstraction of communication channels. Here
this abstraction is referred to as a medium. Actors also con-
tain a firing rule and a firing function that specifies the
behavior of an actor. A firing rule is a guard condition that
must be satisfied by input signals to the actor. The firing
function executes a body code that implements a particular
functionality of the actor.

In FTDF, actors are typed. An FTDF actor belongs to
one of six types. Sensor and Actuator actors read and up-
date respectively the sensor and actuator devices interacting
with the plant. Input actors perform sensor fusion. Output
actors are used to balance the load on the actuators, while
Task actors are responsible for the computation workload.
Arbiter actors mix the values that come from actors with
different criticality to reach to the same output actor. The
set of firing rules for Sensors, Actuators, Tasks, and Output
actors prescribes that the actor can fire only when all incom-
ing signals, or tokens, are present. We represent this with
the following notation U = {(∗, ∗, ..., ∗)}, where the symbol
“∗” represents the presence of a value, hence the actor can
fire only if all incoming tokens are present4. This is the typ-
ical firing rule found in other data flow languages [8] [10].
On the other hand, the input and arbiter actors can fire on
the presence of a subset of its inputs. For example, an input
actor that may fire if at least two of three input tokens are
available would have the following set of firing rules:

U = {(∗, ∗, ∗), (⊥, ∗, ∗), (∗,⊥, ∗), (∗, ∗,⊥)}, (1)

where ⊥ denotes the absence of a value. The execution
semantics of FTDF dictates that, in absence of faults, an
actor should wait for all of its input tokens before firing.
When it is detected that a token is missing for a given period,
then the partial firing rules may still enable the actor to fire.
In addition to the six types of actors described above, State
Memory actors may be present in a FTDF graph. This
component stores results produced during the current period
of an FTDF execution for use in the following period.

3.3 Communication Media
Communication occurs via unidirectional communication

media. All replicas of the same source actor write to the
same medium, and all destination actors read from it. Me-
dia act both as mergers and as repeaters sending the sin-
gle “merged” result to all destinations. More precisely, the
medium provides the correct merged result or an invalid to-
ken if no correct result is determined.

Assuming fail-silence, merging is a selection of any valid
results; assuming value errors majority voting is necessary
to perform the merge; assuming Byzantine faults we need

4Sensor actors have no inputs, so they can always fire, at
the beginning of each period.

multiple rounds of voting in order to merge the data (see
the consensus problem [2]). Communication media must
be distributed to withstand platform faults. Typically this
means having a repeater on each source ECU and a merger
on each destination ECU (using broadcasting communica-
tion channels helps reduce message traffic greatly). During
the fault tree analysis, we abstract these implementation
details about communication media distribution, and use a
simplified characterization of communication media. Using
communication media, actors always receive exactly one to-
ken per input (possibly invalid) and the application behavior
is independent of the type of platform faults.

3.4 Composition Rules
The following rules specify the set of valid actor composi-

tions to obtain a legal FTDF graph. Some basic rules (e.g.
all input and output ports of an actor should be connected,
data-types should be matched, etc.) are common to most
dataflow models and are assumed implicitly here.

A FTDF graph G is a pair (V, E) where V = A ∪ M is
the set of vertices and E ⊂ (A×M)∪ (M ×A) is the set of
directed edges. A set of actors is given by A

A = AS ∪ AAct ∪ AI ∪ AO ∪ AT ∪ AA ∪ AM , (2)

where A is composed of a partition of the six types of actors
and the state memory actors. M is a set of communication
media. Then, a FTDF graph G is legal if the following holds:

• G contains no causality cycles,
• the source to Input actors are Sensor actors, and the

outputs of Sensor actors are Input actors,
• the source to Actuator actors are Output actors, and

the outputs of Output actors are Actuator actors
• Sensor actors have no inputs from other actors, and

Actuator actors have no outputs to other actors.

Finally FTDF graphs can express redundancy, i.e. one or
more actors may be replicated. All the replicas of an actor
v ∈ A are denoted by R(v) ⊂ A. Note that any two actors
in R(v) are of the same type and must compute the same
function. This basic condition is a motivation for replica
determinism. Replica determinism in [13] states that if two
actors in R(v) fire, they produce identical results.

4. FAULT TREE SYNTHESIS
In this section, an algorithm for automatic fault tree con-

struction from a redundant mapped FTDF graph is formu-
lated and described. The static fault tree generated is rep-
resented in a series of Boolean relationships. The fault tree
describes how faults in the execution platform may lead to
faults in the functionality and ultimately to violations of the
specifications, i.e. to system failures. A recursive algorithm
operates on the deployed FTDF graph model to produce a
system fault tree. The problem is defined more precisely
below.

4.1 Problem Formulation
A redundant mapped FTDF graph LF T , is generated by

the synthesis algorithm described in [13], and it is given as

LF T = (LVF T , LEF T), (3)

where LVF T = (P ∪C)×V is the set of vertices and LEF T is
the set of edges. In LVF T , P is the set of ECUs, C is the set

240

of channels, and V is the set of actors and media, as defined
in Section 3.4. A vertex l ∈ LVF T with l = (r, v) means that
an actor or medium v is mapped to resource r. An edge
e ∈ LEF T with e = (l1, l2), l1 = (r1, v1), and l2 = (r2, v2)
connects l1 to l2. To illustrate, consider two possible cases
of mapping.

• Two actors are mapped on the same ECU, the first
actor delivers data to the second and no channel is
involved, i.e. p1 ∈ P and a1, a2 ∈ A, then l1 = (p1, a1)
and l2 = (p1, a2).

• One actor is mapped on an ECU, it transmits data on
a channel, i.e. p1 ∈ P, c1 ∈ C, a1 ∈ A,m1 ∈ M , then
l1 = (p1, a1) and l2 = (c1, m1).

Graph LF T preserves the structural dependencies between
its components as specified in the unmapped FTDF graph,
G.

A fault tree is a representation of Boolean relationships
among fault events. Fault events e are Boolean variables
which take values in B = {0, 1}, when an event takes the
value 1, i.e. e = 1, the corresponding fault has occurred,
conversely, when e = 0 the corresponding event has not
occurred. The set of basic events IB designates the input
events to a fault tree. In our case, basic events corresponds
to faults in system components, such as electronic circuits or
communication channels. A fault tree contains a single out-
put event, or root event, called a top-level event denoted by
eT . The top-level event indicates the failure of the system.

The fault tree describes how the faults of basic compo-
nents (basic faults) may lead to the system failure. A fault
tree is composed of a set of gates FG. A gate vg ∈ FG has
an associated Boolean symbol g, and has one output event
eg. With a slight abuse of notation, we will say that an
event eg ∈ FG, if it is the output event of a (unique) gate
vg ∈ FG. The set Ivg ⊆ FG ∪ IB denotes the input events to
gate vg. An input event e1 ∈ Ivg is either the output event
of some gates, i.e. e1 ∈ FG, or one of the basic events, i.e.
e1 ∈ IB . Each gate vg is assigned a Boolean function fvg

that computes the value of the output event eg given the
values of the input events. A function fvg is defined as

fvg : BN → B (4)

where N = |Ivg | is the number of inputs to gate vg . The
function fvg of gates in a fault tree has a one-to-one cor-
respondence between the Boolean logic representation and
the fault tree representation [15].

A fault tree F can be formulated as a directed, acyclic
graph

F = (FG, IB, FN), (5)

where FG is the set of vertices, IB is the set of basic events,
and FN ⊆ (FG ∪ IB) × FG is the set of directed edges con-
necting the vertices. An edge n ∈ FN is a pair of vertices
n = (vs, vd) such that vs ∈ FG ∪ IB is the source vertex and
vd ∈ FG is the sink vertex.

Problem Statement: Given a fault tolerant graph LF T ,
the top-level event eT (and the gate which outputs it), gen-
erate a fault tree F = (FG, IB, FN) and a correspondence
map fF : LVF T → FG, such that:

• the set of basic events IB is in bijection with P ∪ C ∪
AS ∪AAct and indicates the failure of resources in the
architecture

• fF (l), where l = (p, a), returns the gate vl ∈ FG that
indicates the faulty/missed execution of actor, a, on
ECU, p

• fF (l), where l = (c, m), returns the gate vl ∈ FG that
indicates the faulty/missed transmission of the data-
dependency, m, on channel, c

It should be noted that the top-level event eT can be de-
rived by the semantics of the FTDF model of computation.
For example, each Output actor is annotated by the designer
with the minimum number of Actuators that it must be able
to update in order to achieve a correct actuation of the con-
trol algorithm. In the pendulum example this number is 1,
i.e. at least one of the two Actuators should be updated.
Correspondingly, eT could be described as the output of an
AND gate where the inputs are the failure to update the
two Actuators ACT0 and ACT1.

In general, designers may want to specify different top-
level events to assess other aspects of the system response
to faults. For this reason, we take the top-level event as an
input to the fault-tree synthesis problem.

4.2 Fault Tree Construction Algorithm
The fault tolerant deployment graph, LF T , exhibits strong

structural dependencies amongst actors in this graph. This
dependency provides the necessary information to build the
fault tree of a system modeled using FTDF. Thus, a recur-
sive procedure is implemented in algorithm GenerateFault-
Tree to traverse the fault tolerant graph and generate a fault
tree of the system.

The algorithm begins by creating and adding a user-defined
top-level event, eT to the fault tree F . The designer pro-
vides the top-level event as a function of the Actuator fault
events. Algorithm GenerateFaultTree proceeds with gener-
ating subtrees for each Actuator aact ∈ AAct in LF T using
the recursive operation, DevelopSubTree. A fault in an ECU,
channel, actuator or sensor hardware is a basic event. The
recursion ends when a Sensor actor as ∈ AS is encountered
in the fault tolerant deployment graph. The subtrees of
each Actuator are combined in a gate, as specified by the
designer, to form event eT .

Algorithm [GenerateFaultTree]:
Input: LF T , eT

Output: F

GenerateFaultTree (LF T , eT) f
For ai ∈ AACT ,

Let pi ∈ P be s.t. lai = (pi, ai) ∈ LVF T ,
ei = DevelopSubTree(lai);

End For
eT = AddGate(eT , feT ,∀ei

(ei));

g End GenerateFaultTree

Algorithm DevelopSubTree is the core of the fault tree
synthesis tool which performs the recursion. When a vertex
l ∈ LVF T of graph LF T is visited, the algorithm creates and
stores a subtree FSubl

at l. This subtree is then appended
to F , and the operation is called recursively on each input of
vertex l until a Sensor, aS ∈ AS, is reached. When a Sensor
is reached, the recursion ends.

The algorithm DevelopSubTree first generates initial pa-
rameters. The operation pre(a) returns the set of sources

241

(communication media) of actor a, and minFire(a) returns
the number of inputs that are needed to fire actor a, and
it depends on the firing rule of a. The number of inputs to
fire an actor is given by the designer as a parameter when
the FTDF graph is constructed. Next, a root event of sub-
tree FSubl

is created and a number of events based on the
type of actor encountered are also created. For example,
event e3 is created as a Sensor basic event if a ∈ AS or
an Actuator basic event if a ∈ AAct. A sensor or actuator
basic event corresponds to an abstraction of a fault in the
electro-mechanical hardware of the sensor or actuator5. The
algorithm adds an OR gate with events e1, e2, and e3 (if ap-
plicable). Here, e1 corresponds to a fault of the ECU, e2

is a fault that describes when the actor cannot fire because
of missing tokens. If a ∈ AS, the algorithm terminates the
recursion immediately.

Algorithm [DevelopSubTree]:
Input: l = (p, a) ∈ (P × A) ⊂ LVF T

Output: FSubl

DevelopSubTree (l) f
Let N = |pre(a)|;
Let M = minFire(a);
FSubl

= CreateActorEvent(l);
e1= CreateEcuBasicEvent(p);
e2= CreateInputFaultEvent(a,N);
If a ∈ AS Then e3= CreateSensorBasicEvent(a);
If a ∈ AAct Then e3= CreateActuatorBasicEvent(a);
FSubl

= AddGate(FSubl
, OR(e1, e2, e3));

If a ∈ AS Then return FSubl
; //terminal case, end recur-

sion

For mj ∈ pre(a),
aj = pre(mj);
ej= CreateInputFaultEvent(mj, l);
If (llocal = (p, aj) ∈ pre(l)) Then

elocal = DevelopSubTree(llocal);
For lk = (c, mj) ∈ pre(l) ∩ (C × {mj}),

ek= CreateRemoteInputEvent(lk);
ec = CreateChannelBasicEvent(c);
era = CreateRemoteActorsEvent(lk);
ek = AddGate(ek, OR(ec, era));
For lr ∈ pre(lk),

er = DevelopSubTree(lr);
End For;
era = AddGate(era, AND∀er (er));

End For
ej = AddGate(ej, AND∀ek

(ek, elocal));
End For
e2 =AddGate(e2, V OTE∀ej (N, M, (ej)));
return FSubl

;
g End DevelopSubTree

For each medium that connects actors a and aj , an input
fault event is created for that medium. The input fault event
specifies that a medium was unable to deliver a token at the
input of actor a. The algorithm then checks for the location
of the medium, whether it is a connection between actors on

5Since we assume fail silence, we are only concerned with
the actor producing or not producing a token. This is a
high level abstraction, and we do not consider the internal
mechanics of a sensor or actuator device.

the same ECU via shared memory or if it is a channel that
connects two actors across different ECUs. If the medium
is on the same ECU, no immediate event is created and
the algorithm is called recursively to further develop that
event. The algorithm then creates an event for each edge
lk, and it adds each event to an OR gate. An event created
at this point models the fact that remote data from actor
instance lk is not delivered to actor instance l = (p, a) when
either the channel used is faulty or the remote actor fails
to execute. The input edges to lk are further developed
by a recursive call to DevelopSubTree. The InputFaultEvent
event (ej) is then composed of the logical AND of the fault
events of the various replicas generating the input. The
choice of the AND composition derives from the fail silent
assumption; changing the fault model will impact how these
events must be composed. At the end of the algorithm,
notice that the second level of the tree (second from the
root event) is created with a VOTE gate. The VOTE gate
is useful to create a Boolean relationship between a subset
of inputs. This is a one-to-one correspondence to the Input
and Arbiter actors, which have partial firing rules. More
specifically, the VOTE gate requires that ”x-out-of-y” input
events must occur before an output event to occur at that
gate. It is intuitive to see that when x = y, this simplifies
to an AND gate and when x = 1, this simplifies to an OR
gate. As an example, let y = |pre(a ∈ AIn)| and m =
|minFire(a)|. Then for the VOTE gate of actor a, x =
(y − m + 1). This means that if x tokens are not present
at the input of actor a, then the VOTE gate for actor a
produces a fault event e = 1 at its output. Essentially, the
algorithm composes subtrees to create the system fault tree.

4.3 Algorithm Complexity
A mapped FTDF graph is given as input to DevelopSub-

Tree. Actors in the mapped graph are traversed in a depth
first traversal scheme from actuator actors to sensor actors.
As each actor in the mapped graph is visited once through
recursion of DevelopSubTree, a subtree of events is created
and stored in memory. Each subtree contains levels of fault
events that contribute to the failure of that actor instance.
The first level corresponds to the failure of the actor instance
in the mapped FTDF graph. Each actor instance will have
a first level fault event, therefore, its memory complexity
is O(1). The second level is a combination of three fault
events that must occur for the actor instance to fail. Fault
events at the second level are an actor not receiving enough
input tokens to fire, the ECU for which the actor instance
is mapped fails, or the actuator hardware fails to update
the actor. The second level results in a memory complex-
ity of O(1). The third level contains events for determining
when an input to the actor instance is faulty, as in the case
where an actor instance cannot fire due to the lack of in-
put tokens. Fault events on the third level depend on the
number of inputs to an actor instance, and they are created
and stored in the first recursive call to DevelopSubTree on
each input with a memory complexity of O(D), where D
is the average number of inputs per actor instance in the
mapped FTDF graph. The fourth level constructs subtrees
that determine how fault events occur for the source actor
that feeds into the actor instance. The second call to Devel-
opSubTree occurs at this point, and since a subtree of fault
events are developed for the inputs to the source actor, it
has a complexity of O(D). At the point where the algorithm

242

reaches a sensor actor, the recursion ends since sensor ac-
tors have no input events to further develop. Furthermore,
in the case that an actor is replicated (i.e. it contains the
same actor dependencies, but located on a different ECU),
the subtree of the replicas will be the same, and each subtree
is stored individually. The resulting memory complexity for
developing a subtree for each actor instance in the mapped
graph is O(D2). Given a total number of M actor instances
in the mapped graph, the resulting memory complexity is
O(MD2). The execution time complexity for the algorithm
is O(D2M) since each call to DevelopSubTree is O(DM). The
performance of the algorithm is computationally expensive
and highly dependent on the number of actors and commu-
nication channels in the mapped FTDF description.

5. CASE STUDY
In this section we present the case of an inverted pen-

dulum control system, a common example that is used in
the feedback control system domain. Since manually con-
structed fault trees are highly dependent on subjective fac-
tors such as specified failure modes, system topology, and
the analyst’s understanding of the system, a complex exam-
ple for this work would be difficult to evaluate. Our example
is simple enough to validate the quality of the fault tree pro-
duced by our synthesis algorithm by inspection. The con-
troller is described by an FTDF graph that has a topology
similar to that of automotive subsystems that contain feed-
back controllers, as shown in Figure 3. It consists of three
position Sensors, one Input actor that performs sensor in-
tegration and assesses the current pendulum position, two
different Task actors that represent two controllers (coarse
and fine) that require different computing power, one Ar-
biter that selects the output of one of the controllers (the
fine one, whenever available), and an Output actor that di-
rects the control action to two different Actuators. The
execution platform is given in Figure 2 and consists of three
ECUs and two communication channels. Each ECU samples
one of the three sensors, while “ECU0” and “ECU2” drive
actuator “ACT0” and “ACT1” respectively.

The fault tolerance requirements used to drive the syn-
thesis of the redundant deployment consist of:

• execute the entire algorithm in absence of faults (de-
fault behavior)

• in the presence of a single ECU fault, guarantee the
execution of the critical subset of the FTDF graph, so
that at least one of the Actuators is updated.

The critical set mandates the execution of at least one replica
of

• the Input actor “IN”,
• the coarse controller “FUNc”,
• the Arbiter actor “ARB”,
• the Output actor “OUT”.

In particular, in order to fire, actor “IN” requires that at
least two of the Sensors deliver their data to it. The Arbiter
actor can fire with one of its two inputs present.

As a result, the synthesis tool performs the redundant
mapping described in Table 1. It is worth noting that the
fine controller “FUNf” is not replicated, because it was not
specified as part of the critical set. This mapping is guaran-
teed by construction to tolerate single ECU failures. How-
ever, there is no finer quantification of the degree of fault
tolerance achieved by this particular implementation. For

Actor ECU0 ECU1 ECU2
SEN0 X
SEN1 X
SEN2 X
IN X X
FUNc X X
FUNf X
ARB X X
OUT X X
ACT0 X
ACT1 X

Table 1: Redundant mapping of the pendulum ex-
ample.

this, the fault tree synthesis tool is used, extracting a fault
tree representation of how and why the system may fail.
The fault tree is then analyzed by the Item Toolkit [6], a
commercial tool distributed by Item Software Incorporated.
Among many analyses that can be performed, we present
here the cutset analysis, the dependability analysis, and the
sensitivity analysis.

5.1 Cutset Analysis
The cutset analysis permits to identify the combinations

of events that generate a system failure. The list of minimal
cutsets for the mapped pendulum example is presented in
Table 2. The name of the basic faults correspond to hard-
ware faults in Sensors, Actuators, ECUs, or communication
channels. Based on Table 2, it is clear that no single ECU
failure leads to the system failure (assuming the top-level
event is the failure of all actuators in the given system map-
ping). Moreover, no single channel failure leads to a system
failure. Note that channel failures were not part of the fault
behavior specified to drive the deployment synthesis algo-
rithm.

5.2 Dependability Analysis
The dependability analysis combines the reliability infor-

mation about components into the reliability of the system.
Starting from the mean-time-to-failure (MTTF) and the
mean-time-to-repair (MTTR) of the basic events. Among
other metrics, the system MTTF is computed. In this simple
example, we assume a system lifetime of 5000 hours, all ba-
sic events have the same reliability, and we assume a classic
exponential distribution, where the MTTF of a basic event
is 2000 hours and the MTTR of a basic event is 8 hours.
The Item Toolkit returns a MTTF of 11015.81 hours for the
system.

Based on the simple specification, we could expect a relia-
bility higher than that of a single component failing (MTTF
(system) > 2000 hours). We could also recognize that
the solution provides a dual redundant system in its weak-
est points. Hence, assuming no repair, we could expect
MTTF (system) ≥ 1.5 · MTTF (baseevent) = 3000 hours.
Having a fault tree now allows experimenting with differ-
ent mixes of more or less reliable components to explore the
design space [18], as shown below.

5.3 Sensitivity Analysis
The Item Toolkit also provides various Importance met-

rics for systems under analysis. The Importance metrics

243

Cutsets
1 SEN0 SEN1
2 SEN0 SEN2
3 SEN1 SEN2
4 ECU0 ECU1
5 ECU0 ECU2
6 ECU1 ECU2
7 CH1 CH0
8 ACT0 ACT1
9 CH0 ECU1
10 CH0 ECU2
11 CH1 ECU0
12 CH1 ECU2
13 SEN0 CH1
14 SEN1 CH0
15 SEN2 CH0
16 SEN0 ECU1
17 SEN0 ECU2
18 SEN1 ECU2
19 SEN1 ECU0
20 SEN2 ECU0
21 SEN2 ECU1
22 ACT0 ECU2
23 ACT1 ECU0

Table 2: Cutsets for the pendulum example.

considered in our analysis include the Barlow-Proschan Im-
portance [11], Birnbaum Importance [17], and the Fussell-
Vesely Importance [6]. The Barlow-Proschan Importance
metric is the probability that the system fails because a crit-
ical cut set containing the event fails, with the event failing
last. The Birnbaum Importance represents the sensitivity
of the system’s unavailability with respect to changes in the
event’s unavailability, and the Fussell-Vesely Importance in-
dicates an event’s contribution to the system unavailability.
As shown in Table 3, our results, indicate which basic events
contribute the most to the system dependability based on
the given Importance metric. From the results listed in the
table, one can clearly see that ECU2 contributes most to the
system’s dependability, and the result is consistent with our
expectations since ECU2 contains more actors than ECU0
or ECU1, thus making ECU2 a highly critical component
in the given system mapping shown in Table 1. Table 4
provides the importance values for the basic events in each
of four different system mappings. In the table, the first
column is the basic events. The last three columns are the
Barlow-Proschan Importance metrics for each mapping.

5.4 Design Exploration
The results of the analysis show that the highest contrib-

utors to system failure are the ECU faults, then the sensors
faults, the channels faults, and the least impact is due to ac-
tuator faults. Our first attempt at improving system MTTF
would obviously be to improve reliability of the ECUs, and
in general of each of the components. This would clearly
result in longer MTTF for the system.

In this paper we are more interested in exploring how dif-
ferent deployments may affect dependability, without chang-
ing the execution platform. For this reason, we synthesized
the following three additional deployments:

Event Fussell- Birnbaum Barlow-
Vesely Proschan

ACT0 0.08695652 0.007968127 0.04347826
ACT1 0.08695652 0.007968127 0.04347826
SEN0 0.2173913 0.01992032 0.1086957
SEN1 0.2173913 0.01992032 0.1086957
SEN2 0.2173913 0.01992032 0.1086957
ECU0 0.2608696 0.02390438 0.1304348
ECU1 0.2173913 0.01992032 0.1086957
ECU2 0.3043478 0.02788845 0.1521739
CH0 0.2173913 0.01992032 0.1086957
CH1 0.173913 0.01593625 0.08695652

Table 3: Various Importance metrics of base events.

Basic Event Map1 Map2 Map3 Map4
ACT0 0.043478 0.050154 0.05 9.83E-06
ACT1 0.043478 0.050055 0.025 9.83E-06
SEN0 0.108696 0.124988 0.125 0.247771
SEN1 0.108696 0.10001 0.125 0.00198
SEN2 0.108696 0.124888 0.125 0.247771
ECU0 0.130435 0.149866 0.125 0.248758
ECU1 0.108696 0.10001 0.125 0.00198
ECU2 0.152174 0.149866 0.15 0.248758
CH0 0.108696 0.075231 0.1 0.001481
CH1 0.086957 0.074933 0.05 0.001481

Table 4: Barlow-Proschan Importance for basic
events on different system mappings.

1. Map 2. We request that all critical actors be exe-
cuted also in the presence of any two ECU faults,
i.e. corresponding to failure patterns {ECU0, ECU1},
{ECU1, ECU2}, {ECU0, ECU2}.

2. Map 3. In addition to requirements in Map 2, we re-
quest that all critical actors be executed also in the
presence of any single-channel fault, i.e. correspond-
ing to failure patterns {Channel0}, {Channel1}.

3. Map 4. We use the same requirements as in Map 3,
but we change the sensor fusion algorithm so that now
it can correctly estimate the pendulum position also
using a single measurement from the sensors. Its firing
rule is now U = {(∗, ∗, ∗), (⊥, ∗, ∗), (∗,⊥, ∗),
(∗, ∗,⊥), (⊥,⊥, ∗), (∗,⊥,⊥), (⊥, ∗,⊥)}.

The deployment synthesis algorithm cannot meet the re-
quirements for Map 2 and Map 4, for example because the
failure of two ECUs makes it impossible to read two of the
sensors, so the sensor fusion actor cannot fire and none of
the following actors can fire. Nonetheless, the mapping tool
introduces in the deployment more redundancy in the exe-
cution of actors, essentially there are now three replicas of
each of the critical actors. Also, in Map 3 and Map 4, com-
munication is more redundant. After generating the fault
trees for the three deployments, and analyzing them in the
Item Toolkit, we obtain the results as in Table 5.

Table 5 shows that the additional redundancy improves
the MTTF only marginally, whereas the use of a more ro-
bust sensor fusion algorithm yields much better results in
this example. The end-to-end latency is the result of a tim-
ing analysis for the four deployments and indicates the la-

244

Designs System MTTF Number of Latency
(Hours) Minimal (Micro-

Cutsets seconds)
Map 1 11011.81 23 260
Map 2 12652.23 23 260
Map 3 12663.58 20 280
Map 4 62752.8 15 280

Table 5: For each deployment we plot the system
MTTF, the number of cut-sets, and the end-to-end
latency.

tency from reading the sensors to updating the actuators.
From the results, it is clear that having more replicas to be
executed on the same execution architecture leads to longer
latencies. This information allows the system designer to
trade-off between the desired replication and required la-
tency through the controller.

While more exploration directions are possible, the focus
of this paper is to show how to automate the analysis of the
synthesized system deployments. To this end, it is worth
noting that we synthesized each additional deployment and
each fault tree in less than 1 minute. Then, the Item Toolkit
can generate the analysis results in less than 2 minutes.

6. CONCLUSIONS
This paper presented an approach to generate automati-

cally a fault tree for a given system. The approach is based
on a formal MoC, FTDF, introduced to synthesize fault tol-
erant implementations. Since the model can give also a pre-
cise interpretation of how components fail and the manifes-
tation of that failure in the functionality, it can be used to
provide the foundations for the fault tree synthesis approach.
In the automotive domain, subsystem suppliers should pro-
vide Original Equipment Manufacturer (OEM) parts with
guaranteed properties. Having a formal representation of
the fault tolerance requirements and properties allows the
OEMs to verify that their suppliers are compliant. We in-
troduced a simple case study to illustrate the benefits of
our approach: an inverted pendulum controller. The in-
verted pendulum case study was simple enough to validate
the synthesis algorithm yet complex enough to exercise our
claims on the methodology which was to make the design
process for safety critical systems faster and formal.

With our flow, we believe that the synthesis and analy-
sis of a design through multiple iterations can be performed
more efficiently than if the design synthesis, fault tree con-
struction, and analysis were done manually. In fact, the
flow from the replication synthesis to the generation of a
fault tree for input into the Item toolkit was completely
automated. This flow is an interesting approach especially
within the automotive domain to enable quick exploration
within the fault tolerant dimension early in the design cycle.

Furthermore, this paper focused on the contributions of
fault tree synthesis in the design flow from a reliability stand-
point. The core of the synthesis engine is a computationally
expensive algorithm that traverses a mapped FTDF graph
of the system under analysis. Our future work will address
this issue by reducing the memory requirements imposed by
the fault tree construction algorithm. The current imple-
mentation of our fault tree synthesis algorithm assumes fail

silence, however, future work will relax this assumption and
account for a more dynamic array of potential faults that
commonly occur in practical systems. Furthermore, we plan
to extend this approach by accounting for dynamic elements
in the fault tree to capture sequential faults and run-time
fault mitigation strategies. Another interesting aspect that
is worth exploring is the generalization of the math formu-
lation for the synthesis engines, both for deployment and
for fault tree construction, so that the flow can also cope
with different failure modes for the hardware components
or different formal MoCs for the functionality.

7. ACKNOWLEDGEMENTS
We would like to acknowledge the constructive discussions

with Joe Wysocki and Rick Clemons from HRL Laborato-
ries as well as General Motors Research staff, specifically
Rami Debouk and Thomas Fuhrman. In particular, HRL
offered their expertise in the use of the Item toolkit, Fault
Tree Analysis, and Rick Clemons performed all the analyses
on the fault trees that we synthesized. Paolo Giusto and
Max Chiodo from the General Motors Berkeley Lab were
also instrumental in giving critical feedback on the ideas.
The inputs from Professor Kurt Keutzer, Alain Girault and
Cătălin Dima are also greatfully acknowledged.

This work was supported in part by the Center for Hybrid
and Embedded Software and Systems under the National
Science Foundation ITR grant CCR-0225610, the Gigascale
Systems Research Center under the Microelectronics Ad-
vanced Research Corporation grant 2003-DT-660, and Gen-
eral Motors.

8. REFERENCES
[1] M. Baleani, A. Ferrari, L. Mangeruca,

A. Sangiovanni-Vincentelli, M. Peri, and S. Pezzini.
Fault-tolerant platforms for automotive safety-critical
applications. In CASES, pages 170–177, San Jose,
California, USA, 2003. ACM Press.

[2] M. Barborak, M. Malek, and A. Dahbura. The
consensus problem in fault-tolerant computing. ACM
Computing Surveys, 25(2):171–220, June 1993.

[3] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. L. Guernic, and R. de Simone. The synchronous
language twelve years later. Procs. of the IEEE,
91(1):64–83, Jan. 2003.

[4] F. V. Brasileiro, P. D. Ezhilchelvan, S. K. Shrivastava,
N. A. Speirs, and S. Tao. Implementing fail-silent
nodes for distributed systems. IEEE Transactions on
Computers, 45(11):1226–1238, November 1996.

[5] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel.
Off-line real-time fault-tolerant scheduling. In
Euromicro 2001, Mantova, Italy, February 2001.

[6] I. Item Software. FaultTree+ for Windows, volume
8.0. Isograph Limited, 1998.

[7] H. Lambert. Use of fault tree analysis for automotive
reliability and safety analysis. Computer, 33(9):18–26,
2000.

[8] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Procs. of the IEEE, 79(9), September 1987.

[9] E. A. Lee and S. Neuendorffer. Classes and subclasses
in actor oriented designs. In Procs. of the Conference
on Formal Methods and Models for Codesign

245

(MEMOCODE), San Diego, California, USA, June
2004.

[10] E. A. Lee and T. M. Parks. Dataflow process networks.
Procs. of the IEEE, 83(5):773–801, May 1995.

[11] B. Natvig. Reliability analysis: Encyclopedia of
acturial science. Technical Report , University of Oslo,
Department of Mathematics, September 2002.

[12] Y. Papadopoulos and D. Parker. A method and tool
support for model-based semi-automated failure
modes and effects analysis of engineering designs.
Procs. of the IEEE, 79(9):1305–1320, September 1991.

[13] C. Pinello, L. Carloni, and A. Sangiovanni-Vincentelli.
Fault-tolerant deployment of embedded software for
cost-sensitive real-time feedback-control applications.
In Procs. of Design Automation and Test in Europe,
Paris, France, February 2004.

[14] K. K. Venmuri, J. B. Dugan, and K. J. Sullivan.
Automatic synthesis of fault trees for computer-based

systems. IEEE Transactions on Reliability,
48(4):394–402, December 1999.

[15] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and
D. F. Haasl. Fault tree handbook. Technical Report
NUREG-0492, U. S. Nuclear Regulatory Commission,
Division of Technical Information and Document
Control, January 1981.

[16] N. Viswanadham, V. V. S. Sarma, and M. G. Singh.
Reliability of Computer and Control Systems,
volume 8. North Holland, Amsterdam, 1987.

[17] W. Wang, J. Loman, and P. Vassiliou. Reliability
importance of components in a complex system. In
Reliability and Maintainability Symposium, Los
Angeles, California, USA, January 2004.

[18] J. A. Wysocki and R. Debouk. Redundancy and
reliability tradeoffs for safety/mission critical systems.
In International Systems Safety Conference,
Providence, Rhode Island, USA, August 2004.

246

