
Compiler-guided Register Reliability Improvement Agains t
Soft Errors

Jun Yan, Wei Zhang
Department of Electrical and Computer Engineering

Southern Illinois University Carbondale
Carbondale, IL 62901

jun,zhang@engr.siu.edu

ABSTRACT
With the scaling of technology, transient errors caused by
external particle strikes have become a critical challenge for
microprocessor design. As embedded processors are widely
used in reliability-sensitive environments, it becomes increas-
ingly important to develop cost-effective techniques to im-
prove the processor reliability against soft errors. This pa-
per focuses on studying the register file immunity against
soft errors since modern processors typically employ a large
number of registers, which are accessed very frequently. As
a result, soft errors occurred in registers can easily propa-
gate to functional units or the memory system, leading to
silent data error (SDC) or system crash.

To develop cost-effective techniques to fight soft errors for
embedded processors, the first step is to understand the reg-
ister file susceptibility to soft errors and its impact on the
system reliability accurately. Toward this goal, this paper
proposes the concept of register vulnerability factor (RVF)
to characterize the probability that register transient errors
can escape the register file and thus potentially impact the
system reliability. Built upon the RVF concept, we then
propose two cost-effective compiler-guided techniques to im-
prove the register file reliability by lowering the RVF value.
Our experiments indicate that on average, the RVF can be
reduced to 9.1% and 9.5% by the hyperblock-based instruc-
tion re-scheduling and the reliability-oriented register as-
signment respectively, which can potentially lower the relia-
bility cost significantly while protecting register files against
transient errors.

Categories and Subject Descriptors
B.8.1 [Hardware]: Performance and Reliability—Reliabil-
ity, Testing and Fault-Tolerance

General Terms
Design, Reliability, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

Keywords
Register File, Soft Errors, Reliability, Register Lifetime

1. INTRODUCTION
Transient errors caused by external radiation events have

become a critical challenge for microprocessor design. Such
errors occur at the operation time, which can lead to silent
data corruption (SDC) or system crash if left without pro-
tection. It is expected that microprocessors will become
increasingly susceptible to transient errors (also called soft
errors) due to the shrinking feature size, lower supply volt-
age, higher frequency and higher density. Consequently, mi-
croprocessors must be protected against soft errors to meet
the pre-defined reliability goals. While there are a number
of techniques to deal with transient errors, they come at
various penalties in performance, area, energy consumption
and cost. For embedded systems or processors with strin-
gent cost constraints, it is crucial to develop cost-effective
techniques for fighting soft errors to meet the reliability re-
quirement.

To achieve high performance, modern microprocessors typ-
ically employ register files with a large number of registers
and multiple ports, which unfortunately are susceptible to
soft errors. Moreover, registers are accessed very frequently,
and thus soft errors occurred in the register file can propa-
gate to the functional units or the memory hierarchy, poten-
tially leading to severe system reliability problems. Previous
work has shown that soft errors in register files can result in
a large number of system failures [1]. To enhance register file
immunity to soft errors, some processors use error detection
and correction schemes in the register files. For instance,
IBM G5 utilizes an ECC-based scheme [10] to protect the
registers. While the ECC scheme can detect double-bit er-
rors and correct single-bit errors, it is very costly in terms of
performance and energy consumption. Tremblay et al. [5]
show that a simple ECC operation can take up to three times
the delay of a simple ALU operation. Although ECC compu-
tation and verification can be performed in the background,
its energy consumption cannot be hidden. Actually, recent
work shows that the energy consumption of ECC is approx-
imately an order of magnitude larger than that of a register
access [6]. Compared to ECC, a less expensive technique to
enhance register file immunity is parity check. However, the
reliability improvement is limited, because the parity-based
schemes cannot correct any errors. Furthermore, both the
parity and ECC-based schemes have an area overhead of

203

12.5%, which is non-trivial. Therefore, it is important to
develop cost-effective techniques to enhance register file re-
liability without significant impact on cost, performance and
energy consumption, especially for embedded processors.

In this paper, we firstly study the register file suscepti-
bility to soft errors by defining a new metric — Register
Vulnerability Factor (RVF), which characterizes the prob-
ability that register transient errors can escape the regis-
ter file and thus potentially impact the system reliability.
The RVF can be used to understand the reliability require-
ment of register files accurately to avoid the over-protection
or under-protection. We then propose two compiler-guided
techniques to increase register reliability by performing in-
struction re-scheduling and reliability-oriented register as-
signment with a partially ECC-protected register file. Our
experiments indicate that on average, the hyperblock-based
instruction re-scheduling can reduce the RVF to 9.1% and
the reliability-oriented register assignment with partial ECC
protection can reduce the RVF less than 10%. Built upon
these two techniques, we propose a hybrid approach to re-
duce the RVF further. Our experimental results show that
the hybrid approach can reduce the average RVF to 6.1%
with only 4 out of 64 registers covered by ECC, leading to
substantial improvement of register reliability against soft
errors without significant impact on cost or performance.

The rest of this paper is organized as follows. Section 2 in-
troduces the concept of register vulnerability factor. Section
3 presents two compiler-guided techniques to improve reg-
ister file reliability against transient errors by reducing the
register vulnerability factor. Section 4 explains the evalu-
ation methodology. The experimental results are given in
section 5. Section 6 discusses the related work and section
7 concludes the paper.

2. REGISTER VULNERABILITY FACTOR
While it is critical to protect the register file against soft

errors, not all soft errors occurred in the register file can
lead to visible system faults. Over-estimation of the soft
error problem can result in over-design of the protection
mechanisms, which will increase the reliability cost eventu-
ally. On the other hand, insufficient protection of register
files will make the system unreliable and thus is useless. As
a result, designers must accurately measure the probability
that register soft errors can impact other system compo-
nents and thus lead to erroneous final output. Recently,
Mukherjee et al. [2] proposed the concept of architectural
vulnerability factor (AVF), which is defined as the probabil-
ity that a fault in a processor structure will lead to a visible
error in the final output of program. In general, the AVF
provides designers an accurate estimate of the soft error rate
for various hardware components for making cost/reliability
trade-offs. While the concept of AVF can also be applied to
the register file, it fails to exploit the fact that soft errors
in the register file can be automatically overlapped by the
new values written to the register file. If a value with soft
errors is written before it is read, it will have no impact on
the system output. Toward the goal to measure register file
susceptibility to soft errors accurately and quantitatively,
we define the register vulnerability factor (RVF) to be the
probability that a soft error in registers can be propagated
to other system components (i.e., functional units, memory).
In contrast to the concept of AVF [2], which focuses on the
effect of soft error propagation, the RVF concentrates on the

probability of soft error propagation to other hardware ele-
ments. It should be noted that even if a soft error occurred
in the register file is consumed by an instruction, it may
still not affect the final output since this instruction may be
mis-speculated. Indeed, such effects can be easily captured
by the AVF [2], thus this paper focuses on examining the
RVF. Obviously, the RVF and the AVF can be combined
to select the most cost-effective techniques to increase the
register file reliability against soft errors.

Since processors only employ a limited number of architec-
ture registers while programs typically use a large number
of values, multiple values can be stored in the same register
as long as their lifetimes do not overlap. In general, a value
is first written into a register, then it is read by one or more
times and finally another value is written into the same reg-
ister, which finishs the lifetime of the old value and begins
the lifetime of the new value. As depicted in figure 1, we
can divide the accesses to register files into four different pat-
terns (or intervals), namely, the write-read (W-R), read-read
(R-R), read-write (R-W) and write-write (W-W) patterns
(note that the read/write mentioned in this paper refers to
the corresponding operations on register values, including
but not limited to the load/store instructions, which oper-
ate on the data from the memory hierarchy). Among these
four patterns, the register file is only susceptible to soft er-
rors during the W-R and R-R intervals. In contrast, the soft
errors occurred during the R-W and W-W intervals can be
overlapped by the latter write operations, and hence will not
impact other system components. It is widely accepted that
fault-inducing particle strikes are randomly and uniformly
distributed [2], therefore, the probability that a soft error
in registers can be propagated to other system components
can be computed as the average ratio that the register values
are exposed to the susceptible intervals (i.e., W-R and R-R),
as described in Equation (1). In this Equation, RVi repre-
sents any register value, the SusceptibleT ime(RVi) repre-
sents the time intervals that RVi is exposed to the suscepti-
ble intervals (i.e., W-R and R-R intervals for RVi), and the
Lifetime(RVi) represents the lifetime of RVi, which is time
interval between the time that a register is allocated for RVi

and the the time it is overlapped by another value. Since
both the SusceptibleT ime(RVi) and Lifetime(RVi) can be
easily obtained from a performance simulator, it would be
straightforward to compute the RVF.

RV F =

∑
SusceptibleT ime(RVi)∑

Lifetime(RVi)
(1)

The RVF indicates the probability that register soft er-
rors can spread to other hardware elements and thus im-
pact the system output. The higher the RVF, the lower the
register file reliability, and hence more expensive techniques
are needed to fight soft errors. Measuring the RVF is not
only useful to understand the reliability requirement of reg-
ister files accurately for avoiding both the over-protection or
under-protection, it also opens up avenues for software (e.g.,
compiler) to enhance register file reliability by reordering the
read/write operations to reduce the RVF. In contrast, tradi-
tional software optimizations mainly focus on performance.
Therefore, the RVF allows compilers to consider both per-
formance and reliability to optimize the register access pat-
terns. Such a software based approach has no hardware
overhead, which is fundamentally different from traditional
space redundancy or information redundancy techniques.

204

Read Value
New Last New New Time

W

Value

W W

R R R R

R: Read W: Write

Value

Figure 1: Register access patterns.

3. TECHNIQUES TO REDUCE REGISTER
VULNERABILITY FACTOR

There are a number of research efforts on improving re-
liability of various system components of processors in the
literature, such as the techniques to address soft errors for
main memories [3, 12], caches [7, 8], and the datapath [9,
10, 11]. However, little work has been done to explore the
impact of soft errors on register files, which is accessed very
frequently and thus can significantly impact the system reli-
ability if not protected. Recently, Memik et al. [4] proposed
a scheme to replicate the register values into the physical
registers at runtime to increase the register file reliability.
Such a technique can exploit the additional physical regis-
ters efficiently to benefit reliability, however, it cannot be
applied to processors without dynamic renaming support,
such as VLIW architectures, which are increasingly used in
embedded systems. By comparison, this paper proposes two
compiler-guided techniques to improve the register file im-
munity to soft errors, which can be applied to embedded
processors with or without physical Based on the concept of
RVF, the first technique aims at enhancing register file relia-
bility by re-scheduling the register read/write operations to
reduce the RVF value without impacting the performance.
The second technique assumes that a fraction of the register
file employ the ECC code and thus we modify the register
allocator to protect the registers that are most susceptible
to soft errors based on the RVF profiling results. Built upon
these two techniques, we also propose a hybrid scheme that
can reduce the RVF further to improve the register file im-
munity to transient errors.

3.1 Re-schedule Instructions to Reduce RVF
Since registers are only susceptible to transient errors dur-

ing the W-R and R-R intervals, the RVF can be reduced by
delaying the write operations as late as possible and schedul-
ing the read operations as early as possible. By doing this,
the W-R and R-R intervals are shortened, while the R-W
interval is lengthened, both of which can lead to a smaller
RVF value and hence higher register file reliability. In or-
der to not impact performance, we propose to re-schedule
the read/write operations by exploiting the scheduling slacks
[13]. Specifically, after the instruction scheduling phase, the
compiler can analyze the dependence graph to identify the
slacks for each scheduled code region. For instructions with
slacks, the compiler then re-schedules the write operations as
late as possible and the read operations as early as possible
without increasing the critical path delay. Consequently, the
RVF is reduced without compromising on performance. The
advantage of this approach is that it is purely a software-
based approach, which can increase the register file relia-
bility without any hardware cost. However, the effective-
ness of the approach depends on the flexibility to move the

read/write operations in the scheduled code regions, which
is constrained by data dependences and the critical path
latency. To enhance the compiler’s capability to reorder
instructions, we also make use of the superblock schedul-
ing [14] and hyperblock scheduling [15] algorithms to form
larger blocks, in which the compiler has more flexibility to
optimize the register access patterns for minimizing the RVF
value.

3.2 Reliability-oriented Register Assignment
with Partial ECC Protection

In contrast to the first technique that is pure software-
based, the second scheme assumes that a certain number
of registers have employed the ECC code to detect/correct
transient errors. Since most soft errors are one-bit errors,
the ECC code is sufficient to protect the register file against
soft errors in most cases. However, since ECC is costly,
we assume that only a small fraction of register file is cov-
ered by ECC. In order to minimize the RVF of a partially
ECC-protected register file, we propose to modify the con-
ventional register allocation algorithm by distinguishing the
registers with ECC and the normal registers without ECC.
We develop a profiling-based approach to direct the register
allocation. Specifically, based on the RVF profiling for each
register, the compiler selects the registers with the highest
RVF values. If these registers are not protected by ECC, the
compiler then re-assigns the registers so that the registers
with ECC always have the highest RVF values. Since the
most susceptible register values are now covered by ECC,
the overall reliability of the register file can be improved
substantially.

3.3 Hybrid Scheme
Based on the above two techniques, we propose a hybrid

scheme that combines both the instruction re-scheduling
and the reliability-oriented register assignment to further
improve the register file reliability without significant cost
increase. In the hybrid scheme, the compiler first performs
the instruction re-scheduling to minimize the RVF based
on hyperblocks and then re-allocates registers based on the
profiling information and the number of registers covered
by ECC. Compared with the pure software-based approach,
such a hybrid scheme can improve the reliability further
by exploiting the small number of registers that are pro-
tected by ECC. Likewise, compared with the pure register
assignment based approach, the cost of the partially ECC-
protected register file can be reduced by first applying the
software-based instruction rescheduling to lower the RVF
value as much as possible.

4. EVALUATION METHODOLOGY
We evaluate the register file reliability in a VLIW proces-

sor since VLIW architecture is increasingly used in embed-
ded computing. We implement the method to compute RVF
and the proposed techniques in the trimaran framework [16],
which consists of both an advanced compiler and a VLIW
simulator. The VLIW configuration used in our experiments
contains four IALUs (integer ALUs), two FPALUs (floating-
point ALUs), one LD/ST (load/store) unit and one branch
unit. The register file consists of 64 general-purpose regis-
ters. The basic block scheduling algorithm is used as the
default algorithm. We select ten benchmarks from the Me-
diabench [17] for the evaluation.

205

0

0.05

0.1

0.15

0.2

0.25

0.3

cjp
eg

djp
eg de

s

g7
21

de
co

de

gs
m

_d
ec

od
e

gs
m

_e
nc

od
e

m
pe

g2
en

c

co
rd

ic

ra
wca

ud
io

ra
wda

ud
io

AVERAGE

R
eg

is
te

r
V

ul
ne

ra
bi

lty
 F

ac
to

r

Figure 2: Register Vulnerability Factor for different

benchmarks.

5. EXPERIMENTS

5.1 Register Vulnerability Factor Results
Figure 2 shows the RVF for different benchmarks. As

can be seen, except for mpeg2enc, the RVF values of all
other benchmarks are less than 20% and some RVF values
are even less than 5%. Such low RVF values indicate that
the majority of soft errors occurred in the register file can be
automatically overlapped by the write operations, and hence
have no impact on other system components or the system
output. As a result, the reliability cost can be potentially
reduced by choosing less expensive (and often less powerful)
techniques to protect the register file while meeting the pre-
defined reliability goal. These results also show that the
register vulnerability factor is dependent on the application
behaviors. Different applications access the register file in
different patterns, leading to varied RVF values. Therefore,
for embedded processors, which typically run a set of fixed
applications, one can evaluate the register access patterns
in the early design cycle to derive the RVF value, based on
which the most cost-effective technique can be selected to
protect the register file against soft errors.

5.2 Effect of Instruction Re-scheduling
Since a small RVF value implies high reliability, table 1

lists the RVF values by re-scheduling the register write op-
erations as late as possible and the register read operations
as early as possible based on the scheduling slacks. The
second column in table 1 gives the RVF values of the orig-
inal schedule, which uses the list scheduling algorithm [18].
Compared with the base scheme, the RVF values after the
instruction re-scheduling decrease for all benchmarks. These
results clearly indicate that the compiler can optimize the
register access patterns to improve the register file immunity
to soft errors. Nevertheless, we also find that the amount
of RVF reduction is not significant, since the instruction re-
ordering is limited within small basic blocks.

Figure 3 shows the RVF values of instruction re-scheduling

Benchmarks Base Re-schedule

cjpeg 0.186010 0.185490

djpeg 0.200022 0.194768

des 0.033647 0.033398

g721decode 0.061247 0.060142

gsm decode 0.049989 0.049620

gsm encode 0.048718 0.048518

mpeg2enc 0.274092 0.273101

cordic 0.151289 0.145255

rawcaudio 0.198224 0.197671

rawdaudio 0.178190 0.177265

Average 0.138143 0.136523

Table 1: RVF values of instruction re-scheduling

compared with the base scheme.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

cjp
eg

djp
eg de

s

g7
21

de
co

de

gs
m

_d
ec

od
e

gs
m

_e
nc

od
e

m
pe

g2
en

c

co
rd

ic

ra
wca

ud
io

ra
wda

ud
io

AVERAGE

R
eg

is
te

r
V

ul
ne

ra
bi

lit
y

F
ac

to
r

Base SB-Reschedule HB-Reschedule

Figure 3: RVF of instruction re-scheduling based on

superblock and hyperblock scheduling.

based on superblocks [14] and hyperblocks [15]. Since the
superblocks and hyperblocks are much larger than the basic
blocks, the compiler has more flexibility to move instructions
without increasing the critical path delay. As a result, we ob-
serve that the RVF values of some benchmarks are reduced
substantially. For instance, the RVF of djpeg decreases from
20% to 3.5% and 3.3% respectively for the superblock-based
and hyperblock-based instruction re-scheduling approaches.
On average, the superblock-based and hyperblock-based in-
struction re-scheduling can achieve the averaged RVF value
as low as 10.9% and 9.1% respectively, which can be trans-
lated to the register file reliability improvement and the re-
liability cost reduction. We also find that for some bench-
marks, the RVF values actually become larger, this is be-
cause the superblock scheduling and hyperblock scheduling
also change the total execution cycles, compared with the
basic block scheduling.

5.3 Effect of Reliability-oriented Register As-
signment

Commercial microprocessors such as IBM G5 [10] have
employed ECC to protect the register file against soft er-
ror. Although it is too costly to add ECC to each register
for embedded processors, it is attractive to employ ECC to

206

protect a limited number of registers that store the most
critical data, since reliability is also critical to many embed-
ded application and not all registers are accessed uniformly.
Table 2 lists the RVF values of the reliability-oriented regis-
ter assignment by varying the number of registers protected
by ECC. As can be seen, the profiling-based register assign-
ment is effective at reducing the RVF values. On average,
with only 4 out of 64 registers protected by ECC, the RVF
is reduced to 9.5%. With more registers covered by ECC,
the RVF value can be further lowered. For instance, with 8
and 16 registers protected by ECC, the average RVF value
is reduced to 6.5% and 3.2% respectively. Obviously, with
more number of registers covered by ECC, the cost will also
increase. Consequently, the designers need to make a trade-
off between the cost and the reliability to meet the design
goals.

To evaluate the effectiveness of the proposed reliability-
oriented register assignment scheme, we also make experi-
ments by reducing the total number of general-purpose reg-
isters, so that each register is likely to be accessed more
frequently. Table 3 gives the RVF values with 0, 2, 4, 8
and 16 registers covered by ECC and the total number of
registers is 32. As we can see, the base RVF value is in-
creased, since the register are generally read more frequently.
By allocating the reliable registers with ECC to cover the
most susceptible intervals, the RVF values can still be re-
duced effectively. For instance, with 4 register protected
by ECC, the average RVF value is as low as 10%. There-
fore, the reliability-oriented register assignment is effective
at improving register file immunity to soft errors.

5.4 Effect of the Hybrid Scheme
The RVF values of the hybrid scheme are listed in table

4. As can be seen, the hybrid scheme can reduce the RVF
values of different benchmarks significantly. With only 4
out of 64 registers protected by ECC, the RVF value is as
low as 6.1% on average, implying substantial improvement
of register file reliability.

6. RELATED WORK
Transient errors caused by external particle strikes have

traditionally been a concern for systems that operate in
highly noisy environments, but with the scaling of technol-
ogy, they have become increasingly a challenge for micro-
processor design. To understand the microprocessor vulner-
ability to soft errors, Kim and Somani [19] conducted fault
injection experiments on picoJava-II in its RTL model and
found large variations for different hardware blocks. Wang
and Patel [20] studied the soft error sensitivity of a modern
microprocessor similar to the Alpha 21264 through fault in-
jection on a RTL model and reported that fewer than 15% of
single bit errors in processor state result in software visible
errors. Recently, Mukherjee et al. [2] proposed an approach
to measure Architectural Vulnerability Factor (AVF) based
on a performance model and reported that the AVFs of the
instruction queue and execution units are 28% and 9% re-
spectively for an Itanium2-like IA64 processor. In contrast
to previous work, this paper focuses on studying the reg-
ister file vulnerability to soft errors by exploiting the fact
that register soft errors can be overlapped by the write op-
erations, which cannot be captured by previous models. In
addition, the RVF proposed in this paper can be combined
with the AVF to understand the register reliability require-

ment even more accurately. In this paper, we also proposed
several novel techniques to improve register file reliability
without significant hardware cost.

To protect hardware components against transient errors,
there are a number of techniques in the literature, but most
of them focus on protecting the main memories [3, 12],
caches [7, 8], and the datapath [9, 10, 11]. The most widely-
used mechanisms to protect the storage units are parity and
ECC, but come at the cost of area, energy and design time.
Also, if the ECC computation is on the critical path, it may
also impact the performance. Recently, Memik [4] proposed
a scheme to replicate register values into the physical reg-
isters to increase the register file reliability. While this ap-
proach can utilize the available physical registers to enhance
reliability, it can only be used for superscalar processors,
where additional physical registers are employed to support
the dynamic register renaming. In contrast, VLIW proces-
sors rely on compiler to manage the registers and they typ-
ically do not have additional physical registers, therefore,
the approach proposed in [4] cannot be applied to VLIW-
like processors, which do not have physical registers. By
comparison, this paper proposes two compiler-guided tech-
niques to improve the register file immunity to soft errors,
which can be widely applied to a variety of processors.

7. CONCLUSION
With the shrinking feature size, lower supply voltage, higher

density and frequency, soft errors are becoming an increasing
challenge for microprocessor design. To protect processors
against soft errors, the first step is to understand the vul-
nerability of different hardware components to soft errors.
Based on the accurate estimate of the reliability require-
ment, the most cost-effective technique can be selected to
meet the pre-defined reliability goal, which is of particu-
lar importance for embedded systems with cost constraints.
While existing work mainly focuses on examining the im-
pact of soft errors on main memory [3, 12], caches [7, 8]
or datapath [9, 10, 11], this paper explores the register file
reliability against soft errors, since registers are susceptible
to transient errors and are accessed very frequently. In this
paper, we propose the concept of Register Vulnerability Fac-
tor (RVF) to characterize the probability that register soft
errors can be propagated to other system components and
thus impact the final output. We also propose an approach
to calculate the RVF based on the register access patterns.

Built upon the concept of RVF, we develop two compiler-
guided techniques to improve register file reliability by de-
creasing the RVF value because a smaller RVF value indi-
cates that the register file is less susceptible to soft errors.
The first technique is a pure software-based approach, which
exploits the scheduling slacks to move the register write op-
erations as late as possible and the register read operations
as early as possible. Our experiments demonstrate that the
instruction re-scheduling based on hyperblocks [15] can re-
duce the RVF to 9.1% on average. The second technique tar-
gets register files that are partially protected by ECC. The
proposed reliability-oriented register assignment aims at im-
proving register file immunity to soft errors by protecting
the most susceptible intervals based on the profiling infor-
mation. We also propose a hybrid scheme built upon both
these two techniques to further reduce the RVF. The exper-
imental results show that the hybrid scheme can reduce the
average RVF to 6.1% with only 4 out of 64 registers covered

207

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.151288891 0.120040484 0.088792109 0.046742438 0.02429325

cjpeg 0.186009609 0.160762828 0.136325031 0.098380625 0.062427047

g721decode 0.061247047 0.038915094 0.0234375 0.008844359 0

des 0.033646875 0.02176425 0.019728578 0.016340734 0.010626719

gsm decode 0.049989453 0.028505078 0.014410906 0.003800688 0.000105578

gsm encode 0.048717953 0.028485578 0.011818906 0.003205125 0.000080125

djpeg 0.20002175 0.187089328 0.175444406 0.15350875 0.114980703

mpeg2enc 0.274091891 0.252926703 0.232575047 0.191884563 0.110947031

rawcaudio 0.198224297 0.166974391 0.135728609 0.073279031 0.000000375

rawdaudio 0.178189859 0.146939984 0.115695078 0.053284719 0

Average 0.138142763 0.115240372 0.095395617 0.064927103 0.032346083

Table 2: The RVF values of register assignment with 0, 2, 4, 8 and 16 registers protected by ECC. The total

number of register is 64.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.091754031 0.068341563 0.049365656 0.033553969 0.013885313

cjpeg 0.189492656 0.155292063 0.12686875 0.084054844 0.033249313

g721decode 0.123968125 0.07768275 0.049233469 0.019457531 0

des 0.039867094 0.015828313 0.013607125 0.009330375 0.002692844

gsm decode 0.099978906 0.057010156 0.028821813 0.007601375 0.000211156

gsm encode 0.097435906 0.056971156 0.023637813 0.00641025 0.00016025

djpeg 0.132947156 0.107630688 0.091748375 0.069231281 0.038132406

mpeg2enc 0.221359594 0.180454875 0.1413295 0.095834719 0.024723313

rawcaudio 0.396448625 0.333948813 0.27145725 0.146558094 0.00000075

rawdaudio 0.356379719 0.293879938 0.231390156 0.106569438 0

Average 0.174963181 0.134704031 0.102745991 0.057860188 0.011305534

Table 3: The RVF values of register assignment with 0, 2, 4, 8 and 16 registers protected by ECC. The total

number of register is 32.

Benchmarks 0 ECC 2 ECCs 4 ECCs 8 ECCs 16 ECCs

cordic 0.025700359 0.004397672 0.002273719 0.001621578 0.000885469

cjpeg 0.127385906 0.114456375 0.106415047 0.091380641 0.066774406

g721decode 0.067519422 0.044931984 0.030035609 0.010767469 0

des 0.022856078 0.010695469 0.009877625 0.008380328 0.005581578

gsm decode 0.060325078 0.039777906 0.024668016 0.00641025 0.000171703

gsm encode 0.063652719 0.044228188 0.026212469 0.006190266 0.000128078

djpeg 0.03372375 0.021106703 0.018647578 0.016207969 0.012148578

mpeg2enc 0.289249875 0.269204828 0.250841047 0.215085438 0.144025141

rawcaudio 0.204760625 0.173510797 0.142265484 0.086420625 0.027582234

rawdaudio 0.023031125 0.011191563 0.008446703 0.004637344 0.001563359

Average 0.091820494 0.073350148 0.06196833 0.044710191 0.025886055

Table 4: The RVF values of the hybrid scheme with 0, 2, 4, 8 and 16 registers protected by ECC. The total

number of register is 64.

208

by ECC. As a result, the register file reliability is improved
adequately without significant impact on cost. Moreover,
all the techniques proposed in this paper can enhance reg-
ister file immunity to soft errors without compromising on
performance.

8. REFERENCES
[1] M. Rebaudengo, M. S. Reorda and M. Violantc. An

accurate analysis of the effects of soft errors in the
instruction and data caches of a pipelined
microprocessor. In Proc. of the Design, Automation
and Testing Europe (DATE), 2003.

[2] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt and
T. Austin. A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a
High-Performance Microprocessor. MICRO 2003.

[3] C. L. Chen and M.Y Hsiao. Error-correcting codes for
semiconductor memory applications: a state of the art
review. In Reliable Computer Systems - Design and
Evaluation, pages 771-786, Digital Press, 2nd edition,
1992.

[4] G. Memik, M. Kandemir, O. OZturk. Increasing
register file immunity to transient errors. In Proc of
DATE 2005.

[5] M. Tremblay and Y. Tamir. Support for fault
tolerance in VLSI processors. ISCS, 1989.

[6] R. Phelan. Addressing soft errors in ARM core-based
SoC. ARM White Paper, Dec. 2003.

[7] S. Kim and A. K. Somani. Area efficient architectures
for information integrity in cache memories. In Proc.
of the International Symposium on Computer
Architecture, 1999.

[8] C. Chen and A. K. Somani. Fault containment in
cache memories for TMR redundant processor
systems. IEEE Transactions on Computers, March
1999.

[9] T. Austin. DIVA: a reliable substrate for deep
submicron microarchitecture design. MICRO, 1999.

[10] S.K. Reinhardt and S.S. Mukherjee. Transient fault
detection via simultaneous multithreading. In Proc. of
ISCA, 2000.

[11] J. Ray et al. Dual use of superscalar datapath for
transient-fault detection and recovery. MICRO, 2001.

[12] T. J. Dell. A white paper on the benefits of
chipkill-correct ECC for PC serve main memory. IBM,
Nov 1997.

[13] W. Zhang, N. Vijaykrishnan, M. Kandemir, M. J.
Irwin, D. Duarte and Y. Tsai. Exploiting VLIW
schedule slacks for dynamic and leakage energy
reduction. In Proc. of MICRO 2001.

[14] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D.
M. Lavery. The superblock: an effective technique for
VLIW and superscalar compilation. The Journal of
Supercomputing, pp. 229–248.

[15] S. A. Mahilke, D. C. Lin, W. Y. Chen, R. E. Hank
and R. A. Bringmann. Effective compiler support for
predicated execution using hyperblock. In Proc. of the
25th International Symposium on Microarchitecture,
pp.45-54, Dec. 1992.

[16] http://www.trimaran.org.

[17] C. Lee and M. Potkonjak, and W. H.
Mangione-Smith. MediaBench: a tool for evaluating
and synthesizing multimedia and communications
systems. In Proc. the International Symposium on
Microarchitecture, pp. 330–335, 1997.

[18] S. S. Muchnick. Advanced compiler design
implementation. Morgan Kaufmann Publishers, 1997.

[19] S. Kim and A.K. Somaini. Soft error sensitivity
characterization for microprocessor dependability
enhancement strategy. In Proc. of the International
Conference on Dependable Systems and Networks
(DSN), 2002.

[20] N. J. Wang, J. Quek, T.M. Rafacz, S.J. Patel.
Characterizing the effects of transient faults on a
high-performance processor pipeline. In Proc of the
International Conference on Dependable Systems and
Networks (DSN), 2004.

209

