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ABSTRACT

It is a profound didocetion to have redity replaced by modes — that
revolution is won, tha blood spilt. The first radica changes in globd
companies that | have witnessed, attributable to the systems enginearing
and architecture Virtud System Prototype inflection point, occurred in
2004. In these instances, the whole assumed order of architecturein the
engineering process was tipped upside-down by a single set of
quantitatively derived results that are turning out to be critica to each
company’ s ability to compete and win in its fiercely competitive market.
These changes have accelerated in 2005. It is the mogt exciting time for
us dl to be pat of the wholesde trandformation of one of the
fundamental engines of the last 50 years of economic growth —
Embedded Software-Electronics Control Systems (Embedded SECS)
design. The transformation is driven by necessity; the by-products are
competitive advantage, speed of execution, qudity, productivity, and
ability to rapidly adapt to market and business conditions. There is no
company, leader or laggard, who can afford to ignore this evidence and
hope to survive. This paper addresses the quantitative development of
embedded systems architectures - software, hardware, mechanicd.

Categories and Subject Descriptors

B8 [Hardware - Performance & Reliability]: Performance andyss
and design ads; CO [Computer System Organization] Generd —
System  architectures, System  specification  methodology,
Hardwar e/ Software interfaces, Modeling of computer architecture;
C2 [Computer Communication Networks] Network architecture &
desgn — distributed networks C3 [Special Purpose and
Application Based Systems] Real-time and embedded system; C4
[Performance of Systems] Measurement and modeling techniques;
G3 [Probability and Statistics] Experimenta design, Multivariate
datistics.

General Terms
Design, Experimentation, Measurement, Performance.
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1. Background and Motivation

An empirica gpproach to composing optima architectures for complex
embedded systems is relatively rare. The use of physica systems to
determine early architectural optimizations is clearly a non-sequitur. The
complexity of processor centric, eectronic systems that control modern
gadgets (such as, cel phones, automobiles, base stations, consumer
products) requires a systematic, as wel as intuitive, approach to
determining an optima fit for the intended product. And in today’s
environment, where a company’s engineering process is being used as a
competitive advantage to dominate competition, the luxury of optimality,
across codt, performance, power consumption, qudity and time to
market (TTM), has turned to a necessity.

Higtoricdly, intuitive engineering architecture atempted to optimize
systems using dimensions of performance (major) and cost (more or less
minor). Since control system architects rarely understood, or had access
to, the software that would run on their architectures, they produced
consrvative, often grosdy over-engineered inventions that, when
asesad using the now mandaory dimensons — mgor: cost and
performance, average and pesk power, TTM, qudity; minor:
programmability, manufacturability — were usudly poor fits for the
service required. The failure was due to lack of (i) necessary and
aufficient data to determine optimality and, concomitantly, (i) an
empirical process that enabled quantitative decisons to drive the
architecture specification process.

The ability to support data-driven decison making early in the
engineering process has been an underlying driver for building accurate
modds of an intended sysem. Then to perfform many hundreds of
experiments on successve modes to determine an optima system
architecture, measured across agreed dimensions and for a particular
product fit, required not just accurate models but aso high performance
models. The experiments that need to be performed require accurate
models of successive physicd systems (cdled Virtud Prototypes (VP))



that can run whole systems of software (operating systems, drivers,
communications stacks, middleware, and gpplications), together with
other inputs and outputs (communications traffic, interrupts, video and
audio) — the whole system enchilada is cdled a Virtud System
Prototype (VSP). Datais typicaly collected from many probes inserted
into the hardware modes (electronic, mechanical, RF) and the actud
software during the experiments It is not unusua for one such
experiment to run 100 hillion indructions — less than 1 hour of smulaion
time usng a high performance, timing accurate VSP. The remaining
needs to enfranchise efficient experimentation are (a) availability of
models to enable the congtruction of VSPs and (b) the tools to rapidly
build the models and to congtruct the VSPs.

An higtorical anecdote, even though VSPs — by definition high
performance and timing accurate - are the foundations of empirica
dectronic systems architecture, their initid economicaly justified
deployment has been for the development of software for rea-time,
critical control systems. As VSPs are deployed to determine
architectura specification, we are seeing the nature of the architecture of
eectronic systems changing — the architecture of the software and the
plaform ae the twin 1% ordes of focus and processor
microarchitecture no longer dominates systems, often having a 2™ or 3
order influence. Architects are not likely to be just electronics or micro-
architecture engineers or computer scientists, but those engineers
cregting the middle, straddling the oft-thought binary software-hardware
line of engineering competence. It is extraordinary to be a participant in
this pervasive change, when quantitative experimentation is indituted as
the key to building competent architectures, the results are usudly
unexpected, dartling, and will repidy transform the engineering
processes and structure of the company.

The paper will concentrate on the empirica process underlying data
driven architectural decison making and the capabilities enabled when
the ‘optimal’ architecture becomes the executable golden reference
modd driving the remainder of the system engineering process —in
paticular, the software development and the hardware design sub-
processes. We will use the genericized indugtrid examples to motivate
the discussion.

2. The Philosophy of Architecting Systems

Like the two contemporary philosophy adversaries in Greece 2,400
years ago, Democritus and Plato [1], today system architects are
divided into two camps — the empiricists and the ratiocinators. The
empiricists believe that fundamentd truths are derived from observation
within a quark-like atomic framework, the ratiocinators that fundamental
truths are intuitively apprehended. This paper is firmly in Democritus's
camp and addresses the quantitative basis of decison making as
fundamenta to architecting ‘optimd’ sysems. But Plato ill hes his
voice!

2.1 System Architecture as Ratiocination
(Plato)

There are common eements in the empirica and ratiocination frames of
operation. Both use a basis of knowledge and both use reasoning. The
goic’s view of ratiocination was that semina reasons were the impetus
for animate motion [2]. In other words, the nature of a whole cannot be
discovered by dividing it intoits  component parts and studying each
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pat by itsdf, thet there is a quditative, unquantifiable aspect to
observation.

Strong reflections of this philosophy are in evidence today with the
architecting of sysems being largdly intuitive, quditative activities. The
tell-tale sgns of this are the typica tools and methods used by system
architects, sadly even of advanced technology products - spread shests,
adoption of under-examined legacy structures and reguirements, non-
quantitative decision making criteria, qudlitative Socratic argument, and
drawing conclusions by deduction and induction derived from these
activities.

This gpproach guarantees incrementa systems architecture driven from
legacy systems. And has little probability of arriving & optimum
solutions.

2.2 System Architecture as Experimental
Science (Democritus)

Atomism is an andytic doctrine that teaches that systems can be
discovered by dividing them into component parts and individudly
studying each part. And has as a premise that al observable changes are
caused by actions of the individud pats The indivishility of the
fundamentd parts relates only to the syntactic and semantic structures
used to specify and build systems. Then dl systems are aggregates of
juxtapositions of fundamentd parts. In reverse, al systems are subject to
quantitative analyss. Reasoning has to do with the meaning of the
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observations.

This approach, if it systemdicaly traverses the quantitative factors
defining the space of likdy architectures of the product
underdevelopment, and undertaken using hypothesis refutation from
Science, cannot guarantee an optimal solution, but will give quantitative
reasons for regjecting, possibly, thousands of candidate architectures that
were poorer than the sdlected architecture and, as in Science, provide
peer groups with adequate data to further critique the architecture
group’s recommended candidate for themsalves. This is good science
and engineering. This philosophy is actudized by employing modern
analysis tools and methodologies — usng VSPs as experimenta
vehides, multivariate satistics to help drive decison making, and design
of experiments to drive the experimenta methodology. However, even
with al of the power of factor andysis and structura equation modeling
[3], making sense of the data remains in the domain of ratiocination —



but about the data best supporting or refuting the candidate
explanations. [4] gives an interesting and enlightening introduction to the
linkage between the theoretica/hypotheticdl and empirical facets of
stience (& engineering) from the perspective of the more recent
practitioners of the philosophy of science.

3. TheEmpirical Engineering Process

A modern processor centric, SECS engineering process is depicted in
Figure 1 and is an evolution of the process presented in [5]. Apart from
the Busness Requirements to Functiona Requirements flow, where
Functiond Requirements are typicaly derived manu et mente using Use
Cases operating on the Business Requirements, the rest of the activities
in the engineering process are increesingly being characterized and

Specification is the Function Reguirement. A Use Cese andyss
naturaly, dthough not yet automaticaly, leads to a Data Flow Diagram
representation of the Executable System Specification (see Fig. 3A
below). There is ds0 a two stage mapping process that results in a
Virtua System Prototype and a find mapping process that resultsin an
optimal VSP.

The upper part of Figure 2 shows essentially a manua subprocess. The
lower pat - the subprocess for mapping Executable System
Specifications to Executable System Architectures — is the focus of the
datisticd anaysis that drives the empirica approach b architecture.
There is no wel-accepted flow a the architecture level and it is an
objective to characterize a standard flow together with the dtetistica
machinery to enable the entire decison making to be quantitatively
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driven by empiricd methodologies and is the focus for increasing
automation. The Executable System Architecture (VSP), that results
from a mapping d the Executable System Specification, drives both
software development and hardware design - two subprocesses that are
completely overlgpped in time. The find Stages are integration and full
verification of the VSP, followed by integration of the same software as
verified in the integrated V'SP on the slicon platiform followed by full
veification of the slicon sysem. The concurrent software-hardware
design and development, followed by the VSP and slicon integration
and test steps of the process are relatively well known and are not
discussed.

3.1 The System Specification and
Architecture Derivation process

A less iconic view of the Ieft-side subprocess of Figure 1 is shown in
Figure 2 - derived from [6].

The path from an Executable System Specification b an Executable
System Architecture is not draight, as can be seen in the coloured
section of Figure 2. The starting point to derive an Executable System
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driven.

The next step is to determine what Executable System Specifications
and Architectures are.

3.2 Source Specifications and Tar get
Architectures (VSP)

To congrain the domain of the task of producing optimal systems from
abstract specifications, pecific models are used to describe Executable
System Spexifications and Executable System Architectures / Virtua
System Prototypes. These are described below.

3.2.1 Executable System Specification

The Executable System Specification, derived by refinement from the
Functiond Requirements is an éstract, executable model that defines
the hierarchica system structure recursively, in terms of tasks (modules
with ports) and their intercommunications, dong with (i) task behaviour
and timing within tasks and (i) the cause- effect and timing relationship of
communications between tasks. A natura language document describing



structure can be derived from the executable mode but the behavioura
description lies with the executiond characterigtics of the modd that are,
necessily, defined in the Functiona Requirements. The operationd
behaviour of the tasks is likely to be described in a number of
heterogeneous notations such as MalLay/Simulink, UML, C/C++,
functions, etc. depending on the nature of the functions to be computed,
such as solving a st of differentid equations, iterating through a set of a
control dgorithm, or computing a filter function. A typical executable
system specification appearsin Figure 3A.

A, B, C: inputs
X,Y, Z: outputs

Figure 3A: Data-Flow Description (DFD) of an Executable
System Specification

DFDAB :: [F5 [first+1y, firsty F4 [firsty, F6 FA[Y]]
| F3 [first, F2 F3[X] first], first+11] F1 A B FA[Y]

Figure 3B: An Executable Functional Description of Fig. 3A

Thereis a high degree of concurrency in such systems and the degree of
smultaneity is a factor of both tak behaviour and timing, and
communications and the cause-effect relationships carried by each
communication. DFDs, a this stage, are abstract and carry little
redization information gpart from that implicit in the timing condraints
asociated with task behaviour and communications. For convenient
mathemetical treatment, the DFD can be reduced to & least one
common specification notation — functions and forms [7],[8]. Without
traversing the gory details of the notation, the diagram in Fig 3A reduces
to the function description in Fig 3B that is well specified with a timing
semantics [9] and tractable for execution and mathematical manipulation
and reasoning [10].

3.2.2 Executable System Architectures (VSP)

During trandation from abgiraction to redlization, abstract tasksin Figure
3A (functions in Figure 3B) are able to be mapped to software tasks or
hardware modules, having the same semantics and communications
capability, and the communications are able to be mapped onto
hardware communication channes and/or software communications
dructures (parameters in function cals, inter- process messages, etc.). It
is not true that al abstract (or software/dgorithmic) condructs map
sengbly to hardware implementations — for instance: recursion, dynamic
process/data creation and destruction, self-modifying code.
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Figure 4 shows a typica virtua prototype (hardware) target for the
mapping of an abstract cell phone system. In an idedl mapping process,
like that described in the coloured subprocess in Figure 2 perhaps, the
VP in Figure 4 would be one of many targets involved in empiricaly
determining an optima VSP.

In a mapping from an abgtract system into a V'SP, the goodness of the
mapped V SP can be judged againg the objective functions defined for
the abstract system by measuring the potentially thousands of responses
of the VSP while executing the mapped software and subject to the
sysem inputs, and then andyzing them usng multivariate datigtics A

somewhat ad hoc process, but, nonetheless, scientific and empirica
when guided by hypothesis congtruction and refutetion. The potentia

number of experimentsis clearly enormous and again the statigtics of the
design and andysis of experiments, together with the multivariate
datidtics is helpful in managing this problem. An dternative gpproach is
to use conceptua models capturing the intent of the Executable System
Specification and congtructed as part of the detigtical anadyss, together
with design of experiment methodology, to drive the mapping and then
perform confirmatory experiments on the results.

The remainder of this paper focuses on empiricd mechanisms for
producing optimal Executable System Architectures from Executable
Systemn Spexifications.
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4. Foundations of the Empirical Process
The empirica processin systems design has twin objectives:

i. The optimization of asystem for a particuar usage; and

ii.  The optimization of the design process, with spedidization for
producing different systems.

Our mgor objective in this paper is the optimization of systems at the
platform leve, given a specific objective function (such as, maximize
performance, minimize power). The scientific method is about rejecting
hypotheses using a rational, data driven decision making process. One
of the chalenges in making decisons in this engineering domain is the
complexity of modern super systems [11] and identifying patterns in,
and making sense of, the potentidly billions of pieces of data collected
from hundreds of unique sources of measurement of platform activity
and latency, avalable from the slicon and smulation. To address the
latter problem we need to enligt the capability of multivariate satistics to
reduce raw data to measures of relevant and evauative factors and,
even more desirably, elucidating and reductive (abstract) concepts.



On the optimization sde, there are many ways to construct objective
functions. The clasicd way is to track event frequencies and/or
latencies and to congtruct ad hoc functions based on functionaly related
events, such as CPU events, bus and bus-bridge events, memory
events, device events, etc. A more systematic way is to use the
multivariate gatigtics to help formulate dependence relations based on
abstract concepts and more concrete factors derived from the
interpretation of highly correlated events measured during Smulaion or
slicon activity. Both gpproaches are described below.

based, behavioura description to physica behaviour, the information
required for the Interpretation Table — typicdly constant functions but
sometimes more complex — is dosdy guarded. Having set the binding
functions, confirmatory experiments need to be undertaken to vdidate
the settings againgt either an RTL reference smulation or data sourced
from the dlicon, preferably the later. This process is surprisngly
complex and requires the same detistical approach as is required for
sdientificaly driven empiricd investigation — this is described below.

Since the precise physica associaion of an event with some circuit
implementation that it modes is rot necessarily obvious and, in many
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4.1 Event-Based, Objective Functions

In an event driven smulaion environment, an objective function can be
expressed as a function whose parameters are functions each
characterizing contributions to the objective function of one of the
components congtituting the system, viz. CPUs, buses, bus bridges,
memories and peripherd devices. The parameter functions themsdlves
have parameters that are functions of smulation event types sourced
from the various event activities that occur in aVSP during smulation. In
generd, an objective function will have the following form:

Fundamentdly, an objective function is a function of functions of
functions of events.

A smple way to visudize and compute an objective function is to build
an interpretation table, asin Table 1, below.

These tables are large and even though the Event Bindings are smple
to implement, typicaly a pointer to a function and a history buffer of
events, the extraction of data from register transfer (RT) models or
representative samples of the dlicon is difficult, time consuming and
ubject to experimental errors. The ingbility to map an event in a
behaviourd modd to an observable data point in the slicon or RT
mode further confounds the building of accurate tables.

Events, in event-based smulation, are associated with aggregate
underlying behaviour of the circuits that the semantics of events are
intended to describe. The number sources of Event Types generated by
al types of components in a complex platform may number in the
hundreds; the number sources of Events |nstances

(events caused by the smulaion of ingtances of typed components
ingantiated in a plaform) numbers in the thousands, possbly many
thousands. Since component ingtances, even though morphologically
smilar or identica, may have different dectronic ingantiations and be
affected by locd circuit connectivity, the objective function table may
reman large. To set appropriate Event Bindings for entries in the
Objective Function Table, the knowledge and kills of the slicon
vendors are required. Even where there is a clear path from the event-
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cases, unlikely to be independent of circuit effects associated with other
events. The ascription of locd physca semantics to an event ismorein
the nature of a verigmilitude The higher the leve of event-based,
behavioura abstraction, in generd, the wesker is the physica (or
structurdl) connection to implementation. This is a good thing for high
performance modeling and, with forethought, does not compromise
timing accuracy a an agreed level of granularity — say clock-cydelevel.
However, it does mean that more sophisticated mechanisms are
required to efficiently predict aggregate underlying hardware concepts,
such as power. In addition, various event types and instances may
corrlate highly across a variety of behaviours - for ingtance, cache
misses with processor initiated bus traffic, data path staling and power
consumption. The dimination of dependence between event ingtance
sources, that are the potential independent varidbles in a datistica
andysis, sould have the effect of condensing the number of variables
required to explain a behaviour, or to be used in the prediction of
behaviour as well as reduce the propensty for over estimation using
data extracted from these models.

The first exploratory endeavour will use Factor Andyss; the predictive
endeavour will use Structurd Equation Modding; and findly, systemetic
experimentation across various candidate systems to determine the
optimal system will use Design of Experiment methodology.

4.2 Factor and Concept Based Explanatory
Functions

The intent is to use the multivariate statistica technique called Factor
Andyss to reduce the number of variables needed to explain the
patterns in the collected smulation data. Factor analysis groups highly
correlated Event Instance sources (variables) so that they can be treated
as single entities — called Factors. The factors are subsequently used in
another dtatistical technique called Structurd Equation Modeling to test
whether a constructed set of equations (relationships) whose dependent
variables are known as Concepts and whose independent variables are
factors and concepts provides a datigtically adequate description




(statistical model) of the observed data gathered from the VSP event
SOUrces.

42.1 Factor Analysis

Andyss of event-based smulation suffers from a surfeit of events to
employ as independent variables. Without knowing the relationship
amongst events, it is difficult to determine the extent of over- and under-
estimation of desired properties.

The objective of this work is to smultaneously consider dl variables
(events) from a smulation run and determine how each is related to al
others. The essence is each of the observed variables (events) is a
dependent variable that is a function of a linear combination of the
original variables (called Factors). The outcome is the ability to
form factors that maximize their explanation of the entire variable
set, resulting in a much smaller set of factors than the number of
the original variables. [3].

For example, a smulaion of a multi-core platform executing billions of
software ingtructions produces prodigious amounts of data from
potentialy thousands of event types and event ingtances (variables). It is
useful to be able to describe the dynamic operation of the software and
hardware condtituting the platform in terms of a much smdler, generd
st of explanatory factors A typicd sat of factors might be
performance, responsiveness, reserve capacity, power consumption and
cost, where each factor is a function of functions of events. The effect of
determining factors is to smplify the explanation process of the datain
terms that are useful. There is obvious high structure (corrdation) in
event data (for example cache miss, pending buffer access, bus
transaction, memory access) and this is the reason for the
appropriateness of factor andyss in seeking Smplifying explanations of
the patterns in the data. High correlations amongst a group of variables
indicates that an exemplar variable may be used in place of the rest of
the dements of the set, thereby reducing the number of variables used in
further andyss Similarly, for the grouping of highly correlated variables
a factor score can be computed, and an explanatory name given to the
factor that can be substituted for the origind variablesin further andysis.

varigble (event instance source) with the factor (known as the factor
loadings) indicates the degree to which the varidble is representative of
the factor.

4.2.1.1 Example of Ratiocinated Factors Explaining
Data from Simulation Experiments

Events arisng in asmulation may be measured in severd ways

Count per stimulus test over a selected set of stimulus tests (for
exanple the EEMBC [12] suite of software for various
embedded platform benchmarks)

Count per interva of time over a (st of) stimulus test(s)
Duration of an indicator event (such as pipeline sal) triggered by
a starter event (such as a D-Cache miss)

Highly correlated variables (Event Ingtances), having different measures,
have been tabulated and then explained in terms of factor names in
Table 2, below.

4.2.2 Factor Based Objective Functions -

Structural Equation Modeling

Structurd equation modding (SEM) is an extenson of multiveriate
factor andyss. The technique enables multiple relaionships between
dependent (concepts) and independent variables (factors) to be
examined dmultaneoudy. This is a confirmaory, rather than an
exploratory technique (cf factor analyss), in which a prescribed set of
relationships (equations) can be tested to determine if they are
significant. For example, a particular set of equations describing power
and performance can be tested againgt the smulation data to determine
whether it holds true a a sdected sgnificance leve (usudly 95% for
engineering and science analyses). An interesting issue here is that the
entire set of equations (dependent/concepts and independent/factors
varigbles) used to describe the patterns in the underlying data are
congtructed using ratiocination - Plato and Democritus lying in the same
bed! The techniques, even though empirical, are subject to the vagaries

Table 1: Type, Instance, Component & Event Bindings

Component
Typpes Component Component Event Objective Function Event Binding
e Instance Binding Binding
Binding
feru f araa 1156 72F f A 1156T 2F cacha inepuiet Const.ant function .
ARM 1156T 2F Function of a set of events associated
______ Reg0Access with an event type (eg cache hit) in a
f component instance of a known
ARM 1156T 2F 5pp component type
f s 1200 foe 1200, Constant function |
5C120 Function of a set of events associated
______ Branchmaken with an event type (eg Branch Taken) in
f SC1200 a component instance of a known
Lbp component type

Factor andysis programs identify factorsin order of Sgnificance. It isthe
reponshility of the andyst to determine what factors to retain
(dependent on dgnificance) and interpret/explan what the factor
represents in practice. In datistica terms, the correlation of each
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of human naming, imputation and omisson. The mechanian for
mitigating such highly probable biases is to condruct dternative,
competing sets of equations and subject these to the same confirmatory



andyds. And findly, comparing the models to determine the best fit to
the deta.

The equation et is derived from a st of cause-effect relaionships,
congructed purely by ratiocingtion, in which the factors derived in
Factor Andysis are independent variables (causes) that precede and
produce effects on (unobservable) Concepts. Concepts and causes
(factors) can be used in further cause-effect relationships (recursion is
impermissible). The focus of SEM is on the pattern of relationships
across event sources, not on the event sources themselves.

M { Coroet, }

where |
Conogdt, dfk+ kfac Fedoy . +d, + Q : K - Conoet, ¢
fa:l..fom

mec_dfc"' a l%e/ggp/(QEm\gsmoE\mgww)
ge~Ll.gam

Since ratiocinaion controls the conceptudization of the equation

Table 2. factor Semantics
Event Correlated Potential
Correlate Variables Factors M easur ement
Group (Model (Evaluative Methodology
Attributes) Dimension)
) CPU, D Count per stimulus
1 g:i:::’* D-Cache Memory Read/ test or time interval
Write Utilization
- CPU, D- Duration of D-
CPU, Pipeline |\ omory Read | Mem Read
Sl
Latency
CPU, D-Bus
Read
CPU, D-
Memory Read
DEV, Dev,, Interrupt Duration of Deva
2 Interrupt Service Latenc request
Request Y

formulation, it is warranted to return to the factor analysis results and
determine what variables should be regarded as redl indicators of each
factor and to ascribe a loading (corrélation) to those variables. The
attempt in this part of the process is to make variables indicators for one
factor only, unless ratiocination argues to the contrary. This has the
effect of reducing the number of termsin the linear equation describing a
factor. The same process can be applied to reduce the number and to
modify the loadings of factors on concepts and concepts on other

concepts in the sat of equations. It aso provides the key variables,
factors and concepts (dl of which are causa variables) that can be
manipulated during experimentation to produce desired effects on an
objective function. The use of the modified set of causal variablesin the
equation set requires an edimation of the reliability of each casud
variable as an indicator of its dependent variable.

A Concept is an abdtract entity that can be described as an effect
produced, functiondly and temporaly, by a set of causes (variables) and
other concepts. Concepts are neither directly nor perfectly meesured
but are approximately meesured by their causal variables. Some

Concepts used to describe complex eectronic platforms are given
below in terms of partid causd Factors. Concepts need to be
uncorrelated. However, it is clear that concepts may be correlated with
factors thet are variablesin another concept. An exampleis given below:
i.  Concept: Performance
Condtituent Factors: Device Interrupt Service Latency,
Memory Access Latency, Non OS ingtructions executed,
messages/packets processed from externd networks, multi-
media operations performed
ii.  Concept: Power consumption - Average
Condtituent Factors. technology, clock speeds, Memory
Utilization, bus transactions, memory accesses, pipeine
ddls, externd platform port activity
iii. Concept: Mobility Fit
Congtituent Concepts and Factors: Performance, Power,
Cogt, TTM
Now having a set of equations that describe, as a best ratiocination from
theory and observation, the structure of the originally observed data, the
model can be tested for its ability to produce unique edimates,
goodness of fit to the redl data, and reliability of the modd. Statidtically,
reliability of a variable, for instance, means the proportion of the Event
source (variable) that is free from random error. Relighility of observed
variables affects the rdiability of factors for which they are indicators
which in turn affects the reliability of concepts and from there the whole
modd. If the modd failsin any of these atributes, the mode will need to
be respecified and tested again. On acceptance of the model, each of its
constructs can be tested to strengthen or weaken the overdl confidence
in the fit of the modd. A smple rdiability indicator is, if loadings of
individud congtructs are found to be atisticdly insignificant, the model
needs respecification.
SUmmaizing:
To continue the Mohility Fit example, the SEM isin Equation 1.

5. Experimenting with System Ar chitectures
The empirical andysis o far has focused on explaining the operation of

CPerformance = d pfy .FDevI ntSerLatency + d pf, .FMemAcc&ssLatency + d pfa. I:NonOS| nstCnt + dpf4 e
Power = d MemUt|I|zat|on + d CIkCnt + d BusXactCnt + d PlpeStaIICnt + d pw, S
CMobilityFit = d TM + d CPerformance + dmfl.CPower

Equation 1: Structural Equation Model for Mobility Fit



complex system in terms of increasingly abstract factors and concepts.
The characterization power of the andysis relies on its ability to uncover
unobservable (latent) variables which raises the focus of understanding
to a more abstract conceptual level and endbles the system to be
condgdered as a whole (the SEM characterization), without regard to
hardware, software, mechanica or RF influences. However, the primary
event sources are just the data gathered from hardware, software and
the physical dements of the system.

The focus now changes to consider the use factors and concepts to
drive a systematic approach to experimentation in order to optimize
some objective function, presumable with parameters that are the
concepts and factors being varied to achieve that optimum. This is the
domain of Design and Andyss of Experiment methodology which is
described in this Section together with its relationship to factor andysis
and SEM technology.

5.1 Design and Analysis of Experiments
(DAE) M ethodology

This methodology provides a systematic way of designing, performing
and andyzing experiments (viz. tet or series of tests) in which
intentional changes are made to the input variables (factors and
concepts) of a process or system so that the reasons for changes
observed in the output (response) of the system may be observed
and identified[13].

Thefollowing is an outline of the experimenta design process.

i. Formulate the god (same as for factor andysis). An example of a
narow god: Minimize power consumption of a software
dgorithm running on platform A.

il.  Spedfy the objectives that will satisfy the god. The god is
effectively an SEM sat with outcomes affected by variables,
factors and concepts that have casua reaionships to the
outcomes.

Examples

+ Identify the measurable, continuous factors, including
interactions between factors, that affect mean power and
vaiahility in power,

+ Determine the optima setting of factors and the
interactions between factors that give minimum power
with minimum varighility.

Choose an appropriate experimental protocol  (essentidly
confirming the SEM modd), essentidly: Sample sze and
Protocol: Iterative experimentation, randomizing the experimental
tria order, Replication of experiment to reduce the effect of noise
(vaidhility).

Andyze the outcomes. There are three: determine the variables
that affect the mean peformance, varigbles that affect
performance variability, and varigble levels that achieve optimum
performance. Then determine whether further improvements are
possible.

The system under test is a VSP running various software programs —
these together with external stimuli form the operating conditions
driving the system to produce measurable responses. Programmed
systems are peculiar in that the software is an intringc part of the VSP
(by definition) and it also is part of the data set over which experiments
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are measured. System software - including operating systems, device
drivers, communications stacks, and applications - becomes so complex
that, in a given sysem (induding a VSP) subject to unpredictable
externa events (such as the arrival of a video packet during a DMA
event that is holding the datarbus of the DSP processor in a triple
processor system), the whole system has unpredictable but bounded
responses. Hence the requirement for measurement and andyss to
determine an SEM explanation of the observed data, and the use of the
SEM modd, inter dia in determining better bounds for system
behaviours.

In the DAE methodology, the variables that can be used to produce
system responses are many and varied. For example: cache organization
of disk block accesses in the disk controller, bus bandwidths, database
schema for storing information in cell phone middleware, 1&D-cache
size of each processor, dgorithm for audio echo cancellation, memory
latencies, etc. The ability to messure responses in a physical system is
somewhat limited by the technology used to build them, viz. if in slicon
then observability and controllability are poor, if in FPGA there is more
but till limited access. In contrast a V'SP has intrinsic observability and
contrallability and since it is a faithful facimile of the physica system (a
an agread leve of timing granularity) it is idedl for experimentation
purposes. The issue now becomes what to measure from the thousands
of measuring (event) sources available and what to ignore. The factor
andyss and SEM have dready addressed part of this problem, but it
dill requires many experiments and iterations through the flow to
determine for the concepts deemed important, what other concepts and
factors causdly relate to these, and then what are the loading of the
variables on the factors used in the SEM <&t

The DAE methodology rdlies on the ahility to vary varidbles (caled
manifest variables if directly manipulaable) in the system and observe
the results. It then prioritizes the results in terms of the variables (called
laent variable if they are factors and concepts) that have the most to
least importance in producing the observed effects. The effect of many
variables changing smultaneoudy (asin SEM) is afegture of DAE, since
it is the interactions between varidbles that often have the significant
effects on the observations. The datistica machinery to do this requires
the cdculaion of the main and interaction effects of variables/factors,
then determine which effects are sgnificant. An assumption here is that
the underlying data comes from a normd digtribution and there are
appropriate tests for determining whether this hypothesis holds. The
response of various concepts (and an overdl objective function) can be
plotted versus the sgnificant variables. If there are no interaction effects
between variables, the response surface will be linear wrt the varigbles.
Interaction effects produce higher-order polynomid response surfaces.
Lines of the same response vaue are known as contours and traversing
a contour will engble a determination of the most efficient set of
variables to produce that response (say video throughput dependent on
vaiables cache szess memory hierarchy latencies, clock speed,
MPEG2 dgorithm and frame rate). Maximizing or minimizing a regponse
looks for gaionary points (maximum, minimum and saddle-points) on
the response surface.

Regression models for predicting response, over the \arigtions of the
sgnificant varigbles, can be built. The predicted response from these
models can be compared with the actua responses to directly measure
from the system, by setting the variables gppropriately. In this way a
confidence interval for the mean response can be caculated and the
regresson model assessed as competent of incompetent. Incompetent



models require reformulation the response predictors and may fall back
through SEM and factor analysis to remedy the problems.

The find issues to discuss is what experiments are needed to efficiently
gather sufficient data to congtruct a competent response surface, given
the SEM andyss and the response function formulations. For an
expeiment involving v variables that will determine a response function,
where each variable can be set a a number of levels (values) (say |) and
tha number is common across dl variables, the number of unique
experiments required to cover the entire variable space is I'. This
number can be reduced dramaticdly using fectionad factoria designs
determined by the important main effects and their interactions. Having
determined the set of experiments to be performed, the order of the
experiments will need to be randomly determined if the smulation moded
has inbuilt randomized effects, such as noise on interconnects and small
changesin latencies.

Two forms of platform architecture experimentation are briefly
discussed. The first takes a structure aready characterized and changes
atributes of modules condituting the platform, such as cache size,
memory latency, and bus width. This is cadled mesomorphic (middie
structure) experimentation and it essentialy is for optimizing objective
functions of architectures that can be tuned parametricaly. The second,
cdled epimorphic architecture experimentation, takes the radicd,
conceptua view enabled by SEM andysis, and asks how can the
overd| dructure of the system (for instance, reducing the number of
processors from four to two) be modified to meet some objective.

5.2 Mesomorphic Architecture
Experimentation

This is essentidly architecture optimization by module tuning within a
well characterized platform. Since part of the SEM methodology is to
maintain the independence of (that is, to avoid correation amongst)
concepts, they become good candidates to drive objective functions and
they should always be significant factors. In practice, using concepts
such as performance and power in an objective function for optimizing
processor based, electronic systems does confound the objective
function since event source data, such as cachens, is theoreticaly (and
practicdly) an indicator for both concepts.

The objective is to run a set of experiments that will produce response
surfaces for response concepts expressed in the SEM equation set. For
example, an objective function for mobile devices might find the
response surface that maximizes performance and minimizes power
consumption. Each response concept will have factors and concepts
loading on it and each factor will have manifest variables loading on it.
We dready know that each variable, factor and concept is sgnificant for
some concept and/or the objective function.

Assume that the following manifest variables are the significant inputs to
our experiments. To smplify the example, two levels of vaue have been
chosen for each variable. The Table beow summarizes thisinformation.

There are 7 varisbles with 2 levels each requiring 2’ = 128 experiments
to fully characterize the VSP by computing, for each variable, its main
and interaction effects. If main effects and 2¢ order interactions are
deemed only to be significant, the experiments can be run on a fraction
of the full factorid design — in 16 experiments. If we consider diasing
some main order and 2 order effects, then 8 experiments may be
adequate. Randomization of experiment order and replication have no
effect on increasing datigtica sgnificance of results from smulation runs,
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unless random variability has been injected into the modd to increese its
regligtic behaviour.

Once the experiments have been performed, the expected outcome is
that optimd settings of the variables, to produce the desired concept
and objective function outcomes, will have been determined. This work
is mechanicd. Demongtrating that the SEM modd and the DAE modd
correspond with an acceptable level of dgnificance is regarded as
confirmation of the models.

Manifest Variable 2-Level Values Coded As
L1 Cache Sizes Small, Large -1, +1
(1&D)

MPEG 2 Algorithm Low Performance, High 1,41
Performance

Buses (1&D) Non-multiplexed, -1, +1
Multiplexed

Clock Frequency Low, High -1, +1

FPU Not-exists, Exists -1, +1

5.3 Epimorphic Architecture
Experimentation

Quite radical changes in VSP architecture may be envisaged, such as
reducing the number of processors, reconfiguration the memory
hierarchy, changing operating systems, etc. Even o, the overdl system
must befit for its designated task of contral in a product; this means that
the response concepts will be maintained. If we reflect back to mapping
abstract architectures to VSPs, the pure (SEM) concepts should be
devedloped for the highest level of abdtraction and then idedly be
invariant across the set of mappings of the abstract system to various
VSPs.

The objective in epimorphic architecture experimentation is to determine
whether there are dternate V SP structures that will have more desirable
responses when characterized usng SEM modds that maintain the
upper-level concepts but, through factor re-andyss and SEM modd

rebuilding, may have quite different loadings of variables on factors and
factors on concepts. The comparison will be over response surfaces
produced by each SEM mode when subjected to the experimentd
regimes outlined in Section 5.1.

The DAE part of epimorphic architecture experimentation is somewhat
different. The levels in some manifest variables will sdect various VSPs,
aong with other variables sdlecting parametric settings within the chosen
VSP, and the response will be across adl VSPs and al parameters
sdectable with the variables and factors that load on the invariant
conceptsin the set of SEM equation sets characterizing the V SPs.

This is an exciting outcome, The mapping of an abdract sysem to a
smdl st of VSP targets, that are sdlected systematicdly by the statistics
underlying DAE, enables the DAE equations to be used predictively
rather than just confirmatively (as with mesomorphic architecture). The
individua SEM equations describe how well a set of aostract concepts
can be redized usng a parameterized VSP. The DAE driven process
produces a set of regresson equations across and within target VSPs
that can be used to sdect suitable candidates from a broad range of
VSPs to be targets for the mappers of abstract systems such as those
described in Figures 3.



6. Evidencefor the Empirical Framework

Since the multivariate approach to experimentation is relatively new to
engineering, the avalable data concerning SECS experimentation
involves optimizing objective functions using intuitive experimentation,
driven by hypothesis formation and refutation [14]. The objective
functions are formulated as described in Section 4 —that is, event driven
responses without formal factor or concept explanations of the observed
behaviour. However, even this level of experimentation has yielded
impressive results.

The case studies below are both composites constructed from similar
projects across 2 companies, in each case.

6.1 New Architecture—Empirical
I ntervention

A typicdly (intuitively) designed commercia controller incorporated 6
sgna processors,l general purpose processor, 2 matrix switches,
arbitrated interconnection buses and bus bridges, complex memory
hierarchies with multiple DMA controllers, and many periphera devices.
Severd of the centra interconnects were multiplexed. It was unknown
whether the controller could meet throughput, response time or
processing headroom specifications.

In the norma engineering process, an iteratively andyzed and refined
verson of the intuitive desgn would be reduced to an implementation
(probably silicon) and the architecture subjected to trid post redization.
Higtorically, complex, intuitively designed controllers are respun 25+
times in order to iron-out the architectura, as wel as, the detailed
hardware design and hardware-software interaction decisions. A pretty
inefficient and very cogtly process. The estimated cost per architectural
respin is a couple of million dollars, split between the cogt of a new
mask set and the engineering needed to rectify problems discovered so
late in the design process.

The new architecturd design wes a centrd plank in each company’s
strategic new generation offering to its customers and prospects in a
highly competitive, globa market. A competitive differentiator would be
the early availability of a system to customers and prospects so that
software, to be sourced from the company, customers and 3¢ party
suppliers could be developed early. Accderating the development of
software is amajor competitive factor, since it dominates the engineering
effort and the critica development path for both a company and its
customers. It is a universa hope that if a prospect begins serious
software development using your V'SP, they would be likely to commit
to buying your silicon for the platform.

The origind design was modded as a VSP in mid 2004 with high
performance, timing accurate models which were heavily instrumented.
The experimentation began with representative, trid software loads
running on the processors. Severa mgjor architectural problems were
found rapidly: inadequate response times, insufficient traffic throughput
and insufficient processng headroom, amongst others. The VSP
architecture was extensvely and iteratively reworked with the each
iteration candidate being subjected to heavy experimentation and
measurement using the required software and input stimuli. The
rearchitecting took place within a sx month time frame. The find
architecture was radically departure from thet intuitively specified — 3
DSPs, 1 genera purpose processor (GPP), unmultiplexed buses,
smpler memory hierarchies and interconnect fabric — and met the
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throughput, response time, and processing headroom specifications.
This was dl done prior to commitment to silicon. The VSP is currently
being offered to customers and prospects to enable them to start on
software porting and development, 912 months before availability of
slicon — representing a TTM reduction near to 50%.

Even though the result is very good, there is no way of determining, by
usng informa techniques, whether the plaform is optimum for its
intended purpose. The next step is to engage the more formal techniques
outlined in this paper to try and achieve an optimd architecture.

6.2 Iterating Architectures Quantitatively
using VSPs

In 2003/2004, a VSP of a closely-coupled, triple core architecture
having 1x DSP, 2x GPP, a multilayered interconnect fabric, many bus
bridges and peripherd devices, was built and ddlivered to a customer
who then completed the VSP by adding dl required periphera devices
and tuning the architecture. The VSP pardlded an existing design for
which silicon was dready being produced, and was used for developing
tests suites, porting software, and to check the adequacy of the
architecture for itsintended purpose. The VSP was ddlivered to VaST's
customer’s customer 9 months in advance of the sllicon.

Twelve months later the next iterative architecture development was
due. The functiond specification required additiond computing cycles
for executing additiond software, and severd modified and new
peripheral devices. Two lines of investigetion were initiated, one deding
with processor microarchitecture modification to increase the CPU
clock frequency and the other to use the VSP to experiment with the
overdl platform architecture and determine what improvements were
available from that source.

The microarchitecture investigation yidded the reguirement for
microarchitecture  modifications to accommodate increased clock
frequencies — a task that was engineering intensive and would result in
an overdl 10% increese in plaform performance. The plaform
architecture experimentation yielded data indicaing a number of
sraightforward changes, deding, amongst other things, with memory
hierarchy and latency, that resulted in a more than 50% improvement in
performance.

The results were somewhat surprising to the investigators, since a triple
processor platform is regarded as processor centric. However, what the
data is saying is that microarchitecture improvements produce 2™ order
effects when placed in the context of systems platforms. This finding is
consgent with the industry data that the results of heroic engineering
efforts a the microarchitecture level are completely swamped by the
twin effects of overdl increased performance due to the underlying
semiconductor technology (for example, moving from 130nm to 90nm
technology) and the optimization of the plaform architecture itsdf
determined by quantitative experimentation with the mundane attributes
of architectures, such as memory hierarchies and latencies (including
cache), bus — bus bridge hierarchies and aggregate bandwidth and
latencies; etc.

Once again a surprising amount of optimization was yielded from basic
quantitative investigation. Once again, the ad hoc experimentation did
not look at the multi-factorid overdl platform optimization issue.



7. Summary, Ongoing and Future Work

It is clear tha such experimentation techniques should adways be
required part of any architect’s tool kit and job responshbility, idedly
prior to the commitment to an architecture, rather than as a post facto
clean-up endeavour.

Another aspect of architecture that will yild T order effects on the
overd| system is the forma experimentation with architecture, sructure
and dgorithmic efficiency of the most complex component of the system
— oftware. 1t will be very surprising if the systematic experimentation
with software, and the improved fit between the hardware architecture
and the software architecture, does not yield optimizations that will
eclipse the effect of the plaform and microarchitectures determined
separaely.

A framework has been presented for ad hoc (event data driven) and
systematic (concept driven) expeimentation. Most  engineering
experimentation, when it is done at dl, is of the former type where a
progressive st of intuitive experiments is performed, meesures taken
and further experiments formulated based on evidence from the prior
experiments. As can be seen from the experiences related in Section 6,
when peformed early in the engineering cycle this unstructured
gpproach can have a profound effect — even structurd, but it relies on
expert intuition and that, however profound, is subjective. When these
many hundreds of experiments are each structured to refute, with some
level of significance, well thought through hypotheses, a degree of
structure enters and the process accretes good attributes of the scientific
method.

The more dructured approach, based on datistics that elevates the
focus of system level considerations to more conceptua than operationa
concerns, followed by the systematic design of experiments offers anew
way to efficiently approach the task of reducing the experimenta effort
when conceptudizing new architectures optimized for some purpose.
The dternative is to perform thousands of ad hoc experiments driven by
intuition and success and failure — the school of architecture of hard
knocks. As yet there is little hard engineering result from the use of the
SEM based approach. However, we are working with customers,
especidly in the early architecturd phases, to see how the more
structured approach affects their engineering product, as well as the
efficacy of their engineering process. With severd globa companies,
across several market sectors, involved in the effort, it is exciting times
for empirical architecture.

Future work involves a pragmatic assessment of the effectiveness of the
empirica approach to the more conceptud aress of architecture
development. This will require severa projects (typical duration 12-18
months) to go through the process to gather sufficient data to be able to
report failure, success or progress. The second area of future work isto
aoply the same ddidicaly-driven quantitative processes to the
engineering process itsdf. The recognition that the DFD process of
Figure 2, which describes the early stages of the engineering process, is
structurally the same as the DFD of Figure 3A, which describes part of
an abdract system architecture, makes this an exciting and promising
fidd of invedtigation.
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