
A Denotational Semantics for Stateflow ∗

Grégoire Hamon
Chalmers Institute of Technology

Göteborg, Sweden

hamon@cs.chalmers.se

ABSTRACT
We present a denotational semantics for Stateflow, the graph-
ical Statecharts-like language of the Matlab/Simulink tool-
suite. This semantics makes use of continuations to capture
even the most complex constructions of the language, such
as inter-level transitions, junctions, or backtracking. An im-
mediate application of this semantics is a formal compilation
scheme for the language.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; D.2.6 [Software Engineering]: Pro-
gramming Environments—Graphical Environments

General Terms
Design, Languages

Keywords
Stateflow,denotational semantics, continuations, compilation

1. INTRODUCTION
As embedded systems grow in complexity and criticality,

designers increasingly face problems of scalability and qual-
ity. One answer to these problems has been the widespread
adoption of model-based development environments. Model-
based environments allow a high-level, graphical, description
of the system, close to its specification. This high-level of ab-
straction, combined with extensive tool capabilities for sim-
ulation or validation, greatly helps to improve design quality
and scalability.

One of the most widespread model-based development en-
vironment is the Matlab/Simulink suite from The Math-
works, widely used in several industries, such as aerospace,
or automotive. Stateflow [11] is a component of the Matlab

∗This work has been partially financed by the Swedish Foun-
dation for Strategic Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

suite, dedicated to the design of discrete controllers. State-
flow allows hierarchical state-machines à la Statecharts and
flowchart diagrams to be combined. It is very well inte-
grated within Matlab. Typically, the controller under de-
sign is modeled in Stateflow, and its environment modeled
in Simulink, another component of the suite. The whole
system can be simulated using all the capabilities of Mat-
lab in that regard. This integration of the suite makes it
probably the most versatile design tool of its kind.

However, Stateflow lacks any formal definition. The se-
mantics of a program is given by the result of its simulation
within the Mathworks tools. This absence of formal defini-
tion is a big obstacle to static analysis, verification, or auto-
matic test-cases generation of Stateflow designs. These are
becoming crucial as designs increase in complexity and crit-
icality. To prevent possible runtime errors, or unexpected
behaviors, users have been using guidelines[5, 2] to define
“safe” subset of the language. These informal guidelines are
often both too restrictive to the user, and too permissive to
ensure safety.

In [8], we proposed an operational semantics for State-
flow, based on the premise that Stateflow, while allowing
allowing a parallel description of the system, has a purely
sequential behavior. We have used this semantics to define
static analysis, an interpretor, and a compiler to the SAL
language. SAL[4] is the input language of various model-
checkers and formal tools, we are using it to automatically
generate test-suites from Stateflow diagrams[7]. However,
doing these experiments on industrial-size models shows the
following limitations:

• the operational semantics is defined for a subset of
Stateflow, in which transitions, in particular, have been
restricted. These restriction were imposed to keep the
semantics simple. Some examples are not supported
by the semantics.

• while the operational semantics formalizes an inter-
preter for the language, it does not formalize a com-
pilation process. Extensions and maintenance of the
compiler is difficult and an easy source for errors.

The first limitation can eventually be solved by considering a
more complex semantics. However, for the formalization to
be usable, it should be kept reasonably simple. The second
limitation is somewhat deeper. The operational approach
taken, which has great advantages for understanding the
behavior of a program, does not formalize a compilation
process.

164

In order to address both those issues, we now take a deno-
tational approach. A denotational semantics is a good basis
for a compiler, the problem is in finding a denotation for
the complex features of Stateflow, specifically its transition
mechanism. Following our previous idea, and considering
Stateflow as an imperative language, transitions are con-
structions that can move the control point in a non-local
manner to any other part of the program. In other words,
they are a special form of jumps. Jumps, and other non-
local constructions have been given denotational semantics
by means of continuations – those are key to our semantics.

Continuations[16] have been introduced by Strachey and
Wadsworth (among others, see[13]) to give a semantics to
full jumps (i.e. gotos). They have since been used to formal-
ize various non-local control constructions like exceptions,
backtracking, or coroutines (see[15]). The idea is surpris-
ingly simple and elegant. It came from the realization that,
to formalize non-local constructions, you need the ability to
manipulate “the rest of the program”[19]. A jump simply
ignores this “rest of the program” and replaces it. Other
constructions will alter it in various ways. To gain this abil-
ity, the “rest of the program” is passed as an extra-argument
– the continuation – to the semantic functions.

In this article, we use continuations to give a denotational
semantics of Stateflow. This semantics answers both of our
concerns. By using continuations, we can describe the tran-
sition mechanism completely, with all its complex features,
such as backtracking, or inter-level transitions, and thus
consider the full language. Moreover, this denotational ap-
proach gives a natural compilation scheme for the language.

We first give a short introduction to the language in sec-
tion 2. Then, in section 3 we focus on the transition mech-
anism, detail its behavior, and show how continuations can
be used to formalize it. In section 4, we formalize the lan-
guage and present its complete semantics. The compilation
scheme obtained from the semantics is presented in section 5.
Finally, we look at related and future works in section 6.

2. STATEFLOW
Stateflow combines two well-known notations: hierarchi-

cal state machines, similar to Statecharts, and flowcharts,
in a unique formalism. While having a notation close to
those of Statecharts and flowcharts, Stateflow has its own,
peculiar semantics. Describing the whole language is be-
yond the scope of this paper (see [11]), we present a simple
example that includes both kinds of notation and sketch its
execution.

2.1 A stopwatch
Figure 1 presents the Stateflow specification of a stop-

watch with lap time measurement. This stopwatch main-
tains an internal counter represented by the three variables
min, sec, and cent). It updates a display, represented as
the three variables (disp min, disp sec, disp cent).

The stopwatch is controlled by two command buttons,
START and LAP. The START button switches the time counter
on and off; the LAP button fixes the display to show the lap
time when the counter is running, and resets the counter
when this one is stopped. This behavior is modeled as four
exclusive states:

• Reset: the counter is stopped. Receiving LAP resets
the counter and the display, receiving START changes

the control to the Running mode.

• Lap Stop: the counter is stopped. Receiving LAP changes
to the Reset mode and receiving START to the Lap

mode.

• Running: the counter is running, and the display up-
dated. Receiving START changes to the Stop mode,
pressing LAP changes to the Lap mode.

• Lap: the counter is running, but the display is not up-
dated, thus showing the last value it received. Receiv-
ing START changes to Lap Stop, receiving LAP changes
to Running.

These four states are grouped by pairs inside two main
states: Run and Stop, active respectively when the counter
is running or stopped. The counter itself is specified within
the Run state as a flowchart, incrementing its value every
time a clock TIC is received (every 1/100s).

2.2 Executing the Stopwatch
A Stateflow chart always has one active state. Executing

the chart consists in executing the active state each time an
event occurs in the environment. Events can be an action
on one of the buttons (START or LAP) or a clock tick (TIC).
Executing the active state is done in three steps:

1. See if a transition leaving the state can be taken, else
goto step 2.

2. Execute any internal actions (internal transitions, then
during actions).

3. Execute any internal state that is active.

Transitions can be guarded by events or conditions, and they
can trigger actions. The internal transition in state Reset

for example is guarded by the LAP event and triggers a series
of actions reinitializing the counter and the display. Suppos-
ing that the Run state is active, with the Running substate
active, receiving the START event would trigger the following
sequence of reactions:

• there is no transition leaving the state (the transitions
guarded by START belong to its substates),

• the flowchart is executed. It is guarded by TIC, thus
does nothing,

• the active substate is executed, it has a transition
which can be fired, leading to Reset, itself substate
of Stop; Running then Run are exited, Stop then Reset

are entered.

This step is completed, and execution will continue from the
newly active state next time an event is received from the
environment.

In this model, the counter is implemented using a flowchart.
Flowcharts are described using transitions between junc-
tions. Unlike states, a junction is exited instantaneously
when entered, and the flowchart executes until a termi-
nal junction (a junction without outgoing transitions) is
reached, or all paths have failed. Backtracking can occur
if a wrong path is tried. In our example, the flowchart is
guarded by the TIC event. If activated under this event, the
cent variable is incremented and the first junction reached.

165

[sec==60] {
 sec=0;
 min=min+1;
}

[cent==100] {
 cent=0;
 sec=sec+1;
}

TIC {
 cent=cent+1;
}LAP {

 cent=0; sec=0; min=0;
 disp_cent=0; disp_sec=0;
 disp_min=0;
}

Run

Running

Lap

during:
disp_cent=cent;
disp_sec=sec;
disp_min=min;

LAPLAP

Stop

Reset

Lap_stop

LAP

START

START

START

START

Figure 1: A Stopwatch in Stateflow

Two transitions leave it, the guarded one is always executed
first. If cent is equal to 100, the guarded transition is taken,
cent initialized to 0 and sec incremented, the second junc-
tion is reached, and execution continues. If cent is not equal
to 100, the guarded transition fails, the unguarded one is
tried and, being unguarded, succeeds, leading to the third
junction, which is terminal, so execution ends.

This short example does not present all Stateflow fea-
tures. It already introduces hierarchical states, interlevel
transitions, and mixed design with flowcharts. Our infor-
mal description of the execution of this example is actually
close to the presentation of the language’s semantics in its
documentation.

3. STATEFLOW’S TRANSITIONS
We now focus on Stateflow’s transition mechanism. The

transition mechanism is specific to Stateflow, and is in a
great part responsible for both the expressive power of the
language and its complexity. We first present it informally,
and then show how continuations can be used to give it a
denotational semantics.

3.1 Presentation
As we’ve seen with the stopwatch example, the transi-

tion mechanism is used to express both transitions between
states and flowchart diagrams. Complex transitions can be
expressed by composing transitions through junctions. The
mechanism support advanced features such as inter level
transitions, or backtracking. Figure 2 presents the general

d

e[c]{a1}/a2

s

Figure 2: A simple transition

form of a transition in Stateflow. A transition goes from
a source s to a destination d. Source and destination are
either a state or a junction. It is guarded by an event e and
a condition c. If (and only if) the event is received, and
the condition is true, the transition succeeds. Finally, the
transition carries two actions, a1, and a2. a1 is executed as
soon as the transition succeeds). a2 is left pending, and will
only be executed if the transition leads to a successful path,
that is if executing the destination d will ultimately reach a
state.

Figure 3 shows transitions combined through junctions.
Supposing the event e is active, when the first transition
is evaluated, if X is greater than 2, Z is immediately incre-
mented. The action X=0 is left pending, and evaluation con-
tinues with the next transition. If the condition Y>Z is true,
it succeeds and Y=0 is left pending. Executing the pend-
ing actions will be done when reaching a state, in sequence
(here, X=0, then Y=0). However, if the condition Y>Z is not
met, the whole branch fails, and the pending actions are
discarded. As we see on this example, each component of

e[X>2]{Z=X+1}/X=0 [Y>Z]/Y=0

Figure 3: Example of transitions

the transition can be omitted (triggering event, condition,
actions). A transition without triggering event is triggered
by any event.

A source, i.e. either a state or a junction, can have several
outgoing transitions. In that case, they are evaluated one
by one, until one of them succeeds. The order of evaluation
is given by a partial order over the form of the transitions:
transitions guarded by event first, then transitions guarded
by a condition, then unguarded transitions. This order is
made total by using a graphical argument to solve conflicts:
transitions are taken clock-wisely from their position on the
source, starting at 12 o’clock (this rule is known as the 12

166

o’clock rule). Figure 4 presents a junction, with three tran-
sitions. Transition 1 and 3 are guarded by events, and will
be evaluated before transition 2 which is guarded only by a
condition. Transition 1 comes first in the graphical ordering
and is thus evaluated before transition 3.

e3[c3]{a31}/a32

[c2]{a21}/a22

e1[c1]{a11}/a12

Figure 4: A junction with several transitions

3.2 Backtracking
Transitions in a list are evaluated sequentially until one

succeeds. A transition succeeds only if it leads, eventually
through a flowchart, to a state or a terminal junction (i.e. a
junction without outgoing transition). This allow the defini-
tion of backtracking algorithm, which combined with instan-
taneous modification of the global environment can lead to
unexpected behaviors. Figure 5 presents a flowchart whose
evaluation can involve backtracking. Supposing X as the

[X>0]

[X>5]{Y=0}
[X>10]

{Y=Y*2}

Figure 5: Backtracking

value 7 in the current environment, The first transition suc-
ceeds. At the junction, the guarded transition is evaluated,
its condition, X>5 is true, the action is executed immedi-
ately, Y is set to 0. The next transition fails, as X ≤ 10,
the whole branch fails. Evaluation then backtracks to the
previous branching point, where the unguarded transition
is now taken, and its action executed. Notice here that, al-
though the first branch failed, the action Y=0 was executed
instantaneously. Actions left pending on a failing path are
discarded and never executed.

3.3 Inter-level Transitions
Stateflow supports inter-level transition (or super-transition)

between states. Those cross different levels of state hier-
archy. While being present in Statecharts, they are often
considered harmful, and are often forbidden to allow for a
simpler formalization. They are an important feature of
Stateflow, and most programs are making use of them. The
stopwatch example (figure 1), contains several of these: all
the transition guarded by START are inter-level.

Inter-level transition have a complex behavior. Their ef-
fect is clearly non local, as they cross components bound-
aries. As they change the control point of hte program, they
implement a form of jump. However, they do so with an im-
portant twist: when moving the control from one state to
another, all the states crossed on the way have to be closed,
or opened. For example, in the stopwatch, when taking
the transition from the state Reset to Running, the state
Stop has to be closed, and the state Run opened. As clos-
ing/opening states can be associated to actions, those have
to be executed in the right order before making the jump.
As an added complexity, jumping to the new location can
fail, if we jump to a junction which does not lead to a state:
we might have to jump back. This last features was not cap-
tured by our previous semantics[8], restricting the language.
As we will see, continuation allow us to give a denotation to
this behavior.

3.4 A Semantics for Transitions
The behavior associated to a transition can be described

informally as: if the event is present, and the condition true,
then evaluate the first action, keep the second one pending
and continue by evaluating the destination, else continue.
If we try to formalize this definition, we need to explain
the precise meaning of keep the second one pending and else
continue. How should we keep pending actions, and what
does continuing mean? Those questions are very close to
the questions arising when trying to give a semantics to, for
example, jumps in imperative languages. The question of
jumps was answered by introducing continuations[16]. Con-
tinuations allow one to manipulate the rest of the program,
modify it, or ignore it altogether. We propose to use con-
tinuations to give a semantics to the transition mechanism.
A transition can have two followups, or rest of the program,
depending whether it is successful or not. A semantic func-
tion for transitions thus takes two additional arguments: the
continuation corresponding to those two cases.

If we have a success continuation, and a failure continua-
tion, the informal description of the behavior of a transition
can now be reformulated as, if the event is present, and the
condition true, then evaluate the first action, add the second
one to the success continuation and continue by evaluating
the destination, else evaluate the failure continuation. This
new description is much more precise, it details that leaving
the second action pending actually means adding it to the
success continuation, and continuing means evaluating the
failure continuation.

The interest of being able to explicitly manipulate contin-
uations appears when evaluating lists of transition. Evalu-
ating a list of transition consists in evaluating them in order
until one succeeds. However, as we have seen, when com-
bined with junctions, a transition can initially succeed, then
lead to only failing transitions, in which case backtracking
is needed. Thanks to our failure continuations, the tasks

167

of keeping track of the backtracking points, and evaluating
transitions in the correct environment is fairly easy. We
simply formulate the evaluation of a list of transition as:
evaluate the first transition, with a failure continuation that
is the evaluation of the rest of the list.

Those descriptions actually leads to the formal definition
of the semantic functions for transitions and lists of transi-
tion. Before giving these however, we need to formaly define
the Stateflow language, and introduce notations for environ-
ments and continuations.

4. DENOTATIONAL SEMANTICS
We now define a formal language for Stateflow, and give

this language a denotational semantics. This section gives
all the definitions for the notations used previously.

4.1 The Language
Figure 6 presents a formalization of Stateflow. A pro-

gram (i.e. a chart) is a list of source components, that is,
state and junction definitions. A state definition associates
a name to a tuple composed of a triplet of actions, two lists
of outer and inner transitions and an internal composition.
A composition is either exclusive (Or), and given by a list
of default transitions and a list of state names, or a par-
allel composition (And) given by a list of state names. A
transition is defined by a triggering event, a condition, two
actions, and a destination. A destination is either a path
or a junction. A path is a list of state names. Finally, a
junction definition associates a junction name to a list of
transitions.

Program P ::= (s, [src0, ..., srcn])
SrcComp src ::= p : sd | j : T
StateDef sd ::= ((ae, ad, ax), To, Ti, C)

Comp C ::= Or (T, [s0, ...sn]) | And ([s0, ...sn])
Trans t ::= (e, c, (ac, at), d)
Dest d ::= p | j

TransLst T ::= ∅|t.T
Path p ::= ∅|s.p

Figure 6: The Stateflow Language

Actions a, events e, and conditions c are left abstract.
State names s and junction names j are unique names. This
language is close to the one used in [8]. In a similar way,
lists of transitions and lists of states are supposed to be
well-ordered, as we have seen previously, order of execution
in Stateflow rely on graphical arguments which can not be
used in this textual representation.

4.2 Environments and Continuations
A Stateflow program runs in an environment where vari-

ables are bound to values. We also want to keep track of
active states in the programs, to do so, we add a boolean
variable for each state. This variable indicates whether a
state is active or not:

Env ρ ::= { x0 : v0, ..., xn : vn,
p0 : b0, ..., pk : bk }

We use the notation ρ(x) to denote the value bound to vari-
able x in the environment ρ. We also introduce two function
to change the boolean variable associated to a state: open

ρ p returns environment ρ where state p is bound to true,
conversely close ρ p returns ρ with state p bound to false.

As is done in semantics for jumps[17], we build an environ-
ment for continuations, associating continuations to labels,
here to state names. Continuation environments are defined
as follows:

Kenv θ ::=
{ p0 : (S [[p0 : sd0]]

e θ,S [[p0 : sd0]]
d θ,S [[p0 : sd0]]

x θ),
...
pn : (S [[pn : sdn]]e θ,S [[pn : sdn]]d θ,S [[pn : sdn]]x θ),
j0 : T [[T0]] θ, ..., jk : T [[Tk]] θ }

A continuation environment θ is a list of bindings from path
to a triplet of functions, and from junction names to a func-
tion. These function are the semantic functions associated
to source element. For states, the first function enters the
state, the second one executes it, and the last one exits it; we
detail their definitions in the next section. We use the nota-
tion θe(p) (resp. θd(p), θx(p)) to denote the entering (resp.
executing, exiting) function associated to path p in the en-
vironment θ. Similarly, θ(j) denotes the function bound to
junction j in θ.

When evaluating transitions, we need to pass them possi-
ble continuations, to execute depending on the outcome of
evaluating the transition. We thus have two kinds of con-
tinuations: success continuations and fail continuations. A
success continuation is a function of type:

k+ : Env→ path→ Env

It takes as arguments the destination state of the transition.
A fail continuation simply has type:

k- : Env→ Env

4.3 Semantic Rules
The rules are written in a a meta-language with lambda-

abstraction, application, conditional and local let-binding.
The rules for composition also use a folding operator over
list. We give here the rules for Stateflow itself, as the action
language as been left abstract, we suppose given semantic
functions for evaluating actions (A[[.]]) and boolean condi-
tions (B[[.]]). Those are of type:

A[[]] : action→ KEnv→ Env→ Env
B[[]] : condition→ Env→ Bool

4.3.1 Transitions
This section formalize the informal descriptions given pre-

viously in 3.4. The evaluation of a transition takes place in
an environment, a continuation environment, with two pos-
sible continuations, and is triggered by an event. It produces
a new environment. The type of the semantics function is
thus the following:

τ [[.]] : trans→ env→ kenv→ k+→ k-→ event→ env

And its definition follows the description seen before: : “if
the event is present, and the condition true, then evaluate the
first action, add the second one to the success continuation
and continue by evaluating the destination, else evaluate the

168

failure continuation”.

τ [[(et, c, (ac, at), d)]] θ ρ success fail e =
if (et = e) ∧ (B[[c]] ρ) then

let success′ =
λρs.λp.if p = [] then success ρs p

else success (A[[at]] θ ρs) p in

D[[d]] θ (A[[ac]] θ ρ)success′ fail e
else

fail ρ

The additional test in the extended success continuation is
used to detect if we have reached a state, in which case we
evaluate the pending action, or a terminal junction, in which
case we simply succeed.

The rule for lists of transition is the rule that, by carefully
building the continuations given to the transitions is adding
support for backtracking. As for a transition, a list of tran-
sitions can either succeed or fail, the semantic function thus
takes two continuations. Given a list of transition, we first
evaluate its head. This evaluation is done with the current
success continuation, the failure continuation on the other
hand needs to be build: it consists in the evaluation of the
rest of the list. A singleton is evaluated with the current
failure continuation as argument, and an empty list suc-
ceeds. This is used to differentiate between failure of all the
transition, and success upon reaching a terminal junction.

T [[∅]] θ ρ success fail e = success ρ []
T [[t.∅]] θ ρ success fail e = τ [[t]] θ ρ success fail e
T [[t.t′.T]] θ ρ success fail e =

let fail’ = λ ρf .T [[t′.T]] θ ρf success fail e in

τ [[t]] θ ρ success fail’ e

Those two rules implement the whole transition mechanism
of Stateflow. While not simple, continuation based seman-
tics are often a bit puzzling, they are surprisingly short given
the complexity of this mechanism. This is a very interesting
result, first, it shows that Stateflow, while having a complex
behavior, is far from badly conceived, in particular we don’t
need to encode a vast number of special cases. Second, those
rules can be directly, and easily implemented.

4.3.2 States
As seen when defining the continuation environments, states

have three semantic functions. Those function describe, re-
spectively, how to enter (S [[]]e), execute (S [[]]d), and leave
(∫ [[]]x) a state. The rules take as argument a state decla-
ration given by a path and a state definition. Entering the
state can be done from top, i.e. because its parent state acti-
vates it, or from bottom, if the activation of one of its children
activates it. In the first case, we do not know which child to
open (case []), in the second case, we have an explicit path
leading to it.

S [[p : ((ae, ad, ax), To, Ti, C)]]e θ ρ [] e =
open p ◦ C[[C]]e θ (A[[ae]] θ ρ) e

S [[p : ((ae, ad, ax), To, Ti, C)]]e θ ρ s.pd e =
open p ◦ θe(p.s)(A[[ae]] θ ρ) pd e

Exiting a state is straightforward:

S [[p : ((ae, ad, ax), To, Ti, C)]]x θ ρ e =
close p ◦ A[[ax]] θ ◦ C[[C]]x θ ρ e

The most complex rule is the execution one. It needs to
build the continuations required to evaluate the outer and

inner transitions. The definition uses the intermediate func-
tion open path (defined below) to correctly close, and open
states as needed when a transition fires. The success con-
tinuations calls open path with the state as source. The fail
continuation, called if no outer transition succeeds, execute
the inner transitions with a failing continuation executing
the composition and the internal actions. Thus this defini-
tion can be read as: try the outer transitions, if this fails,
try the inner ones, if this fails, execute the internal action
and the composition.

S [[p : ((ae, ad, ax), To, Ti, C)]]d θ ρ e =
let fail = λρf .

let faili = λρfi.C[[C]]d θ (A[[ad]] θ ρfi) e in

let successi =
λρsi.λpd.open path θ ρsi [] p pd faili e in

T [[Ti]] θ ρf successi faili e in

let success = λρs.λpd.open path θ ρs [] p pd fail e in

T [[To]] θ ρ success fail e

Let us now define the open path function. This is the func-
tion implementing the inter-level mechanism, if the destina-
tion of the transition is a state (i.e. a non-empty path)it
first finds the higher state in the hierarchy which need to be
closed by computing the common prefix of the source and
destination paths. It then closes it, that will, by definition
close its whole sub-tree. Finally, the destination state is en-
tered. If the destination is a terminal junction, we simply
call the continuation.

open path θ ρ p ps [] term e = term ρ

open path θ ρ p x.ps y.pd term e =
if x = y then

open path θ ρ p.x ps pd e
else

let ρx = θx(p.x) ρ e in

θe(p.y) ρx pd e

4.3.3 Destinations
If the destination is a state, we just execute the success

continuation. If it is a junction, we fetch the corresponding
continuation from the environment and execute it.

D[[p]] θ ρ success fail e = success ρ p
D[[j]] θ ρ success fail e = θ(j) ρ success fail e

4.3.4 Compositions
Compositions are just iterating through their components.

The default transitions of an Or composition have not to fail,
their failure continuation raises an error (⊥) – it is clearly
desirable to statically ensure that such a case will not hap-
pen, this can be done by syntactic restrictions, or by formal
tools. We have implemented such a tool, making use of au-
tomatic theorem proving to check the absence of possible
failure. The success continuation open the reached state.

C[[Or (T, [])]]e θ ρ e = ρ
C[[Or (T, S)]]e θ ρ e = T [[T]] θ ρ (λρs.λp.θe(p) ρs [] e) ⊥ e

C[[Or (T, [])]]d θ ρ e = ρ
C[[Or (T, p.S)]]d θ ρ e =

if ρ(p) then θd(p) ρ e else C[[Or (T, S)]]d θ ρ e

C[[Or (T, S)]]x θ ρ e =
fold (λp.λρ.if ρ(p) then θx(p) ρ e else ρ) S ρ

169

And composition are straightforward.

C[[And (S)]]e θ ρ e = fold (λp.λρ.θe(p) ρ [] e) S ρ

C[[And (S)]]d θ ρ = fold (λp.λρ.θd(p) ρ e) S ρ
C[[And (S)]]x θ ρ = fold (λp.λρ.θx(p) ρ e) S ρ

4.3.5 Main program
The semantics function of the main program builds the

continuation environment from the code. It initializes the
main state if required, i.e, if we are at the first instant of
the execution, otherwise it executes it.

P [[(s,Srcs)]] ρ = if ρ(s) then θd(s) else θe(s)
where θ = {k | k = SrcCont θ Srcs}

4.4 Local Events
Stateflow event mechanism supports instantaneous send-

ing and receiving of local events, to parts of the design, or
the whole design at once. This allows the definition of recur-
sive behaviors, which naturally can lead to non-termination.

In [8], we had to adapt our semantics in order to support
local events, here, the semantics directly supports the full
local event mechanism. However, it can lead to infinite re-
cursive calls, and thus requires static analysis, or syntactic
restrictions as we did in our previous work, to ensure safety.

Sending an event is done, in the action language, through
an action send. send (p, e) sends the event e to the state p.
The semantic function associated to this is the following:

A[[send (p, e)]] θ ρ = if ρ(p) then θd(p) ρ e else ρ

If the destination state is active, it is processed with the
event as argument, otherwise, we simply return an unmod-
ified environment.

4.5 Correction of the Semantics
The semantics of Stateflow being informally defined as

the result of the simulation when a program is run using
the Mathworks tools, establishing correction is not possible.
We have validated our semantics by systematic comparison
of traces produced by the Mathworks tools, our previous
interpreter build from an operational semantics, and inter-
pretation of this semantics. Building an interpreter from the
semantics is trivial: the rules can be entered nearly as-is as
ML code for example, and evaluated.

An attractive possibility would be to prove equivalence of
our two semantics. However, this is difficult as they consider
different formalization of the language and different subsets
of it. Although, as this one consider a strictly larger subset
we could try to establish a partial correction lemma.

5. COMPILING STATEFLOW
One of our motivations in developing this denotational se-

mantics is to formalize a compilation scheme for Stateflow.
Indeed, it is very easy to derive a compilation process from
the semantics we presented: given a program, partial evalu-
ation of the semantic rules produces a functional program,
taking an environment and an event as inputs, and return-
ing a modified environment. The partial evaluation process
consists in inlining the continuations, and reducing redexes.

off on

SW{light=1}

SW{light=0}

on_off

Figure 7: A light-switch

5.1 Example
Consider the example of figure 7, implementing a simple

light-switch. It reacts to a single event SW and toggles be-
tween two states on and off. When the on state is active,
the light variable is true, when the state off is active, the
variable is false. The semantics of this program has the
following form, given by the rule for the main program:

P [[on off, srcs]] ρ e =
if ρ(on off) then θd(on off) else θe(on off)

where srcs is the list of source components in the charts, and
θ the continuation environment build from those. The value
associated to executing the chart,θd(on off), is by definition
the semantic function for executing a state, Sd, applied to
this chart. Inlining this function, we get the following:

P [[on off, srcs]] ρ e =
if ρ(on off) then

fold (λp.λρ.if ρ(p) then θd(p) ρ e) {off, on} ρ
else

θe(on off)

Unfolding this new definition, and pursuing evaluations and
reductions as much as possible raises the following code (we
use the notation ρ[x← v] to denote the environment ρ where
the variable x is associated to the value v):

P [[on off, srcs]] ρ e =
if ρ(on off) then

if ρ(off) then

if e = SW then

let ρ = ρ[light← 1] in
let ρ = ρ[off← false] in
let ρ = ρ[on← true] in
ρ

else

ρ
else if ρ(on) then

if e = SW then

let ρ = ρ[light← 0] in
let ρ = ρ[on← false] in
let ρ = ρ[off← true] in
ρ

else

ρ
else

let ρ = ρ[off← true] in
let ρ = ρ[on off← true] in
ρ

This code can be translated to either a functional or an im-

170

perative language by simple pretty-printing. In a functional
language, the environment can be represented using named
records, in an imperative one it can be modified in place.
The reductions we have done are inlining of semantic func-
tions and continuations, and beta-reduction. It is easy to
see that the final code does not contain any abstraction left:
all lambdas are applied, and disappear during translation.

5.2 Limitations and Extensions
This simple compilation scheme by interpretation of the

semantics rules, can of course be explosive, or even loop if
the Stateflow program itself contains loops. Different solu-
tions can be proposed to overcome this problem, depend-
ing on the target language, and the end purpose. To avoid
code-size explosion, a simple solution is to limit the amount
of inlining performed. In practice, we haven’t encountered
such problems even when compiling industrial-size exam-
ples. Loops can be detected, and compiled as loops in
the target language, our C backend does this. For model-
checking purpose, one possibility is to expand the loops a
given finite number of times, and verify we cannot exaust
those expansions, our SAL backend does that.

5.3 Implementation
As was our goal when starting this work, we have imple-

mented a new Stateflow compiler. This implementation is
based on the denotational semantics, and following the com-
pilation scheme presented here. It contains special support
for loops. The code of this compiler is about 20% shorter
than our previous implementation, while supporting a richer
language. At the core of the implementation is the seman-
tics, which is implemented directly. As an example, here
is the code implementing the rule for evaluating a list of
transition, the code is written in OCaml[10]:

and trans_list tl kenv env success fail e =

match tl with

| [] -> success env []

| [x] -> trans x kenv env success fail e

| t::tl’ ->

let fail’ =

fun env_f ->

trans_list tl’ kenv env_f success fail e in

trans t kenv env success fail’ e

This direct translation of the semantics makes the code
much easier to maintain. The new compiler is also more
efficient and scales well, we have been able to experiment
with examples of industrial size (over 50K lines), and ob-
tained satisfying code (10K lines).

The compiler can produce SAL[4], C, and OCaml code.
As is presented here, the compiler first produces a program
in an intermediate form, from which all these can be ob-
tained by pretty-printing. Each of those pretty-printer is
around 150 lines of code.

The quality of the code is very satisfactory. Is it short,
very readable and reasonnably efficient. The C code com-
pares well with other Stateflow to C compilers (see 6). When
generating SAL code, the models obtained are directly ex-
ploitable, we use them for automatic test-cases generation[7]
without modification, the compiler automatically instruments
the code with the required trap-conditions.

6. RELATED AND FUTURE WORKS
We have presented a complete formalization of Stateflow,

and its denotational semantics. The semantics is continuation-
based, this allows us to capture complex features of the lan-
guage, in particular describe its transition mechanism in its
entirety. This semantics also gives us a simple and auto-
matic compilation scheme.

6.1 Related Works
This work is naturally related to other works on formal-

ization of Stateflow, [18], [8], and [14]. In [18], Tiwari et
al. present a translation of both Simulink and Stateflow to
pushdown automata. This approach shows rapid explosion
of the number of variables needed to encode the Stateflow
chart, and originally drove us to try a different approach.
In [8], we presented an SOS semantics for Stateflow. This se-
mantics, being low-level, allowed us to understand precisely
the language. In particular understand that, in essence,
Stateflow is an imperative language, and semantics tools
developed for imperative language are adapted to its de-
scription. This semantics is also a good basis for developing
syntax directed static analysis. However, as said before, it
shows limits when trying to formalize the full language, and
does not formalize a compilation scheme for Stateflow. In
[14], Caspi et al. propose simple static analysis that can be
used to restrict Stateflow to a “safe” subset. They propose
an unformal translation of this subset to Lustre[6]. They
consider a restricted transition mechanism, not allowing for
example inter-level transitions. Our goal in this work was
different, as we wanted to consider as much as possible the
whole language, and we where interested in defining a for-
mal semantics. Statecharts supports an inter-level transition
mechanism. Huizing[9] proposed the use of continuations to
describe those. However, Statecharts does not support other
features of Stateflow like composition of transitions through
junctions or backtracking. In general, the two language are
really different, and their semantics have very little relations.

This work is also related to works on compilation of mod-
elling languages, in particular works done by Anton et al[1]
within the Forges project at Kestrel Institute. Their ap-
proach is based on a Stateflow interpreter written in the Os-
car language. It seems that they only consider a subset of
the language [12]. An interesting point is that the code they
produced has received good reviews from industrial users,
the C code produced by our compiler is very close to theirs
on available examples.

6.2 Future Works
The semantics presented here constitutes a strong basis

for reasoning about Stateflow and its compilation. Future
works are three-folds. First, in the domain of the compila-
tion of modelling languages. Industrial users of Stateflow, or
other similar tools often design the model, then hand-write
the corresponding code. Going to generating code would
clearly be an important step. Formally defined and eas-
ily adaptable code generators that can produce good code
might help in that regard. The other area where we are
planning on using this work is in the use of formal methods
to help in the design of systems. The area of formal meth-
ods has produced tools that can provide amazing results,
these can be used not only to certify a model, but also to
help in its design, by providing automatic, early, and pre-
cise diagnosis. This requires a strong understanding of the

171

modelling language. Our work on automatic test-cases gen-
eration[7] lies in this area. Finally, a really interesting, and
necessary work is to better understand Simulink, and the
combination Stateflow/Simulink, to propose a formalization
of it. This would open the way to integration-level analysis,
considering a controller in its environment, and not in isola-
tion. We are considering an approach based on both [3], for
the discrete part of Simulink, and [18], for the continuous
part. Understanding precisely the separation between the
discrete and the continuous parts of a design is critical to
efficient analysis.

7. ACKNOWLEDGEMENTS
The author would like to thank John Rushby, for his many

helpful comments on this work.

8. REFERENCES
[1] John Anton, Paulo da Costa, and Lindsay Errington.

Formal synthesis of generators for embedded systems.
Technical report, Kestrel Technology, May 2005.

[2] Daniel Buck and Andreas Rau. On modelling
guidelines: Flowchart patterns for Stateflow.
Softwaretechnik-Trends, 21(2), August 2001.

[3] Paul Caspi, Adrian Curic, Aude Maignan, Christos
Sofronis, and Stavros Tripakis. Translating
discrete-time Simulink to Lustre. In ACM Conference
on Embedded Software (EMSOFT), volume 2855 of
LNCS, pages 84–99. Springer, October 2003.

[4] Leonardo de Moura, Sam Owre, Harald Rueß, John
Rushby, N. Shankar, Maria Sorea, and Ashish Tiwari.
SAL 2. In Computer-Aided Verification, CAV 2004,
volume 3114 of LNCS, pages 496–500, Boston, MA,
July 2004. Springer.

[5] Ford. Structured analysis and design using
Matlab/Simulink/Stateflow - modeling style
guidelines. Technical report, Ford Motor Company,
1999. Available at http://vehicle.me.berkeley.

edu/mobies/papers/stylev242.pdf.

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The Synchronous dataflow programming language
Lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[7] Grégoire Hamon, Leonardo de Moura, and John
Rushby. Generating efficient test sets with a model
checker. In International Conference on Software
Engineering and Formal Methods (SEFM), pages
261–270. IEEE Computer Society Press, 2004.

[8] Grégoire Hamon and John Rushby. An operational
semantics for Stateflow. In Fundamental Approaches
to Software Engineering (FASE)’04, volume 2984 of
LNCS, pages 229–243, Barcelona, Spain, 2004.
Springer.

[9] C. Huizing. Semantics of Reactive Systems:
Comparison and Full Abstraction. PhD thesis,
Eindhoven Technical University, 1991.

[10] Xavier Leroy. The Objective Caml system release 3.08
Documentation and user’s manual. Technical report,
Institut National de Recherche en Informatique et
Automatique (INRIA), 2003.

[11] The Mathworks. Stateflow and Stateflow Coder,
User’s Guide, release 13sp1 edition, September 2003.

[12] Bill Milam. Mobies, midterm report. Technical report,
Ford Research, 2002. Available at http:

//vehicle.me.berkeley.edu/mobies/evaluations/

tools/mobies evaluation codegen.pdf.

[13] John C. Reynolds. The discoveries of continuations.
Lisp and Symbolic Computation, 6(3-4):233–248, 1993.

[14] Norman Scaife, Christos Sofronis, Paul Caspi, Stavros
Tripakis, and Florence Maraninchi. Defining and
translating a ”safe” subset of Simulink/Stateflow into
Lustre. In ACM international conference on Embedded
software (EMSOFT), Pisa, Italy, September 2004.

[15] David A. Schmidt. Denotational semantics: a
methodology for language development. William C.
Brown Publishers, Dubuque, IA, USA, 1986.

[16] Christopher Strachey and Christopher P. Wadsworth.
Continuations: A mathematical semantics for
handling full jumps. Technical Monograph PRG-11,
Computing Laboratory, Oxford University, England,
1974. Reproduced in [17].

[17] Christopher Strachey and Christopher P. Wadsworth.
Continuations: A mathematical semantics for
handling full jumps. Higher-Order and Symbolic
Computation, 13(1-2):135–152, April 2000.

[18] A. Tiwari, N. Shankar, and J. Rushby. Invisible formal
methods for embedded control systems. Proceedings of
the IEEE, 91(1):29–39, January 2003.

[19] Christopher P. Wadsworth. Continuations revisited.
Higher-Order and Symbolic Computation,
13(1-2):131–133, April 2000.

172

