
Systems Architecture: The Empirical Way — Abstract
Architectures to ‘Optimal’ Systems

Democritus and Plato Re-engage Digitally 2,400 years on!

Graham R. Hellestrand
VaST Systems Technology Corporation

1250 Oakmead Pkwy, Suite 310
Sunnyvale, CA 94070

+1-408-328-0949
g.hellestrand@vastsystems.com

ABSTRACT
It is a profound dislocation to have reality replaced by models – that
revolution is won, that blood spilt. The first radical changes in global
companies that I have witnessed, attributable to the systems engineering
and architecture Virtual System Prototype inflection point, occurred in
2004. In these instances, the whole assumed order of architecture in the
engineering process was tipped upside-down by a single set of
quantitatively derived results that are turning out to be critical to each
company’s ability to compete and win in its fiercely competitive market.
These changes have accelerated in 2005. It is the most exciting time for
us all to be part of the wholesale transformation of one of the
fundamental engines of the last 50 years of economic growth –
Embedded Software-Electronics Control Systems (Embedded SECS)
design. The transformation is driven by necessity; the by-products are
competitive advantage, speed of execution, quality, productivity, and
ability to rapidly adapt to market and business conditions. There is no
company, leader or laggard, who can afford to ignore this evidence and
hope to survive. This paper addresses the quantitative development of
embedded systems architectures - software, hardware, mechanical.

Categories and Subject Descriptors
B8 [Hardware - Performance & Reliability]: Performance analysis
and design aids; C0 [Computer System Organization] General –
System architectures, System specification methodology,
Hardware/Software interfaces, Modeling of computer architecture;
C2 [Computer Communication Networks] Network architecture &
design – distributed networks; C3 [Special Purpose and
Application Based Systems] Real-time and embedded system; C4
[Performance of Systems] Measurement and modeling techniques;
G3 [Probability and Statistics] Experimental design, Multivariate
statistics.

General Terms
Design, Experimentation, Measurement, Performance.

Keywords
Quantitative systems architecture, system design process, mapping
system architectures, empirical system design, event-based objective
function, factor and concept based explanatory function, event data
driven optimization, concept driven optimization, mesomorphic
architecture, epimorphic architecture.

1. Background and Motivation
An empirical approach to composing optimal architectures for complex
embedded systems is relatively rare. The use of physical systems to
determine early architectural optimizations is clearly a non-sequitur. The
complexity of processor centric, electronic systems that control modern
gadgets (such as, cell phones, automobiles, base stations, consumer
products) requires a systematic, as well as intuitive, approach to
determining an optimal fit for the intended product. And in today’s
environment, where a company’s engineering process is being used as a
competitive advantage to dominate competition, the luxury of optimality,
across cost, performance, power consumption, quality and time to
market (TTM), has turned to a necessity.

Historically, intuitive engineering architecture attempted to optimize
systems using dimensions of performance (major) and cost (more or less
minor). Since control system architects rarely understood, or had access
to, the software that would run on their architectures, they produced
conservative, often grossly over-engineered inventions that, when
assessed using the now mandatory dimensions – major: cost and
performance, average and peak power, TTM, quality; minor:
programmability, manufacturability – were usually poor fits for the
service required. The failure was due to lack of (i) necessary and
sufficient data to determine optimality and, concomitantly, (ii) an
empirical process that enabled quantitative decisions to drive the
architecture specification process.

The ability to support data-driven decision making early in the
engineering process has been an underlying driver for building accurate
models of an intended system. Then to perform many hundreds of
experiments on successive models to determine an optimal system
architecture, measured across agreed dimensions and for a particular
product fit, required not just accurate models but also high performance
models. The experiments that need to be performed require accurate
models of successive physical systems (called Virtual Prototypes (VP))

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009...$5.00.

147

that can run whole systems of software (operating systems, drivers,
communications stacks, middleware, and applications), together with
other inputs and outputs (communications traffic, interrupts, video and
audio) – the whole system enchilada is called a Virtual System
Prototype (VSP). Data is typically collected from many probes inserted
into the hardware models (electronic, mechanical, RF) and the actual
software during the experiments. It is not unusual for one such
experiment to run 100 billion instructions – less than 1 hour of simulation
time using a high performance, timing accurate VSP. The remaining
needs to enfranchise efficient experimentation are (a) availability of
models to enable the construction of VSPs and (b) the tools to rapidly
build the models and to construct the VSPs.

An historical anecdote, even though VSPs – by definition high
performance and timing accurate - are the foundations of empirical
electronic systems architecture, their initial economically justified
deployment has been for the development of software for real-time,
critical control systems. As VSPs are deployed to determine
architectural specification, we are seeing the nature of the architecture of
electronic systems changing – the architecture of the software and the
platform are the twin 1st orders of focus and processor
microarchitecture no longer dominates systems, often having a 2nd or 3rd
order influence. Architects are not likely to be just electronics or micro-
architecture engineers or computer scientists, but those engineers
creating the middle, straddling the oft-thought binary software-hardware
line of engineering competence. It is extraordinary to be a participant in
this pervasive change, when quantitative experimentation is instituted as
the key to building competent architectures, the results are usually
unexpected, startling, and will rapidly transform the engineering
processes and structure of the company.

The paper will concentrate on the empirical process underlying data-
driven architectural decision making and the capabilities enabled when
the ‘optimal’ architecture becomes the executable golden reference
model driving the remainder of the system engineering process – in
particular, the software development and the hardware design sub-
processes. We will use the genericized industrial examples to motivate
the discussion.

2. The Philosophy of Architecting Systems
Like the two contemporary philosophy adversaries in Greece 2,400
years ago, Democritus and Plato [1], today system architects are
divided into two camps – the empiricists and the ratiocinators. The
empiricists believe that fundamental truths are derived from observation
within a quark-like atomic framework, the ratiocinators that fundamental
truths are intuitively apprehended. This paper is firmly in Democritus’s
camp and addresses the quantitative basis of decision making as
fundamental to architecting ‘optimal’ systems. But Plato still has his
voice!

2.1 System Architecture as Ratiocination
(Plato)

There are common elements in the empirical and ratiocination frames of
operation. Both use a basis of knowledge and both use reasoning. The
stoic’s view of ratiocination was that seminal reasons were the impetus
for animate motion [2]. In other words, the nature of a whole cannot be
discovered by dividing it into its component parts and studying each

part by itself, that there is a qualitative, unquantifiable aspect to
observation.

Strong reflections of this philosophy are in evidence today with the
architecting of systems being largely intuitive, qualitative activities. The
tell-tale signs of this are the typical tools and methods used by system
architects, sadly even of advanced technology products - spread sheets,
adoption of under-examined legacy structures and requirements, non-
quantitative decision making criteria, qualitative Socratic argument, and
drawing conclusions by deduction and induction derived from these
activities.

This approach guarantees incremental systems architecture driven from
legacy systems. And has little probability of arriving at optimum
solutions.

2.2 System Architecture as Experimental
Science (Democritus)

Atomism is an analytic doctrine that teaches that systems can be
discovered by dividing them into component parts and individually
studying each part. And has as a premise that all observable changes are
caused by actions of the individual parts. The indivisibility of the
fundamental parts relates only to the syntactic and semantic structures
used to specify and build systems. Then all systems are aggregates of
juxtapositions of fundamental parts. In reverse, all systems are subject to
quantitative analysis. Reasoning has to do with the meaning of the

observations.

This approach, if it systematically traverses the quantitative factors
defining the space of likely architectures of the product
underdevelopment, and undertaken using hypothesis refutation from
Science, cannot guarantee an optimal solution, but will give quantitative
reasons for rejecting, possibly, thousands of candidate architectures that
were poorer than the selected architecture and, as in Science, provide
peer groups with adequate data to further critique the architecture
group’s recommended candidate for themselves. This is good science
and engineering. This philosophy is actualized by employing modern
analysis tools and methodologies – using VSPs as experimental
vehicles, multivariate statistics to help drive decision making, and design
of experiments to drive the experimental methodology. However, even
with all of the power of factor analysis and structural equation modeling
[3], making sense of the data remains in the domain of ratiocination –

CoMET System Level
Design Tool

Executable
System

Specification

Executable
System

Architecture
(VSP)

Business
Requirements

Functional
Requirements

Architecture +
Concurrent, Iterative

S/W – H/W Development
+

Integrated &
Optimized

Final
Product

Software

Hardware

Translate
Architect
and Test

Design
and Test

Develop
and Test

Translate
Architect
and Test

Design
and Test

Develop
and Test

+

+

METeor

Virtual System
Platform

CoMET

I

n

t

e

g

r

a

t

e

&

C

o

V

e

r

i

f

y

V

S

P

I

n

t

e

g

r

a

t

e

&

C

o

V

e

r

i

f

y

S

i

l

i

c

o

n

H

a

r

d

w

a

r

e

P

l

a

t

f

o

r

m

+

E

m

b

e

d

d

e

d

S

y

s

t

e

m

S

o

f

t

w

a

r

e

Figure 1. Software-Electronics Control System (SECS) Engineering process

CoMET System Level

Design Tool

Executable

System

Specification

Executable

System

Architecture

(VSP)

Business

Requirements

Functional

Requirements

Architecture +

Concurrent, Iterative

S/W – H/W Development

+

Integrated &

Optimized

Final

Product

Software

Hardware

Translate

Architect

and Test

Design

and Test

Develop

and Test

Translate

Architect

and Test

Design

and Test

Develop

and Test

+

+

METeor

Virtual System

Platform

CoMET

I
n

t
e

g
r
a

t
e

&

C

o
V

e
r
i
f
y

V
S

P

I
n

t
e

g
r
a

t
e

&

C

o
V

e
r
i
f
y

S
i
l
i
c

o
n

H

a
r
d

w
a

r
e

P

l
a

t
f
o

r
m

+

E
m

b
e

d
d

e
d

S

y
s

t
e

m

S

o
f
t
w

a
r
e

Figure 1. Software-Electronics Control System (SECS) Engineering process

CoMET System Level
Design Tool

Executable
System

Specification

Executable
System

Architecture
(VSP)

Business
Requirements

Functional
Requirements

Architecture +
Concurrent, Iterative

S/W – H/W Development
+

Integrated &
Optimized

Final
Product

Software

Hardware

Translate
Architect
and Test

Design
and Test

Develop
and Test

Translate
Architect
and Test

Design
and Test

Develop
and Test

+

+

METeor

Virtual System
Platform

CoMET

I

n

t

e

g

r

a

t

e

&

C

o

V

e

r

i

f

y

V

S

P

I

n

t

e

g

r

a

t

e

&

C

o

V

e

r

i

f

y

S

i

l

i

c

o

n

H

a

r

d

w

a

r

e

P

l

a

t

f

o

r

m

+

E

m

b

e

d

d

e

d

S

y

s

t

e

m

S

o

f

t

w

a

r

e

CoMET System Level
Design Tool

Executable
System

Specification

Executable
System

Architecture
(VSP)

CoMET System Level
Design Tool

Executable
System

Specification

Executable
System

Architecture
(VSP)

Business
Requirements

Functional
Requirements

Business
Requirements

Functional
Requirements

Business
Requirements

Functional
Requirements

Architecture +
Concurrent, Iterative

S/W – H/W Development
+

Integrated &
Optimized

Final
Product

Software

Hardware

Translate
Architect
and Test

Design
and Test

Develop
and Test

Translate
Architect
and Test

Design
and Test

Develop
and Test

+

+

METeor

Virtual System
Platform

CoMET

In
te

g
ra

te
 &

 C
oV

er
if

y
V

S
P

In
te

gr
at

e
&

 C
oV

er
if

y

S
ili

co
n

H
ar

dw
ar

e
P

la
tf

or
m

 +
E

m
be

dd
ed

 S
ys

te
m

 S
of

tw
ar

e

Software

Hardware

Translate
Architect
and Test

Design
and Test

Develop
and Test

Translate
Architect
and Test

Design
and Test

Develop
and Test

+

+

METeor

Virtual System
Platform

CoMET

Software

Hardware

Translate
Architect
and Test

Design
and Test

Develop
and Test

Translate
Architect
and Test

Design
and Test

Develop
and Test

+

+

METeor

Virtual System
Platform

CoMET

In
te

g
ra

te
 &

 C
oV

er
if

y
V

S
P

In
te

gr
at

e
&

 C
oV

er
if

y

S
ili

co
n

H
ar

dw
ar

e
P

la
tf

or
m

 +
E

m
be

dd
ed

 S
ys

te
m

 S
of

tw
ar

e

In
te

g
ra

te
 &

 C
oV

er
if

y
V

S
P

In
te

gr
at

e
&

 C
oV

er
if

y

S
ili

co
n

H
ar

dw
ar

e
P

la
tf

or
m

 +
E

m
be

dd
ed

 S
ys

te
m

 S
of

tw
ar

e

Figure 1. Software-Electronics Control System (SECS) Engineering process

148

but about the data best supporting or refuting the candidate
explanations. [4] gives an interesting and enlightening introduction to the
linkage between the theoretical/hypothetical and empirical facets of
science (& engineering) from the perspective of the more recent
practitioners of the philosophy of science.

3. The Empirical Engineering Process
A modern processor centric, SECS engineering process is depicted in
Figure 1 and is an evolution of the process presented in [5]. Apart from
the Business Requirements to Functional Requirements flow, where
Functional Requirements are typically derived manu et mente using Use
Cases operating on the Business Requirements, the rest of the activities
in the engineering process are increasingly being characterized and

driven by empirical methodologies and is the focus for increasing
automation. The Executable System Architecture (VSP), that results
from a mapping of the Executable System Specification, drives both
software development and hardware design - two subprocesses that are
completely overlapped in time. The final stages are integration and full
verification of the VSP, followed by integration of the same software as
verified in the integrated VSP on the silicon platform followed by full
verification of the silicon system. The concurrent software-hardware
design and development, followed by the VSP and silicon integration
and test steps of the process are relatively well known and are not
discussed.

3.1 The System Specification and
Architecture Derivation process

A less iconic view of the left-side subprocess of Figure 1 is shown in
Figure 2 - derived from [6].

The path from an Executable System Specification to an Executable
System Architecture is not straight, as can be seen in the coloured
section of Figure 2. The starting point to derive an Executable System

Specification is the Function Requirement. A Use Case analysis
naturally, although not yet automatically, leads to a Data Flow Diagram
representation of the Executable System Specification (see Fig. 3A
below). There is also a two stage mapping process that results in a
Virtual System Prototype and a final mapping process that results in an
optimal VSP.

The upper part of Figure 2 shows essentially a manual subprocess. The
lower part - the subprocess for mapping Executable System
Specifications to Executable System Architectures – is the focus of the
statistical analysis that drives the empirical approach to architecture.
There is no well-accepted flow at the architecture level and it is an
objective to characterize a standard flow together with the statistical
machinery to enable the entire decision making to be quantitatively

driven.

The next step is to determine what Executable System Specifications
and Architectures are.

3.2 Source Specifications and Target
Architectures (VSP)

To constrain the domain of the task of producing optimal systems from
abstract specifications, specific models are used to describe Executable
System Specifications and Executable System Architectures / Virtual
System Prototypes. These are described below.

3.2.1 Executable System Specification
The Executable System Specification, derived by refinement from the
Functional Requirements is an abstract, executable model that defines
the hierarchical system structure recursively, in terms of tasks (modules
with ports) and their intercommunications, along with (i) task behaviour
and timing within tasks and (ii) the cause-effect and timing relationship of
communications between tasks. A natural language document describing

Engineering &
Technology

Analysis
Marketing &

Sales
Analysis

Cross-
Functional
Analysis

Business (Product)
Requirements & Constraints

Qualified
Technical

Factors

Qualified
Product

Needs/Wants

Engineering & Technology
Drivers

User & Sales & Marketing
Drivers

Modification &
Constraints Notice

Modification &
Constraints Notice

Functional (Engineering)
Requirements incl. Constraints

Analysis & Abstract
Specification Derivation

Q
ua

nt
ita

tiv
e

A
rc

hi
te

ct
ur

e
R

eq
ui

re
m

en
ts
 S

pe
ci
fic

at
io

n

GOALS
•ROI
•Risk

•Features
•Futures

Physically Mappable Executable System
Specification + Physical Constraints

Infeasible
Constraints

Executable System Architecture
(VSP) + System Constraints

Infeasible
Constraints

Infeasible
Constraints

Infeasible
Constraints

‘Optimal’ Executable
System Architecture

Market History + Customer
Insight

Engineering History +
Technology Insight

Natural
Language
Derivation

Natural Language
Specification

Executable System
Specification + Constraints

Quantitative
System

Refinement
Quantitative
Specification
Refinement

Map Architecture
to Physical System

Figure 2. Architecture Specification and Derivation Process

Engineering &
Technology

Analysis
Marketing &

Sales
Analysis

Cross-
Functional
Analysis

Business (Product)
Requirements & Constraints

Qualified
Technical

Factors

Qualified
Product

Needs/Wants

Engineering & Technology
Drivers

User & Sales & Marketing
Drivers

Modification &
Constraints Notice

Modification &
Constraints Notice

Functional (Engineering)
Requirements incl. Constraints

Analysis & Abstract
Specification Derivation

Q
ua

nt
ita

tiv
e

A
rc

hi
te

ct
ur

e
R

eq
ui

re
m

en
ts
 S

pe
ci
fic

at
io

n

GOALS
•ROI
•Risk

•Features
•Futures

Physically Mappable Executable System
Specification + Physical Constraints

Infeasible
Constraints

Executable System Architecture
(VSP) + System Constraints

Infeasible
Constraints

Infeasible
Constraints

Infeasible
Constraints

‘Optimal’ Executable
System Architecture

Market History + Customer
Insight

Engineering History +
Technology Insight

Natural
Language
Derivation

Natural Language
Specification

Executable System
Specification + Constraints

Quantitative
System

Refinement
Quantitative
Specification
Refinement

Map Architecture
to Physical System

Engineering &
Technology

Analysis

Engineering &
Technology

Analysis
Marketing &

Sales
Analysis

Marketing &
Sales

Analysis

Cross-
Functional
Analysis

Cross-
Functional
Analysis

Business (Product)
Requirements & Constraints

Business (Product)
Requirements & Constraints

Qualified
Technical

Factors

Qualified
Product

Needs/Wants

Engineering & Technology
Drivers

User & Sales & Marketing
Drivers

Modification &
Constraints Notice

Modification &
Constraints Notice

Functional (Engineering)
Requirements incl. Constraints

Functional (Engineering)
Requirements incl. Constraints

Analysis & Abstract
Specification Derivation

Analysis & Abstract
Specification Derivation

Q
ua

nt
ita

tiv
e

A
rc

hi
te

ct
ur

e
R

eq
ui

re
m

en
ts
 S

pe
ci
fic

at
io

n

GOALS
•ROI
•Risk

•Features
•Futures

Q
ua

nt
ita

tiv
e

A
rc

hi
te

ct
ur

e
Q

ua
nt

ita
tiv

e
A

rc
hi

te
ct

ur
e

R
eq

ui
re

m
en

ts
 S

pe
ci
fic

at
io

n
R

eq
ui

re
m

en
ts
 S

pe
ci
fic

at
io

n

GOALS
•ROI
•Risk

•Features
•Futures

Physically Mappable Executable System
Specification + Physical Constraints

Physically Mappable Executable System
Specification + Physical Constraints

Infeasible
Constraints

Executable System Architecture
(VSP) + System Constraints

Executable System Architecture
(VSP) + System Constraints

Infeasible
Constraints

Infeasible
Constraints

Infeasible
Constraints

‘Optimal’ Executable
System Architecture
‘Optimal’ Executable
System Architecture

Market History + Customer
Insight

Market History + Customer
Insight

Engineering History +
Technology Insight

Engineering History +
Technology Insight

Natural
Language
Derivation

Natural
Language
Derivation

Natural Language
Specification

Natural Language
Specification

Executable System
Specification + Constraints

Executable System
Specification + Constraints

Quantitative
System

Refinement

Quantitative
System

Refinement
Quantitative
Specification
Refinement

Quantitative
Specification
Refinement

Map Architecture
to Physical System
Map Architecture
to Physical System

Figure 2. Architecture Specification and Derivation Process

149

structure can be derived from the executable model but the behavioural
description lies with the executional characteristics of the model that are,
necessarily, defined in the Functional Requirements. The operational
behaviour of the tasks is likely to be described in a number of
heterogeneous notations such as MatLab/Simulink, UML, C/C++,
functions, etc. depending on the nature of the functions to be computed,
such as solving a set of differential equations, iterating through a set of a
control algorithm, or computing a filter function. A typical executable
system specification appears in Figure 3A.

There is a high degree of concurrency in such systems and the degree of
simultaneity is a factor of both task behaviour and timing, and
communications and the cause-effect relationships carried by each
communication. DFDs, at this stage, are abstract and carry little
realization information apart from that implicit in the timing constraints
associated with task behaviour and communications. For convenient
mathematical treatment, the DFD can be reduced to at least one
common specification notation – functions and forms [7],[8]. Without
traversing the gory details of the notation, the diagram in Fig 3A reduces
to the function description in Fig 3B that is well specified with a timing
semantics [9] and tractable for execution and mathematical manipulation
and reasoning [10].

3.2.2 Executable System Architectures (VSP)
During translation from abstraction to realization, abstract tasks in Figure
3A (functions in Figure 3B) are able to be mapped to software tasks or
hardware modules, having the same semantics and communications
capability, and the communications are able to be mapped onto
hardware communication channels and/or software communications
structures (parameters in function calls, inter-process messages, etc.). It
is not true that all abstract (or software/algorithmic) constructs map
sensibly to hardware implementations – for instance: recursion, dynamic
process/data creation and destruction, self-modifying code.

 Figure 4 shows a typical virtual prototype (hardware) target for the
mapping of an abstract cell phone system. In an ideal mapping process,
like that described in the coloured subprocess in Figure 2 perhaps, the
VP in Figure 4 would be one of many targets involved in empirically
determining an optimal VSP.

In a mapping from an abstract system into a VSP, the goodness of the
mapped VSP can be judged against the objective functions defined for
the abstract system by measuring the potentially thousands of responses
of the VSP while executing the mapped software and subject to the
system inputs, and then analyzing them using multivariate statistics. A
somewhat ad hoc process, but, nonetheless, scientific and empirical
when guided by hypothesis construction and refutation. The potential
number of experiments is clearly enormous and again the statistics of the
design and analysis of experiments, together with the multivariate
statistics is helpful in managing this problem. An alternative approach is
to use conceptual models capturing the intent of the Executable System
Specification and constructed as part of the statistical analysis, together
with design of experiment methodology, to drive the mapping and then
perform confirmatory experiments on the results.

The remainder of this paper focuses on empirical mechanisms for
producing optimal Executable System Architectures from Executable
System Specifications.

4. Foundations of the Empirical Process
The empirical process in systems design has twin objectives:

i. The optimization of a system for a particular usage; and

ii. The optimization of the design process, with specialization for
producing different systems.

Our major objective in this paper is the optimization of systems at the
platform level, given a specific objective function (such as, maximize
performance, minimize power). The scientific method is about rejecting
hypotheses using a rational, data driven decision making process. One
of the challenges in making decisions in this engineering domain is the
complexity of modern super systems [11] and identifying patterns in,
and making sense of, the potentially billions of pieces of data collected
from hundreds of unique sources of measurement of platform activity
and latency, available from the silicon and simulation. To address the
latter problem we need to enlist the capability of multivariate statistics to
reduce raw data to measures of relevant and evaluative factors and,
even more desirably, elucidating and reductive (abstract) concepts.

Figure 3B: An Executable Functional Description of Fig. 3A

Figure 3A: Data-Flow Description (DFD) of an Executable
System Specification

StdBus
Bridge

StdBus
Bridge

Memory
Block

Memory
Block

P
1

M
em

or
y

Memory
Block

Memory
Block

StdBus
Bridge

StdBus
Bridge

Arb. Ctrl
DRAM

Arb. Ctrl
DRAM

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P2
Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

StarCore SC1200
Virtual Processor Model

StarCore SC1200
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBusI/FStdBus I/F StdBus I/FStdBusI/F

D ROM P ROM

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

A
H
B

Buses

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

P
2

M
em

or
y

StdBus
Bridge

StdBus
Bridge

Memory
Block

Memory
Block

P
1

M
em

or
y

Memory
Block

Memory
Block

StdBus
Bridge

StdBus
Bridge

Arb. Ctrl
DRAM

Arb. Ctrl
DRAM

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P2
Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

StarCore SC1200
Virtual Processor Model

StarCore SC1200
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBusI/FStdBus I/F StdBus I/FStdBusI/F

D ROM P ROM

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

A
H
B

Buses

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

P
2

M
em

or
y

StdBus
Bridge

StdBus
Bridge

Memory
Block

Memory
Block

P
1

M
em

or
y

Memory
Block

Memory
Block

StdBus
Bridge

StdBus
Bridge

Arb. Ctrl
DRAM

Arb. Ctrl
DRAM

Memory
Block

Memory
Block

Memory
Block

Memory
Block

Sh
ar

ed
 M

em
or

y

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P1
Virtual Processor Model

ARM926E P1
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P2
Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

ARM926E P2
Virtual Processor Model

ARM926E P2
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBus I/FStdBus I/F StdBus I/FStdBus I/F

StarCore SC1200
Virtual Processor Model

StarCore SC1200
Virtual Processor Model

I CacheI Cache D CacheD Cache
StdBusI/FStdBus I/F StdBus I/FStdBusI/F

D ROM P ROM

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P1 Devices

Console 1Console 1

A
H
B

Buses

StdBus
Bridge

StdBus
Bridge

UARTUART

TIMERTIMER

INTCINTC

P2 Devices

Console 2Console 2

P
2

M
em

or
y

Figure 4: A Typical Virtual System Prototype for Mobility

 A

B

C

A

B AB

X
Y

Z

A B

X Y

C

A

B

Y

X
F1

F2

F3

F4F5

F6

A, B, C: inputs
X, Y, Z: outputs

DFD A B :: [F5 [first+11, first1 F4 [first1, F6 F4[Y]]
] F3 [first, F2 F3[X] first], first+11] F1 A B F4[Y]

150

1.. , ,1 ,2 ,((...)) ((...), (...) ,...., (...))
k k k k kCPU EvType et C P Uk EvType CPU CPU CPU CPU etwhere f g f g g g=Θ =o

, , ,

, ,

0.. 1.. s ec . .

0.. 1.. ..

(| ((()),

(((
c c cc CEvType ccCEvTypeCEvCnt

bc bcBEvType bcBEvTyp

VSP CPU cc cn CPU CEvType cet CPU CEvCnt c n tcecn CP U

Bus bc bcn Bus BEvType bet Bus BEvCnt sbecn tbecn Bus

F f f g Event

f f g Event
= = =

= = =

Θ Θ Θ

Θ Θ Θ

o o o
o o o

,

, , ,

,

0.. 1.. . .

0.. 1..

)),

((()),

(((

e B E v C n t

bbc bbcBBEvType bcBBEvType BBEvCnt

mc m c M E v T y p e

BusBridge bbc bbcn BBus BBEvType bbet BBus BBEvCnt sbbecn tbbecn BBus

Mem mc mcn Mem MEvType met Mem MEvCnt sme

f f g Event

f f g
= = =

= = =

Θ Θ Θ

Θ Θ Θ

o o o
o o

, ,

, , ,

..

0.. 1..det . .

)),

((()))
m c M E v T y p e M E v C n t

dc dcDEvType dc D E v T y p e D E v C n t

cn tmecn Mem

Dev dc cn Dev DEvType Dev DEvCnt sdecn tdecn Dev

Event

f f g Event= = =Θ Θ Θ

o
o o o

On the optimization side, there are many ways to construct objective
functions. The classical way is to track event frequencies and/or
latencies and to construct ad hoc functions based on functionally related
events, such as CPU events, bus and bus-bridge events, memory
events, device events, etc. A more systematic way is to use the
multivariate statistics to help formulate dependence relations based on
abstract concepts and more concrete factors derived from the
interpretation of highly correlated events measured during simulation or
silicon activity. Both approaches are described below.

4.1 Event-Based, Objective Functions
In an event driven simulation environment, an objective function can be
expressed as a function whose parameters are functions each
characterizing contributions to the objective function of one of the
components constituting the system, viz. CPUs, buses, bus bridges,
memories and peripheral devices. The parameter functions themselves
have parameters that are functions of simulation event types sourced
from the various event activities that occur in a VSP during simulation. In
general, an objective function will have the following form:

Fundamentally, an objective function is a function of functions of
functions of events.

A simple way to visualize and compute an objective function is to build
an interpretation table, as in Table 1, below.

These tables are large and even though the Event Bindings are simple
to implement, typically a pointer to a function and a history buffer of
events, the extraction of data from register transfer (RT) models or
representative samples of the silicon is difficult, time consuming and
subject to experimental errors. The inability to map an event in a
behavioural model to an observable data point in the silicon or RT
model further confounds the building of accurate tables.

Events, in event-based simulation, are associated with aggregate
underlying behaviour of the circuits that the semantics of events are
intended to describe. The number sources of Event Types generated by
all types of components in a complex platform may number in the
hundreds; the number sources of Events Instances

(events caused by the simulation of instances of typed components
instantiated in a platform) numbers in the thousands, possibly many
thousands. Since component instances, even though morphologically
similar or identical, may have different electronic instantiations and be
affected by local circuit connectivity, the objective function table may
remain large. To set appropriate Event Bindings for entries in the
Objective Function Table, the knowledge and skills of the silicon
vendors are required. Even where there is a clear path from the event-

based, behavioural description to physical behaviour, the information
required for the Interpretation Table – typically constant functions but
sometimes more complex – is closely guarded. Having set the binding
functions, confirmatory experiments need to be undertaken to validate
the settings against either an RTL reference simulation or data sourced
from the silicon, preferably the latter. This process is surprisingly
complex and requires the same statistical approach as is required for
scientifically driven empirical investigation – this is described below.

Since the precise physical association of an event with some circuit
implementation that it models is not necessarily obvious and, in many

cases, unlikely to be independent of circuit effects associated with other
events. The ascription of local physical semantics to an event is more in
the nature of a verisimilitude. The higher the level of event-based,
behavioural abstraction, in general, the weaker is the physical (or
structural) connection to implementation. This is a good thing for high
performance modeling and, with forethought, does not compromise
timing accuracy at an agreed level of granularity – say clock-cycle level.
However, it does mean that more sophisticated mechanisms are
required to efficiently predict aggregate underlying hardware concepts,
such as power. In addition, various event types and instances may
correlate highly across a variety of behaviours - for instance, cache
misses with processor initiated bus traffic, data path stalling and power
consumption. The elimination of dependence between event instance
sources, that are the potential independent variables in a statistical
analysis, should have the effect of condensing the number of variables
required to explain a behaviour, or to be used in the prediction of
behaviour as well as reduce the propensity for over estimation using
data extracted from these models.

The first exploratory endeavour will use Factor Analysis; the predictive
endeavour will use Structural Equation Modeling; and finally, systematic
experimentation across various candidate systems to determine the
optimal system will use Design of Experiment methodology.

4.2 Factor and Concept Based Explanatory
Functions

The intent is to use the multivariate statistical technique called Factor
Analysis to reduce the number of variables needed to explain the
patterns in the collected simulation data. Factor analysis groups highly
correlated Event Instance sources (variables) so that they can be treated
as single entities – called Factors. The factors are subsequently used in
another statistical technique called Structural Equation Modeling to test
whether a constructed set of equations (relationships) whose dependent
variables are known as Concepts and whose independent variables are
factors and concepts provides a statistically adequate description

151

(statistical model) of the observed data gathered from the VSP event
sources.

4.2.1 Factor Analysis
Analysis of event-based simulation suffers from a surfeit of events to
employ as independent variables. Without knowing the relationship
amongst events, it is difficult to determine the extent of over- and under-
estimation of desired properties.

The objective of this work is to simultaneously consider all variables
(events) from a simulation run and determine how each is related to all
others. The essence is each of the observed variables (events) is a
dependent variable that is a function of a linear combination of the
original variables (called Factors). The outcome is the ability to
form factors that maximize their explanation of the entire variable
set, resulting in a much smaller set of factors than the number of
the original variables. [3].

For example, a simulation of a multi-core platform executing billions of
software instructions produces prodigious amounts of data from
potentially thousands of event types and event instances (variables). It is
useful to be able to describe the dynamic operation of the software and
hardware constituting the platform in terms of a much smaller, general
set of explanatory factors. A typical set of factors might be:
performance, responsiveness, reserve capacity, power consumption and
cost, where each factor is a function of functions of events. The effect of
determining factors is to simplify the explanation process of the data in
terms that are useful. There is obvious high structure (correlation) in
event data (for example cache miss, pending buffer access, bus
transaction, memory access) and this is the reason for the
appropriateness of factor analysis in seeking simplifying explanations of
the patterns in the data. High correlations amongst a group of variables
indicates that an exemplar variable may be used in place of the rest of
the elements of the set, thereby reducing the number of variables used in
further analysis. Similarly, for the grouping of highly correlated variables
a factor score can be computed, and an explanatory name given to the
factor that can be substituted for the original variables in further analysis.

Factor analysis programs identify factors in order of significance. It is the
responsibility of the analyst to determine what factors to retain
(dependent on significance) and interpret/explain what the factor
represents in practice. In statistical terms, the correlation of each

variable (event instance source) with the factor (known as the factor
loadings) indicates the degree to which the variable is representative of
the factor.

4.2.1.1 Example of Ratiocinated Factors Explaining
Data from Simulation Experiments

Events arising in a simulation may be measured in several ways:

• Count per stimulus test over a selected set of stimulus tests (for
example: the EEMBC [12] suite of software for various
embedded platform benchmarks)

• Count per interval of time over a (set of) stimulus test(s)
• Duration of an indicator event (such as pipeline stall) triggered by

a starter event (such as a D-Cache miss)

Highly correlated variables (Event Instances), having different measures,
have been tabulated and then explained in terms of factor names in
Table 2, below.

4.2.2 Factor Based Objective Functions -
Structural Equation Modeling

Structural equation modeling (SEM) is an extension of multivariate
factor analysis. The technique enables multiple relationships between
dependent (concepts) and independent variables (factors) to be
examined simultaneously. This is a confirmatory, rather than an
exploratory technique (cf factor analysis), in which a prescribed set of
relationships (equations) can be tested to determine if they are
significant. For example, a particular set of equations describing power
and performance can be tested against the simulation data to determine
whether it holds true at a selected significance level (usually 95% for
engineering and science analyses). An interesting issue here is that the
entire set of equations (dependent/concepts and independent/factors
variables) used to describe the patterns in the underlying data are
constructed using ratiocination - Plato and Democritus lying in the same
bed! The techniques, even though empirical, are subject to the vagaries

of human naming, imputation and omission. The mechanism for
mitigating such highly probable biases is to construct alternative,
competing sets of equations and subject these to the same confirmatory

Table 1: Type, Instance, Component & Event Bindings

Component
Types

Binding

Component
Instance Binding

Component Event
Binding Objective Function Event Binding

• Constant function
• Function of a set of events associated

with an event type (eg cache hit) in a
component instance of a known
component type

1200

120

1200

......

TCM Write

BranchTaken

LDD

SC

SC

SC

f
f

f

• Constant function
• Function of a set of events associated

with an event type (eg Branch Taken) in
a component instance of a known
component type

CPUf FTARMf 21156

1200SCf

Re 0

1156 2

1156 2

1156 2

......

ICacheLineEvict

g Access

ADD

ARM T F

ARM T F

ARM T F

f
f

f

152

analysis. And finally, comparing the models to determine the best fit to
the data.

The equation set is derived from a set of cause-effect relationships,
constructed purely by ratiocination, in which the factors derived in
Factor Analysis are independent variables (causes) that precede and
produce effects on (unobservable) Concepts. Concepts and causes
(factors) can be used in further cause-effect relationships (recursion is
impermissible). The focus of SEM is on the pattern of relationships
across event sources, not on the event sources themselves.

Since ratiocination controls the conceptualization of the equation

formulation, it is warranted to return to the factor analysis results and
determine what variables should be regarded as real indicators of each
factor and to ascribe a loading (correlation) to those variables. The
attempt in this part of the process is to make variables indicators for one
factor only, unless ratiocination argues to the contrary. This has the
effect of reducing the number of terms in the linear equation describing a
factor. The same process can be applied to reduce the number and to
modify the loadings of factors on concepts and concepts on other

concepts in the set of equations. It also provides the key variables,
factors and concepts (all of which are causal variables) that can be
manipulated during experimentation to produce desired effects on an
objective function. The use of the modified set of causal variables in the
equation set requires an estimation of the reliability of each casual
variable as an indicator of its dependent variable.

A Concept is an abstract entity that can be described as an effect
produced, functionally and temporally, by a set of causes (variables) and
other concepts. Concepts are neither directly nor perfectly measured
but are approximately measured by their causal variables. Some

Concepts used to describe complex electronic platforms are given
below in terms of partial causal Factors. Concepts need to be
uncorrelated. However, it is clear that concepts may be correlated with
factors that are variables in another concept. An example is given below:

i. Concept: Performance
• Constituent Factors: Device Interrupt Service Latency,

Memory Access Latency, Non OS instructions executed,
messages/packets processed from external networks, multi-
media operations performed

ii. Concept: Power consumption - Average
• Constituent Factors: technology, clock speeds, Memory

Utilization, bus transactions, memory accesses, pipeline
stalls, external platform port activity

iii. Concept: Mobility Fit
• Constituent Concepts and Factors: Performance, Power,

Cost, TTM
Now having a set of equations that describe, as a best ratiocination from
theory and observation, the structure of the originally observed data, the
model can be tested for its ability to produce unique estimates,
goodness of fit to the real data, and reliability of the model. Statistically,
reliability of a variable, for instance, means the proportion of the Event
source (variable) that is free from random error. Reliability of observed
variables affects the reliability of factors for which they are indicators
which in turn affects the reliability of concepts and from there the whole
model. If the model fails in any of these attributes, the model will need to
be respecified and tested again. On acceptance of the model, each of its
constructs can be tested to strengthen or weaken the overall confidence
in the fit of the model. A simple reliability indicator is, if loadings of
individual constructs are found to be statistically insignificant, the model
needs respecification.

Summarizing:

To continue the Mobility Fit example, the SEM is in Equation 1.

5. Experimenting with System Architectures
The empirical analysis so far has focused on explaining the operation of

Table 2. factor Semantics

Event
Correlate

Group

Correlated
Variables

(Model
Attributes)

Potential
Factors

(Evaluative
Dimension)

Measurement
Methodology

1
CPUA D-Cache
miss

CPUA D-
Memory Read/
Write Utilization

Count per stimulus
test or time interval

CPUA Pipeline
Stall

CPUA D-
Memory Read
Latency

Duration of D-
Mem Read

 CPUA D-Bus
Read

 CPUA D-
Memory Read

2
DEVInt
Interrupt
Request

DevA Interrupt
Service Latency

Duration of DevA
request

{ }

,

1..

, ,
1.. 1..

..
1..

mod :

|

()

k k

gevEvRange

k
k n

k f fac k fac c fcc k fcc
fac facn fcc fccn

fc fc gev gev EvRange s t g
gev gevcn

SEM el

where
Concept d k Factor d k Concept

Factor d k g Event

Concept
=

= =

=
=

= + • + + •

= + • Θ

∑ ∑
∑ o

1 2 3 4

1 1 1 1 1

1 1

...

...
Performance pf DevIntSerLatency pf MemAccessLatency pf NonOSInstCnt pf

Power pw MemUtilization pw ClkCnt pw BusXactCnt pw PipeStallCnt pw

MobilityFit mf TM mf P

C d F d F d F d

C d F d F d F d F d

C d F d C

= + + +

= + + + +

= +

i i i i
i i i i i
i i

1erformance mf Powerd C+ i

Equation 1: Structural Equation Model for Mobility Fit

153

complex system in terms of increasingly abstract factors and concepts.
The characterization power of the analysis relies on its ability to uncover
unobservable (latent) variables which raises the focus of understanding
to a more abstract conceptual level and enables the system to be
considered as a whole (the SEM characterization), without regard to
hardware, software, mechanical or RF influences. However, the primary
event sources are just the data gathered from hardware, software and
the physical elements of the system.

The focus now changes to consider the use factors and concepts to
drive a systematic approach to experimentation in order to optimize
some objective function, presumable with parameters that are the
concepts and factors being varied to achieve that optimum. This is the
domain of Design and Analysis of Experiment methodology which is
described in this Section together with its relationship to factor analysis
and SEM technology.

5.1 Design and Analysis of Experiments
(DAE) Methodology

This methodology provides a systematic way of designing, performing
and analyzing experiments (viz. test or series of tests) in which
intentional changes are made to the input variables (factors and
concepts) of a process or system so that the reasons for changes
observed in the output (response) of the system may be observed
and identified[13].

The following is an outline of the experimental design process.

i. Formulate the goal (same as for factor analysis). An example of a
narrow goal: Minimize power consumption of a software
algorithm running on platform A.

ii. Specify the objectives that will satisfy the goal. The goal is
effectively an SEM set with outcomes affected by variables,
factors and concepts that have casual relationships to the
outcomes.
• Examples:

+ Identify the measurable, continuous factors, including
interactions between factors, that affect mean power and
variability in power,

+ Determine the optimal setting of factors and the
interactions between factors that give minimum power
with minimum variability.

iii. Choose an appropriate experimental protocol (essentially
confirming the SEM model), essentially: Sample size and
Protocol: Iterative experimentation, randomizing the experimental
trial order, Replication of experiment to reduce the effect of noise
(variability).

iv. Analyze the outcomes. There are three: determine the variables
that affect the mean performance, variables that affect
performance variability, and variable levels that achieve optimum
performance. Then determine whether further improvements are
possible.

The system under test is a VSP running various software programs –
these together with external stimuli form the operating conditions
driving the system to produce measurable responses. Programmed
systems are peculiar in that the software is an intrinsic part of the VSP
(by definition) and it also is part of the data set over which experiments

are measured. System software - including operating systems, device
drivers, communications stacks, and applications - becomes so complex
that, in a given system (including a VSP) subject to unpredictable
external events (such as the arrival of a video packet during a DMA
event that is holding the data-bus of the DSP processor in a triple
processor system), the whole system has unpredictable but bounded
responses. Hence the requirement for measurement and analysis to
determine an SEM explanation of the observed data, and the use of the
SEM model, inter alia, in determining better bounds for system
behaviours.

In the DAE methodology, the variables that can be used to produce
system responses are many and varied. For example: cache organization
of disk block accesses in the disk controller, bus bandwidths, database
schema for storing information in cell phone middleware, I&D-cache
size of each processor, algorithm for audio echo cancellation, memory
latencies, etc. The ability to measure responses in a physical system is
somewhat limited by the technology used to build them, viz. if in silicon
then observability and controllability are poor, if in FPGA there is more
but still limited access. In contrast a VSP has intrinsic observability and
controllability and since it is a faithful facsimile of the physical system (at
an agreed level of timing granularity) it is ideal for experimentation
purposes. The issue now becomes what to measure from the thousands
of measuring (event) sources available and what to ignore. The factor
analysis and SEM have already addressed part of this problem, but it
still requires many experiments and iterations through the flow to
determine for the concepts deemed important, what other concepts and
factors causally relate to these, and then what are the loading of the
variables on the factors used in the SEM set.

The DAE methodology relies on the ability to vary variables (called
manifest variables if directly manipulatable) in the system and observe
the results. It then prioritizes the results in terms of the variables (called
latent variable if they are factors and concepts) that have the most to
least importance in producing the observed effects. The effect of many
variables changing simultaneously (as in SEM) is a feature of DAE, since
it is the interactions between variables that often have the significant
effects on the observations. The statistical machinery to do this requires
the calculation of the main and interaction effects of variables/factors,
then determine which effects are significant. An assumption here is that
the underlying data comes from a normal distribution and there are
appropriate tests for determining whether this hypothesis holds. The
response of various concepts (and an overall objective function) can be
plotted versus the significant variables. If there are no interaction effects
between variables, the response surface will be linear wrt the variables.
Interaction effects produce higher-order polynomial response surfaces.
Lines of the same response value are known as contours and traversing
a contour will enable a determination of the most efficient set of
variables to produce that response (say video throughput dependent on
variables cache sizes, memory hierarchy latencies, clock speed,
MPEG2 algorithm and frame rate). Maximizing or minimizing a response
looks for stationary points (maximum, minimum and saddle-points) on
the response surface.

Regression models for predicting response, over the variations of the
significant variables, can be built. The predicted response from these
models can be compared with the actual responses to directly measure
from the system, by setting the variables appropriately. In this way a
confidence interval for the mean response can be calculated and the
regression model assessed as competent of incompetent. Incompetent

154

models require reformulation the response predictors and may fall back
through SEM and factor analysis to remedy the problems.

The final issues to discuss is what experiments are needed to efficiently
gather sufficient data to construct a competent response surface, given
the SEM analysis and the response function formulations. For an
experiment involving v variables that will determine a response function,
where each variable can be set at a number of levels (values) (say l) and
that number is common across all variables, the number of unique
experiments required to cover the entire variable space is lv. This
number can be reduced dramatically using fractional factorial designs
determined by the important main effects and their interactions. Having
determined the set of experiments to be performed, the order of the
experiments will need to be randomly determined if the simulation model
has inbuilt randomized effects, such as noise on interconnects and small
changes in latencies.

Two forms of platform architecture experimentation are briefly
discussed. The first takes a structure already characterized and changes
attributes of modules constituting the platform, such as cache size,
memory latency, and bus width. This is called mesomorphic (middle
structure) experimentation and it essentially is for optimizing objective
functions of architectures that can be tuned parametrically. The second,
called epimorphic architecture experimentation, takes the radical,
conceptual view enabled by SEM analysis, and asks how can the
overall structure of the system (for instance, reducing the number of
processors from four to two) be modified to meet some objective.

5.2 Mesomorphic Architecture
Experimentation

This is essentially architecture optimization by module tuning within a
well characterized platform. Since part of the SEM methodology is to
maintain the independence of (that is, to avoid correlation amongst)
concepts, they become good candidates to drive objective functions and
they should always be significant factors. In practice, using concepts
such as performance and power in an objective function for optimizing
processor based, electronic systems does confound the objective
function since event source data, such as cachemiss, is theoretically (and
practically) an indicator for both concepts.

The objective is to run a set of experiments that will produce response
surfaces for response concepts expressed in the SEM equation set. For
example, an objective function for mobile devices might find the
response surface that maximizes performance and minimizes power
consumption. Each response concept will have factors and concepts
loading on it and each factor will have manifest variables loading on it.
We already know that each variable, factor and concept is significant for
some concept and/or the objective function.

Assume that the following manifest variables are the significant inputs to
our experiments. To simplify the example, two levels of value have been
chosen for each variable. The Table below summarizes this information.

There are 7 variables with 2 levels each requiring 27 = 128 experiments
to fully characterize the VSP by computing, for each variable, its main
and interaction effects. If main effects and 2nd order interactions are
deemed only to be significant, the experiments can be run on a fraction
of the full factorial design – in 16 experiments. If we consider aliasing
some main order and 2nd order effects, then 8 experiments may be
adequate. Randomization of experiment order and replication have no
effect on increasing statistical significance of results from simulation runs,

unless random variability has been injected into the model to increase its
realistic behaviour.

Once the experiments have been performed, the expected outcome is
that optimal settings of the variables, to produce the desired concept
and objective function outcomes, will have been determined. This work
is mechanical. Demonstrating that the SEM model and the DAE model
correspond with an acceptable level of significance is regarded as
confirmation of the models.

Manifest Variable 2-Level Values Coded As

L1 Cache Sizes
(I&D)

Small, Large -1, +1

MPEG 2 Algorithm Low Performance, High
Performance

-1, +1

Buses (I&D) Non-multiplexed,
Multiplexed

-1, +1

Clock Frequency Low, High -1, +1

FPU Not-exists, Exists -1, +1

5.3 Epimorphic Architecture
Experimentation

Quite radical changes in VSP architecture may be envisaged, such as:
reducing the number of processors, reconfiguration the memory
hierarchy, changing operating systems, etc. Even so, the overall system
must be fit for its designated task of control in a product; this means that
the response concepts will be maintained. If we reflect back to mapping
abstract architectures to VSPs, the pure (SEM) concepts should be
developed for the highest level of abstraction and then ideally be
invariant across the set of mappings of the abstract system to various
VSPs.

The objective in epimorphic architecture experimentation is to determine
whether there are alternate VSP structures that will have more desirable
responses when characterized using SEM models that maintain the
upper-level concepts but, through factor re-analysis and SEM model
rebuilding, may have quite different loadings of variables on factors and
factors on concepts. The comparison will be over response surfaces
produced by each SEM model when subjected to the experimental
regimes outlined in Section 5.1.

The DAE part of epimorphic architecture experimentation is somewhat
different. The levels in some manifest variables will select various VSPs,
along with other variables selecting parametric settings within the chosen
VSP, and the response will be across all VSPs and all parameters
selectable with the variables and factors that load on the invariant
concepts in the set of SEM equation sets characterizing the VSPs.

This is an exciting outcome, The mapping of an abstract system to a
small set of VSP targets, that are selected systematically by the statistics
underlying DAE, enables the DAE equations to be used predictively
rather than just confirmatively (as with mesomorphic architecture). The
individual SEM equations describe how well a set of abstract concepts
can be realized using a parameterized VSP. The DAE driven process
produces a set of regression equations across and within target VSPs
that can be used to select suitable candidates from a broad range of
VSPs to be targets for the mappers of abstract systems such as those
described in Figures 3.

155

6. Evidence for the Empirical Framework
Since the multivariate approach to experimentation is relatively new to
engineering, the available data concerning SECS experimentation
involves optimizing objective functions using intuitive experimentation,
driven by hypothesis formation and refutation [14]. The objective
functions are formulated as described in Section 4 – that is, event driven
responses without formal factor or concept explanations of the observed
behaviour. However, even this level of experimentation has yielded
impressive results.

The case studies below are both composites constructed from similar
projects across 2 companies, in each case.

6.1 New Architecture – Empirical
Intervention

A typically (intuitively) designed commercial controller incorporated 6
signal processors,1 general purpose processor, 2 matrix switches,
arbitrated interconnection buses and bus bridges, complex memory
hierarchies with multiple DMA controllers, and many peripheral devices.
Several of the central interconnects were multiplexed. It was unknown
whether the controller could meet throughput, response time or
processing headroom specifications.

In the normal engineering process, an iteratively analyzed and refined
version of the intuitive design would be reduced to an implementation
(probably silicon) and the architecture subjected to trial post realization.
Historically, complex, intuitively designed controllers are respun 2-5+
times in order to iron-out the architectural, as well as, the detailed
hardware design and hardware-software interaction decisions. A pretty
inefficient and very costly process. The estimated cost per architectural
respin is a couple of million dollars, split between the cost of a new
mask set and the engineering needed to rectify problems discovered so
late in the design process.

The new architectural design was a central plank in each company’s
strategic new generation offering to its customers and prospects in a
highly competitive, global market. A competitive differentiator would be
the early availability of a system to customers and prospects so that
software, to be sourced from the company, customers and 3rd party
suppliers could be developed early. Accelerating the development of
software is a major competitive factor, since it dominates the engineering
effort and the critical development path for both a company and its
customers. It is a universal hope that if a prospect begins serious
software development using your VSP, they would be likely to commit
to buying your silicon for the platform.

The original design was modeled as a VSP in mid 2004 with high
performance, timing accurate models which were heavily instrumented.
The experimentation began with representative, trial software loads
running on the processors. Several major architectural problems were
found rapidly: inadequate response times, insufficient traffic throughput
and insufficient processing headroom, amongst others. The VSP
architecture was extensively and iteratively reworked with the each
iteration candidate being subjected to heavy experimentation and
measurement using the required software and input stimuli. The
rearchitecting took place within a six month time frame. The final
architecture was radically departure from that intuitively specified – 3
DSPs, 1 general purpose processor (GPP), unmultiplexed buses,
simpler memory hierarchies and interconnect fabric – and met the

throughput, response time, and processing headroom specifications.
This was all done prior to commitment to silicon. The VSP is currently
being offered to customers and prospects to enable them to start on
software porting and development, 9-12 months before availability of
silicon – representing a TTM reduction near to 50%.

Even though the result is very good, there is no way of determining, by
using informal techniques, whether the platform is optimum for its
intended purpose. The next step is to engage the more formal techniques
outlined in this paper to try and achieve an optimal architecture.

6.2 Iterating Architectures Quantitatively
using VSPs

In 2003/2004, a VSP of a closely-coupled, triple core architecture
having 1x DSP, 2x GPP, a multilayered interconnect fabric, many bus
bridges and peripheral devices, was built and delivered to a customer
who then completed the VSP by adding all required peripheral devices
and tuning the architecture. The VSP paralleled an existing design for
which silicon was already being produced, and was used for developing
tests suites, porting software, and to check the adequacy of the
architecture for its intended purpose. The VSP was delivered to VaST’s
customer’s customer 9 months in advance of the silicon.

Twelve months later the next iterative architecture development was
due. The functional specification required additional computing cycles
for executing additional software, and several modified and new
peripheral devices. Two lines of investigation were initiated, one dealing
with processor microarchitecture modification to increase the CPU
clock frequency and the other to use the VSP to experiment with the
overall platform architecture and determine what improvements were
available from that source.

The microarchitecture investigation yielded the requirement for
microarchitecture modifications to accommodate increased clock
frequencies – a task that was engineering intensive and would result in
an overall 10% increase in platform performance. The platform
architecture experimentation yielded data indicating a number of
straightforward changes, dealing, amongst other things, with memory
hierarchy and latency, that resulted in a more than 50% improvement in
performance.

The results were somewhat surprising to the investigators, since a triple
processor platform is regarded as processor centric. However, what the
data is saying is that microarchitecture improvements produce 2nd order
effects when placed in the context of systems platforms. This finding is
consistent with the industry data that the results of heroic engineering
efforts at the microarchitecture level are completely swamped by the
twin effects of overall increased performance due to the underlying
semiconductor technology (for example, moving from 130nm to 90nm
technology) and the optimization of the platform architecture itself
determined by quantitative experimentation with the mundane attributes
of architectures, such as memory hierarchies and latencies (including
cache), bus – bus bridge hierarchies and aggregate bandwidth and
latencies; etc.

Once again a surprising amount of optimization was yielded from basic
quantitative investigation. Once again, the ad hoc experimentation did
not look at the multi-factorial overall platform optimization issue.

156

7. Summary, Ongoing and Future Work
It is clear that such experimentation techniques should always be
required part of any architect’s tool kit and job responsibility, ideally
prior to the commitment to an architecture, rather than as a post facto
clean-up endeavour.

Another aspect of architecture that will yield 1st order effects on the
overall system is the formal experimentation with architecture, structure
and algorithmic efficiency of the most complex component of the system
– software. It will be very surprising if the systematic experimentation
with software, and the improved fit between the hardware architecture
and the software architecture, does not yield optimizations that will
eclipse the effect of the platform and microarchitectures determined
separately.

A framework has been presented for ad hoc (event data driven) and
systematic (concept driven) experimentation. Most engineering
experimentation, when it is done at all, is of the former type where a
progressive set of intuitive experiments is performed, measures taken
and further experiments formulated based on evidence from the prior
experiments. As can be seen from the experiences related in Section 6,
when performed early in the engineering cycle this unstructured
approach can have a profound effect – even structural, but it relies on
expert intuition and that, however profound, is subjective. When these
many hundreds of experiments are each structured to refute, with some
level of significance, well thought through hypotheses, a degree of
structure enters and the process accretes good attributes of the scientific
method.

The more structured approach, based on statistics that elevates the
focus of system level considerations to more conceptual than operational
concerns, followed by the systematic design of experiments offers a new
way to efficiently approach the task of reducing the experimental effort
when conceptualizing new architectures optimized for some purpose.
The alternative is to perform thousands of ad hoc experiments driven by
intuition and success and failure – the school of architecture of hard
knocks. As yet there is little hard engineering result from the use of the
SEM based approach. However, we are working with customers,
especially in the early architectural phases, to see how the more
structured approach affects their engineering product, as well as the
efficacy of their engineering process. With several global companies,
across several market sectors, involved in the effort, it is exciting times
for empirical architecture.

Future work involves a pragmatic assessment of the effectiveness of the
empirical approach to the more conceptual areas of architecture
development. This will require several projects (typical duration 12-18
months) to go through the process to gather sufficient data to be able to
report failure, success or progress. The second area of future work is to
apply the same statistically-driven quantitative processes to the
engineering process itself. The recognition that the DFD process of
Figure 2, which describes the early stages of the engineering process, is
structurally the same as the DFD of Figure 3A, which describes part of
an abstract system architecture, makes this an exciting and promising
field of investigation.

8. ACKNOWLEDGEMENTS
I would like to thank Mahdi Seddighnezhad for his thoughtful comments
and careful proof reading of this paper.

9. REFERENCES
[1] Encyclopaedia Britannica (2005). Democritus, Plato, atomism.

Ultimate Reference Suite DVD. www.britannica.com

[2] Encyclopaedia Britannica (2005). Stoicism. Ultimate Reference
Suite DVD. www.britannica.com

[3] Hair, J.F., Anderson, R.E, Tatham, R.L and Black, W.C.
Multivariate Date Analysis with Readings. 4th Ed. Prentice-Hall
International, Inc., NJ (1995).

[4] Hughes, M.A., Price, R.L and Marrs, D.W. Linking Theory
Construction and Theory Testing: Models with Multiple Indicators
of Latent Variables. Academy of Management Review, 11, 1
(1986), 128-144.

[5] Hellestrand, G.R. Rapid Design of Software-Rich Chips:
Executable Specification à Realization. White Paper. VaST
Systems Technology Corp., Oct 2002.

[6] Hellestrand, G.R. The Revolution in Systems Engineering. IEEE
Spectrum, 36, 9 (1999), 43-51.

[7] Backus, J. Can Programming be Liberated from the Von
Neumann Style? A Functional Style and Its Algebra of Programs.
Comms. of the ACM, 21, 8 (Aug 1978), 613-641.

[8] Hellestrand, G.R. The Unified Specification of Mixed Technology
Systems, Keynote Paper, Proc. Conf. Synthesis and Simulation of
Mixed Technology Systems (SASIMI'95), Nara, Japan, August
1995.

[9] Hellestrand, G.R. Events, Causality, Uncertainty and Control.
Proc. 2nd IEEE Asia Pacific Conference on Hardware Description
Languages, 221-227, Toyohashi, Japan, October 1994.

[10] Cheung T.K.-Y., Hellestrand G.R. Form: A Functional System
Specification Notation, The Fourth Asia-Pacific Conference on
Hardware Description Languages, APCHDL'97, HsinChu,
Taiwan, 18-20, August 1997, 10-15.

[11] Hellestrand, G.R. The Engineering of Supersystems. IEEE
Computer, 38, 1(Jan 2005), 103-105.

[12] EEMBC: Embedded Microprocessor Benchmark Consortium.
www.eembc.org

[13] Montgomery, D.C. Design and Analysis of Experiments. 5th Ed.
John Wiley & Sons, NY, 2001.

[14] Winters, F.J., Mielenze, C. and Hellestrand, G.R. Design Process
Changes Enabling Rapid Development. Proc. Convergence 2004
P-387, Oct 2004, 613-624, Society of Automotive Engineers,
Warrendale, PA.

157

