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ABSTRACT 
It is a profound dislocation to have reality replaced by models – that 
revolution is won, that blood spilt. The first radical changes in global 
companies that I have witnessed, attributable to the systems engineering 
and architecture Virtual System Prototype inflection point, occurred in 
2004. In these instances, the whole assumed order of architecture in the 
engineering process was tipped upside-down by a single set of 
quantitatively derived results that are turning out to be critical to each 
company’s ability to compete and win in its fiercely competitive market. 
These changes have accelerated in 2005. It is the most exciting time for 
us all to be part of the wholesale transformation of one of the 
fundamental engines of the last 50 years of economic growth – 
Embedded Software-Electronics Control Systems (Embedded SECS) 
design. The transformation is driven by necessity; the by-products are 
competitive advantage, speed of execution, quality, productivity, and 
ability to rapidly adapt to market and business conditions. There is no 
company, leader or laggard, who can afford to ignore this evidence and 
hope to survive. This paper addresses the quantitative development of 
embedded systems architectures - software, hardware, mechanical. 

Categories and Subject Descriptors 
B8 [Hardware - Performance & Reliability]: Performance analysis 
and design aids; C0 [Computer System Organization] General – 
System architectures, System specification methodology, 
Hardware/Software interfaces, Modeling of computer architecture; 
C2 [Computer Communication Networks] Network architecture & 
design – distributed networks; C3 [Special Purpose and 
Application Based Systems] Real-time and embedded system; C4 
[Performance of Systems] Measurement and modeling techniques; 
G3 [Probability and Statistics] Experimental design, Multivariate 
statistics.  

General Terms 
Design, Experimentation, Measurement, Performance. 

 
Keywords 
Quantitative systems architecture, system design process, mapping 
system architectures, empirical system design, event-based objective 
function, factor and concept based explanatory function, event data 
driven optimization, concept driven optimization, mesomorphic 
architecture, epimorphic architecture. 

1. Background and Motivation 
An empirical approach to composing optimal architectures for complex 
embedded systems is relatively rare. The use of physical systems to 
determine early architectural optimizations is clearly a non-sequitur. The 
complexity of processor centric, electronic systems that control modern 
gadgets (such as, cell phones, automobiles, base stations, consumer 
products) requires a systematic, as well as intuitive, approach to 
determining an optimal fit for the intended product. And in today’s 
environment, where a company’s engineering process is being used as a 
competitive advantage to dominate competition, the luxury of optimality, 
across cost, performance, power consumption, quality and time to 
market (TTM), has turned to a necessity.  

Historically, intuitive engineering architecture attempted to optimize 
systems using dimensions of performance (major) and cost (more or less 
minor). Since control system architects rarely understood, or had access 
to, the software that would run on their architectures, they produced 
conservative, often grossly over-engineered inventions that, when 
assessed using the now mandatory dimensions – major: cost and 
performance, average and peak power, TTM, quality; minor: 
programmability, manufacturability – were usually poor fits for the 
service required. The failure was due to lack of (i) necessary and 
sufficient data to determine optimality and, concomitantly, (ii) an 
empirical process that enabled quantitative decisions to drive the 
architecture specification process.  

The ability to support data-driven decision making early in the 
engineering process has been an underlying driver for building accurate 
models of an intended system. Then to perform many hundreds of 
experiments on successive models to determine an optimal system 
architecture, measured across agreed dimensions and for a particular 
product fit, required not just accurate models but also high performance 
models. The experiments that need to be performed require accurate 
models of successive physical systems (called Virtual Prototypes (VP)) 
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that can run whole systems of software (operating systems, drivers, 
communications stacks, middleware, and applications), together with 
other inputs and outputs (communications traffic, interrupts, video and 
audio) – the whole system enchilada is called a Virtual System 
Prototype (VSP). Data is typically collected from many probes inserted 
into the hardware models (electronic, mechanical, RF) and the actual 
software during the experiments. It is not unusual for one such 
experiment to run 100 billion instructions – less than 1 hour of simulation 
time using a high performance, timing accurate VSP. The remaining 
needs to enfranchise efficient experimentation are (a) availability of 
models to enable the construction of VSPs and (b) the tools to rapidly 
build the models and to construct the VSPs. 

An historical anecdote, even though VSPs – by definition high 
performance and timing accurate - are the foundations of empirical 
electronic systems architecture, their initial economically justified 
deployment has been for the development of software for real-time, 
critical control systems. As VSPs are deployed to determine 
architectural specification, we are seeing the nature of the architecture of 
electronic systems changing – the architecture of the software and the 
platform are the twin 1st orders of focus and processor 
microarchitecture no longer dominates systems, often having a 2nd or 3rd 
order influence. Architects are not likely to be just electronics or micro-
architecture engineers or computer scientists, but those engineers 
creating the middle, straddling the oft-thought binary software-hardware 
line of engineering competence. It is extraordinary to be a participant in 
this pervasive change, when quantitative experimentation is instituted as 
the key to building competent architectures, the results are usually 
unexpected, startling, and will rapidly transform the engineering 
processes and structure of the company.  

The paper will concentrate on the empirical process underlying data-
driven architectural decision making and the capabilities enabled when 
the ‘optimal’ architecture becomes the executable golden reference 
model driving the remainder of the system engineering process – in 
particular, the software development and the hardware design sub-
processes. We will use the genericized industrial examples to motivate 
the discussion. 

2. The Philosophy of Architecting Systems 
Like the two contemporary philosophy adversaries in Greece 2,400 
years ago, Democritus and Plato [1], today system architects are 
divided into two camps – the empiricists and the ratiocinators. The 
empiricists believe that fundamental truths are derived from observation 
within a quark-like atomic framework, the ratiocinators that fundamental 
truths are intuitively apprehended. This paper is firmly in Democritus’s 
camp and addresses the quantitative basis of decision making as 
fundamental to architecting ‘optimal’ systems. But Plato still has his 
voice! 

2.1 System Architecture as Ratiocination 
(Plato) 

There are common elements in the empirical and ratiocination frames of 
operation. Both use a basis of knowledge and both use reasoning. The 
stoic’s view of ratiocination was that seminal reasons were the impetus 
for animate motion [2]. In other words, the nature of a whole cannot be 
discovered by dividing it into its      component parts and studying each 

part by itself, that there is a qualitative, unquantifiable aspect to 
observation.  

Strong reflections of this philosophy are in evidence today with the 
architecting of systems being largely intuitive, qualitative activities. The 
tell-tale signs of this are the typical tools and methods used by system 
architects, sadly even of advanced technology products - spread sheets, 
adoption of under-examined legacy structures and requirements, non-
quantitative decision making criteria, qualitative Socratic argument, and 
drawing conclusions by deduction and induction derived from these 
activities.  

This approach guarantees incremental systems architecture driven from 
legacy systems. And has little probability of arriving at optimum 
solutions.  

2.2 System Architecture as Experimental 
Science (Democritus) 

Atomism is an analytic doctrine that teaches that systems can be 
discovered by dividing them into component parts and individually 
studying each part. And has as a premise that all observable changes are 
caused by actions of the individual parts. The indivisibility of the 
fundamental parts relates only to the syntactic and semantic structures 
used to specify and build systems. Then all systems are aggregates of 
juxtapositions of fundamental parts. In reverse, all systems are subject to 
quantitative analysis. Reasoning has to do with the meaning of the 

observations.  

This approach, if it systematically traverses the quantitative factors 
defining the space of likely architectures of the product 
underdevelopment, and undertaken using hypothesis refutation from 
Science, cannot guarantee an optimal solution, but will give quantitative 
reasons for rejecting, possibly, thousands of candidate architectures that 
were poorer than the selected architecture and, as in Science, provide 
peer groups with adequate data to further critique the architecture 
group’s recommended candidate for themselves. This is good science 
and engineering. This philosophy is actualized by employing modern 
analysis tools and methodologies – using VSPs as experimental 
vehicles, multivariate statistics to help drive decision making, and design 
of experiments to drive the experimental methodology. However, even 
with all of the power of factor analysis and structural equation modeling 
[3], making sense of the data remains in the domain of ratiocination – 
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Figure 1. Software-Electronics Control System (SECS) Engineering process
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but about the data best supporting or refuting the candidate 
explanations. [4] gives an interesting and enlightening introduction to the 
linkage between the theoretical/hypothetical and empirical facets of 
science (& engineering) from the perspective of the more recent 
practitioners of the philosophy of science.  

3. The Empirical Engineering Process 
A modern processor centric, SECS engineering process is depicted in 
Figure 1 and is an evolution of the process presented in [5]. Apart from 
the Business Requirements to Functional Requirements flow, where 
Functional Requirements are typically derived manu et mente using Use 
Cases operating on the Business Requirements, the rest of the activities 
in the engineering process are increasingly being characterized and 

driven by empirical methodologies and is the focus for increasing 
automation. The Executable System Architecture (VSP), that results 
from a mapping of the Executable System Specification, drives both 
software development and hardware design - two subprocesses that are 
completely overlapped in time. The final stages are integration and full 
verification of the VSP, followed by integration of the same software as 
verified in the integrated VSP on the silicon platform followed by full 
verification of the silicon system. The concurrent software-hardware 
design and development, followed by the VSP and silicon integration 
and test steps of the process are relatively well known and are not 
discussed.  

3.1 The System Specification and 
Architecture Derivation process 

A less iconic view of the left-side subprocess of Figure 1 is shown in 
Figure 2 - derived from [6].  

The path from an Executable System Specification to an Executable 
System Architecture is not straight, as can be seen in the coloured 
section of Figure 2. The starting point to derive an Executable System 

Specification is the Function Requirement. A Use Case analysis 
naturally, although not yet automatically, leads to a Data Flow Diagram 
representation of the Executable System Specification (see Fig. 3A 
below). There is also a two stage mapping process that results in a 
Virtual System Prototype and a final mapping process that results in an 
optimal VSP.  

The upper part of Figure 2 shows essentially a manual subprocess. The 
lower part - the subprocess for mapping Executable System 
Specifications to Executable System Architectures – is the focus of the 
statistical analysis that drives the empirical approach to architecture. 
There is no well-accepted flow at the architecture level and it is an 
objective to characterize a standard flow together with the statistical 
machinery to enable the entire decision making to be quantitatively 

driven.  

The next step is to determine what Executable System Specifications 
and Architectures are. 

3.2 Source Specifications and Target 
Architectures (VSP) 

To constrain the domain of the task of producing optimal systems from 
abstract specifications, specific models are used to describe Executable 
System Specifications and Executable System Architectures / Virtual 
System Prototypes. These are described below. 

3.2.1 Executable System Specification 
The Executable System Specification, derived by refinement from the 
Functional Requirements is an abstract, executable model that defines 
the hierarchical system structure recursively, in terms of tasks (modules 
with ports) and their intercommunications, along with (i) task behaviour 
and timing within tasks and (ii) the cause-effect and timing relationship of 
communications between tasks. A natural language document describing 
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structure can be derived from the executable model but the behavioural 
description lies with the executional characteristics of the model that are, 
necessarily, defined in the Functional Requirements. The operational 
behaviour of the tasks is likely to be described in a number of 
heterogeneous notations such as MatLab/Simulink, UML, C/C++, 
functions, etc. depending on the nature of the functions to be computed, 
such as solving a set of differential equations, iterating through a set of a 
control algorithm, or computing a filter function. A typical executable 
system specification appears in Figure 3A.  

There is a high degree of concurrency in such systems and the degree of 
simultaneity is a factor of both task behaviour and timing, and 
communications and the cause-effect relationships carried by each 
communication. DFDs, at this stage, are abstract and carry little 
realization information apart from that implicit in the timing constraints 
associated with task behaviour and communications. For convenient 
mathematical treatment, the DFD can be reduced to at least one 
common specification notation – functions and forms [7],[8]. Without 
traversing the gory details of the notation, the diagram in Fig 3A reduces 
to the function description in Fig 3B that is well specified with a timing 
semantics [9] and tractable for execution and mathematical manipulation 
and reasoning [10].  

3.2.2 Executable System Architectures (VSP) 
During translation from abstraction to realization, abstract tasks in Figure 
3A (functions in Figure 3B) are able to be mapped to software tasks or 
hardware modules, having the same semantics and communications 
capability, and the communications are able to be mapped onto 
hardware communication channels and/or software communications 
structures (parameters in function calls, inter-process messages, etc.). It 
is not true that all abstract (or software/algorithmic) constructs map 
sensibly to hardware implementations – for instance: recursion, dynamic 
process/data creation and destruction, self-modifying code. 

 Figure 4 shows a typical virtual prototype (hardware) target for the 
mapping of an abstract cell phone system. In an ideal mapping process, 
like that described in the coloured subprocess in Figure 2 perhaps, the 
VP in Figure 4 would be one of many targets involved in empirically 
determining an optimal VSP.  

In a mapping from an abstract system into a VSP, the goodness of the 
mapped VSP can be judged against the objective functions defined for 
the abstract system by measuring the potentially thousands of responses 
of the VSP while executing the mapped software and subject to the 
system inputs, and then analyzing them using multivariate statistics. A 
somewhat ad hoc process, but, nonetheless, scientific and empirical 
when guided by hypothesis construction and refutation. The potential 
number of experiments is clearly enormous and again the statistics of the 
design and analysis of experiments, together with the multivariate 
statistics is helpful in managing this problem. An alternative approach is 
to use conceptual models capturing the intent of the Executable System 
Specification and constructed as part of the statistical analysis, together 
with design of experiment methodology, to drive the mapping and then 
perform confirmatory experiments on the results.  

The remainder of this paper focuses on empirical mechanisms for 
producing optimal Executable System Architectures from Executable 
System Specifications.  

 

 

4. Foundations of the Empirical Process 
The empirical process in systems design has twin objectives: 

i. The optimization of a system for a particular usage; and 

ii. The optimization of the design process, with specialization for 
producing different systems. 

Our major objective in this paper is the optimization of systems at the 
platform level, given a specific objective function (such as, maximize 
performance, minimize power). The scientific method is about rejecting 
hypotheses using a rational, data driven decision making process. One 
of the challenges in making decisions in this engineering domain is the 
complexity of modern super systems [11] and identifying patterns in, 
and making sense of, the potentially billions of pieces of data collected 
from hundreds of unique sources of measurement of platform activity 
and latency, available from the silicon and simulation. To address the 
latter problem we need to enlist the capability of multivariate statistics to 
reduce raw data to measures of relevant and evaluative factors and, 
even more desirably, elucidating and reductive (abstract) concepts.  

Figure 3B: An Executable Functional Description of Fig. 3A 

Figure 3A: Data-Flow Description (DFD) of an Executable 
System Specification 
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Figure 4: A Typical Virtual System Prototype for Mobility  
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On the optimization side, there are many ways to construct objective 
functions. The classical way is to track event frequencies and/or 
latencies and to construct ad hoc functions based on functionally related 
events, such as CPU events, bus and bus-bridge events, memory 
events, device events, etc. A more systematic way is to use the 
multivariate statistics to help formulate dependence relations based on 
abstract concepts and more concrete factors derived from the 
interpretation of highly correlated events measured during simulation or 
silicon activity. Both approaches are described below. 

4.1 Event-Based, Objective Functions 
In an event driven simulation environment, an objective function can be 
expressed as a function whose parameters are functions each 
characterizing contributions to the objective function of one of the 
components constituting the system, viz. CPUs, buses, bus bridges, 
memories and peripheral devices. The parameter functions themselves 
have parameters that are functions of simulation event types sourced 
from the various event activities that occur in a VSP during simulation. In 
general, an objective function will have the following form:  

Fundamentally, an objective function is a function of functions of 
functions of events.  

A simple way to visualize and compute an objective function is to build 
an interpretation table, as in Table 1, below. 

These tables are large and even though the Event Bindings are simple 
to implement, typically a pointer to a function and a history buffer of 
events, the extraction of data from register transfer (RT) models or 
representative samples of the silicon is difficult, time consuming and 
subject to experimental errors. The inability to map an event in a 
behavioural model to an observable data point in the silicon or RT 
model further confounds the building of accurate tables. 

Events, in event-based simulation, are associated with aggregate 
underlying behaviour of the circuits that the semantics of events are 
intended to describe. The number sources of Event Types generated by 
all types of components in a complex platform may number in the 
hundreds; the number sources of Events Instances  

(events caused by the simulation of instances of typed components 
instantiated in a platform) numbers in the thousands, possibly many 
thousands. Since component instances, even though morphologically 
similar or identical, may have different electronic instantiations and be 
affected by local circuit connectivity, the objective function table may 
remain large. To set appropriate Event Bindings for entries in the 
Objective Function Table, the knowledge and skills of the silicon 
vendors are required. Even where there is a clear path from the event-

based, behavioural description to physical behaviour, the information 
required for the Interpretation Table – typically constant functions but 
sometimes more complex – is closely guarded. Having set the binding 
functions, confirmatory experiments need to be undertaken to validate 
the settings against either an RTL reference simulation or data sourced 
from the silicon, preferably the latter. This process is surprisingly 
complex and requires the same statistical approach as is required for 
scientifically driven empirical investigation – this is described below.  

Since the precise physical association of an event with some circuit 
implementation that it models is not necessarily obvious and, in many 

cases, unlikely to be independent of circuit effects associated with other 
events. The ascription of local physical semantics to an event is more in 
the nature of a verisimilitude. The higher the level of event-based, 
behavioural abstraction, in general, the weaker is the physical (or 
structural) connection to implementation. This is a good thing for high 
performance modeling and, with forethought, does not compromise 
timing accuracy at an agreed level of granularity – say clock-cycle level. 
However, it does mean that more sophisticated mechanisms are 
required to efficiently predict aggregate underlying hardware concepts, 
such as power. In addition, various event types and instances may 
correlate highly across a variety of behaviours - for instance, cache 
misses with processor initiated bus traffic, data path stalling and power 
consumption. The elimination of dependence between event instance 
sources, that are the potential independent variables in a statistical 
analysis, should have the effect of condensing the number of variables 
required to explain a behaviour, or to be used in the prediction of 
behaviour as well as reduce the propensity for over estimation using 
data extracted from these models.  

The first exploratory endeavour will use Factor Analysis; the predictive 
endeavour will use Structural Equation Modeling; and finally, systematic 
experimentation across various candidate systems to determine the 
optimal system will use Design of Experiment methodology. 

4.2 Factor and Concept Based Explanatory 
Functions 

The intent is to use the multivariate statistical technique called Factor 
Analysis to reduce the number of variables needed to explain the 
patterns in the collected simulation data. Factor analysis groups highly 
correlated Event Instance sources (variables) so that they can be treated 
as single entities – called Factors. The factors are subsequently used in 
another statistical technique called Structural Equation Modeling to test 
whether a constructed set of equations (relationships) whose dependent 
variables are known as Concepts and whose independent variables are 
factors and concepts provides a statistically adequate description 
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(statistical model) of the observed data gathered from the VSP event 
sources.  

4.2.1 Factor Analysis 
Analysis of event-based simulation suffers from a surfeit of events to 
employ as independent variables. Without knowing the relationship 
amongst events, it is difficult to determine the extent of over- and under-
estimation of desired properties. 

The objective of this work is to simultaneously consider all variables 
(events) from a simulation run and determine how each is related to all 
others. The essence is each of the observed variables (events) is a 
dependent variable that is a function of a linear combination of the 
original variables (called Factors). The outcome is the ability to 
form factors that maximize their explanation of the entire variable 
set, resulting in a much smaller set of factors than the number of 
the original variables. [3]. 

For example, a simulation of a multi-core platform executing billions of 
software instructions produces prodigious amounts of data from 
potentially thousands of event types and event instances (variables). It is 
useful to be able to describe the dynamic operation of the software and 
hardware constituting the platform in terms of a much smaller, general 
set of explanatory factors. A typical set of factors might be: 
performance, responsiveness, reserve capacity, power consumption and 
cost, where each factor is a function of functions of events. The effect of 
determining factors is to simplify the explanation process of the data in 
terms that are useful. There is obvious high structure (correlation) in 
event data (for example cache miss, pending buffer access, bus 
transaction, memory access) and this is the reason for the 
appropriateness of factor analysis in seeking simplifying explanations of 
the patterns in the data. High correlations amongst a group of variables 
indicates that an exemplar variable may be used in place of the rest of 
the elements of the set, thereby reducing the number of variables used in 
further analysis. Similarly, for the grouping of highly correlated variables 
a factor score can be computed, and an explanatory name given to the 
factor that can be substituted for the original variables in further analysis.  

Factor analysis programs identify factors in order of significance. It is the 
responsibility of the analyst to determine what factors to retain 
(dependent on significance) and interpret/explain what the factor 
represents in practice. In statistical terms, the correlation of each 

variable (event instance source) with the factor (known as the factor 
loadings) indicates the degree to which the variable is representative of 
the factor. 

4.2.1.1 Example of Ratiocinated Factors Explaining 
Data from Simulation Experiments 

Events arising in a simulation may be measured in several ways: 

• Count per stimulus test over a selected set of stimulus tests (for 
example: the EEMBC [12] suite of software for various 
embedded platform benchmarks) 

• Count per interval of time over a (set of) stimulus test(s) 
• Duration of an indicator event (such as pipeline stall) triggered by 

a starter event (such as a D-Cache miss) 
 
Highly correlated variables (Event Instances), having different measures, 
have been tabulated and then explained in terms of factor names in 
Table 2, below.  

4.2.2 Factor Based Objective Functions - 
Structural Equation Modeling 

Structural equation modeling (SEM) is an extension of multivariate 
factor analysis. The technique enables multiple relationships between 
dependent (concepts) and independent variables (factors) to be 
examined simultaneously. This is a confirmatory, rather than an 
exploratory technique (cf factor analysis), in which a prescribed set of 
relationships (equations) can be tested to determine if they are 
significant. For example, a particular set of equations describing power 
and performance can be tested against the simulation data to determine 
whether it holds true at a selected significance level (usually 95% for 
engineering and science analyses). An interesting issue here is that the 
entire set of equations (dependent/concepts and independent/factors 
variables) used to describe the patterns in the underlying data are 
constructed using ratiocination - Plato and Democritus lying in the same 
bed! The techniques, even though empirical, are subject to the vagaries 

of human naming, imputation and omission. The mechanism for 
mitigating such highly probable biases is to construct alternative, 
competing sets of equations and subject these to the same confirmatory 

Table 1: Type, Instance, Component & Event Bindings 
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analysis. And finally, comparing the models to determine the best fit to 
the data.  

The equation set is derived from a set of cause-effect relationships, 
constructed purely by ratiocination, in which the factors derived in 
Factor Analysis are independent variables (causes) that precede and 
produce effects on (unobservable) Concepts. Concepts and causes 
(factors) can be used in further cause-effect relationships (recursion is 
impermissible). The focus of SEM is on the pattern of relationships 
across event sources, not on the event sources themselves.  

Since ratiocination controls the conceptualization of the equation 

formulation, it is warranted to return to the factor analysis results and 
determine what variables should be regarded as real indicators of each 
factor and to ascribe a loading (correlation) to those variables. The 
attempt in this part of the process is to make variables indicators for one 
factor only, unless ratiocination argues to the contrary. This has the 
effect of reducing the number of terms in the linear equation describing a 
factor. The same process can be applied to reduce the number and to 
modify the loadings of factors on concepts and concepts on other 

concepts in the set of equations. It also provides the key variables, 
factors and concepts (all of which are causal variables) that can be 
manipulated during experimentation to produce desired effects on an 
objective function. The use of the modified set of causal variables in the 
equation set requires an estimation of the reliability of each casual 
variable as an indicator of its dependent variable.  

A Concept is an abstract entity that can be described as an effect 
produced, functionally and temporally, by a set of causes (variables) and 
other concepts. Concepts are neither directly nor perfectly measured 
but are approximately measured by their causal variables. Some  

Concepts used to describe complex electronic platforms are given 
below in terms of partial causal Factors. Concepts need to be 
uncorrelated. However, it is clear that concepts may be correlated with 
factors that are variables in another concept. An example is given below: 

i. Concept: Performance  
• Constituent Factors: Device Interrupt Service Latency, 

Memory Access Latency, Non OS instructions executed, 
messages/packets processed from external networks, multi-
media operations performed  

ii. Concept: Power consumption - Average  
• Constituent Factors: technology, clock speeds, Memory 

Utilization, bus transactions, memory accesses, pipeline 
stalls, external platform port activity 

iii. Concept: Mobility Fit 
• Constituent Concepts and Factors: Performance, Power, 

Cost, TTM 
Now having a set of equations that describe, as a best ratiocination from 
theory and observation, the structure of the originally observed data, the 
model can be tested for its ability to produce unique estimates, 
goodness of fit to the real data, and reliability of the model. Statistically, 
reliability of a variable, for instance, means the proportion of the Event 
source (variable) that is free from random error. Reliability of observed 
variables affects the reliability of factors for which they are indicators 
which in turn affects the reliability of concepts and from there the whole 
model. If the model fails in any of these attributes, the model will need to 
be respecified and tested again. On acceptance of the model, each of its 
constructs can be tested to strengthen or weaken the overall confidence 
in the fit of the model. A simple reliability indicator is, if loadings of 
individual constructs are found to be statistically insignificant, the model 
needs respecification.  

Summarizing: 

To continue the Mobility Fit example, the SEM is in Equation 1. 

5. Experimenting with System Architectures  
The empirical analysis so far has focused on explaining the operation of 
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complex system in terms of increasingly abstract factors and concepts. 
The characterization power of the analysis relies on its ability to uncover 
unobservable (latent) variables which raises the focus of understanding 
to a more abstract conceptual level and enables the system to be 
considered as a whole (the SEM characterization), without regard to 
hardware, software, mechanical or RF influences. However, the primary 
event sources are just the data gathered from hardware, software and 
the physical elements of the system.  

The focus now changes to consider the use factors and concepts to 
drive a systematic approach to experimentation in order to optimize 
some objective function, presumable with parameters that are the 
concepts and factors being varied to achieve that optimum. This is the 
domain of Design and Analysis of Experiment methodology which is 
described in this Section together with its relationship to factor analysis 
and SEM technology. 

5.1 Design and Analysis of Experiments 
(DAE) Methodology 

This methodology provides a systematic way of designing, performing 
and analyzing experiments (viz. test or series of tests) in which 
intentional changes are made to the input variables (factors and 
concepts) of a process or system so that the reasons for changes 
observed in the output (response) of the system may be observed 
and identified[13]. 

The following is an outline of the experimental design process.  

i. Formulate the goal (same as for factor analysis). An example of a 
narrow goal: Minimize power consumption of a software 
algorithm running on platform A.  

ii. Specify the objectives that will satisfy the goal. The goal is 
effectively an SEM set with outcomes affected by variables, 
factors and concepts that have casual relationships to the 
outcomes. 
• Examples:  

+ Identify the measurable, continuous factors, including 
interactions between factors, that affect mean power and 
variability in power,  

+ Determine the optimal setting of factors and the 
interactions between factors that give minimum power 
with minimum variability. 

iii. Choose an appropriate experimental protocol (essentially 
confirming the SEM model), essentially: Sample size and 
Protocol: Iterative experimentation, randomizing the experimental 
trial order, Replication of experiment to reduce the effect of noise 
(variability).  

iv. Analyze the outcomes. There are three: determine the variables 
that affect the mean performance, variables that affect 
performance variability, and variable levels that achieve optimum 
performance. Then determine whether further improvements are 
possible. 

The system under test is a VSP running various software programs – 
these together with external stimuli form the operating conditions 
driving the system to produce measurable responses. Programmed 
systems are peculiar in that the software is an intrinsic part of the VSP 
(by definition) and it also is part of the data set over which experiments 

are measured. System software - including operating systems, device 
drivers, communications stacks, and applications - becomes so complex 
that, in a given system (including a VSP) subject to unpredictable 
external events (such as the arrival of a video packet during a DMA 
event that is holding the data-bus of the DSP processor in a triple 
processor system), the whole system has unpredictable but bounded 
responses. Hence the requirement for measurement and analysis to 
determine an SEM explanation of the observed data, and the use of the 
SEM model, inter alia, in determining better bounds for system 
behaviours. 

In the DAE methodology, the variables that can be used to produce 
system responses are many and varied. For example: cache organization 
of disk block accesses in the disk controller, bus bandwidths, database 
schema for storing information in cell phone middleware, I&D-cache 
size of each processor, algorithm for audio echo cancellation, memory 
latencies, etc. The ability to measure responses in a physical system is 
somewhat limited by the technology used to build them, viz. if in silicon 
then observability and controllability are poor, if in FPGA there is more 
but still limited access. In contrast a VSP has intrinsic observability and 
controllability and since it is a faithful facsimile of the physical system (at 
an agreed level of timing granularity) it is ideal for experimentation 
purposes. The issue now becomes what to measure from the thousands 
of measuring (event) sources available and what to ignore. The factor 
analysis and SEM have already addressed part of this problem, but it 
still requires many experiments and iterations through the flow to 
determine for the concepts deemed important, what other concepts and 
factors causally relate to these, and then what are the loading of the 
variables on the factors used in the SEM set. 

The DAE methodology relies on the ability to vary variables (called 
manifest variables if directly manipulatable) in the system and observe 
the results. It then prioritizes the results in terms of the variables (called 
latent variable if they are factors and concepts) that have the most to 
least importance in producing the observed effects. The effect of many 
variables changing simultaneously (as in SEM) is a feature of DAE, since 
it is the interactions between variables that often have the significant 
effects on the observations. The statistical machinery to do this requires 
the calculation of the main and interaction effects of variables/factors, 
then determine which effects are significant. An assumption here is that 
the underlying data comes from a normal distribution and there are 
appropriate tests for determining whether this hypothesis holds. The 
response of various concepts (and an overall objective function) can be 
plotted versus the significant variables. If there are no interaction effects 
between variables, the response surface will be linear wrt the variables. 
Interaction effects produce higher-order polynomial response surfaces. 
Lines of the same response value are known as contours and traversing 
a contour will enable a determination of the most efficient set of 
variables to produce that response (say video throughput dependent on 
variables cache sizes, memory hierarchy latencies, clock speed, 
MPEG2 algorithm and frame rate). Maximizing or minimizing a response 
looks for stationary points (maximum, minimum and saddle-points) on 
the response surface.  

Regression models for predicting response, over the variations of the 
significant variables, can be built. The predicted response from these 
models can be compared with the actual responses to directly measure 
from the system, by setting the variables appropriately. In this way a 
confidence interval for the mean response can be calculated and the 
regression model assessed as competent of incompetent. Incompetent 
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models require reformulation the response predictors and may fall back 
through SEM and factor analysis to remedy the problems.  

The final issues to discuss is what experiments are needed to efficiently 
gather sufficient data to construct a competent response surface, given 
the SEM analysis and the response function formulations. For an 
experiment involving v variables that will determine a response function, 
where each variable can be set at a number of levels (values) (say l) and 
that number is common across all variables, the number of unique 
experiments required to cover the entire variable space is lv. This 
number can be reduced dramatically using fractional factorial designs 
determined by the important main effects and their interactions. Having 
determined the set of experiments to be performed, the order of the 
experiments will need to be randomly determined if the simulation model 
has inbuilt randomized effects, such as noise on interconnects and small 
changes in latencies.  

Two forms of platform architecture experimentation are briefly 
discussed. The first takes a structure already characterized and changes 
attributes of modules constituting the platform, such as cache size, 
memory latency, and bus width. This is called mesomorphic (middle 
structure) experimentation and it essentially is for optimizing objective 
functions of architectures that can be tuned parametrically. The second, 
called epimorphic architecture experimentation, takes the radical, 
conceptual view enabled by SEM analysis, and asks how can the 
overall structure of the system (for instance, reducing the number of 
processors from four to two) be modified to meet some objective.  

5.2 Mesomorphic Architecture 
Experimentation 

This is essentially architecture optimization by module tuning within a 
well characterized platform. Since part of the SEM methodology is to 
maintain the independence of (that is, to avoid correlation amongst) 
concepts, they become good candidates to drive objective functions and 
they should always be significant factors. In practice, using concepts 
such as performance and power in an objective function for optimizing 
processor based, electronic systems does confound the objective 
function since event source data, such as cachemiss, is theoretically (and 
practically) an indicator for both concepts.  

The objective is to run a set of experiments that will produce response 
surfaces for response concepts expressed in the SEM equation set. For 
example, an objective function for mobile devices might find the 
response surface that maximizes performance and minimizes power 
consumption. Each response concept will have factors and concepts 
loading on it and each factor will have manifest variables loading on it. 
We already know that each variable, factor and concept is significant for 
some concept and/or the objective function. 

Assume that the following manifest variables are the significant inputs to 
our experiments. To simplify the example, two levels of value have been 
chosen for each variable. The Table below summarizes this information. 

There are 7 variables with 2 levels each requiring 27 = 128 experiments 
to fully characterize the VSP by computing, for each variable, its main 
and interaction effects. If main effects and 2nd order interactions are 
deemed only to be significant, the experiments can be run on a fraction 
of the full factorial design – in 16 experiments. If we consider aliasing 
some main order and 2nd order effects, then 8 experiments may be 
adequate. Randomization of experiment order and replication have no 
effect on increasing statistical significance of results from simulation runs, 

unless random variability has been injected into the model to increase its 
realistic behaviour. 

Once the experiments have been performed, the expected outcome is 
that optimal settings of the variables, to produce the desired concept 
and objective function outcomes, will have been determined. This work 
is mechanical. Demonstrating that the SEM model and the DAE model 
correspond with an acceptable level of significance is regarded as 
confirmation of the models.  

Manifest Variable 2-Level Values Coded As 

L1 Cache Sizes 
(I&D) 

Small, Large -1, +1 

MPEG 2 Algorithm Low Performance, High 
Performance 

-1, +1 

Buses (I&D) Non-multiplexed, 
Multiplexed 

-1, +1 

Clock Frequency Low, High -1, +1 

FPU Not-exists, Exists -1, +1 

5.3 Epimorphic Architecture 
Experimentation 

Quite radical changes in VSP architecture may be envisaged, such as: 
reducing the number of processors, reconfiguration the memory 
hierarchy, changing operating systems, etc. Even so, the overall system 
must be fit for its designated task of control in a product; this means that 
the response concepts will be maintained. If we reflect back to mapping 
abstract architectures to VSPs, the pure (SEM) concepts should be 
developed for the highest level of abstraction and then ideally be 
invariant across the set of mappings of the abstract system to various 
VSPs. 

The objective in epimorphic architecture experimentation is to determine 
whether there are alternate VSP structures that will have more desirable 
responses when characterized using SEM models that maintain the 
upper-level concepts but, through factor re-analysis and SEM model 
rebuilding, may have quite different loadings of variables on factors and 
factors on concepts. The comparison will be over response surfaces 
produced by each SEM model when subjected to the experimental 
regimes outlined in Section 5.1.  

The DAE part of epimorphic architecture experimentation is somewhat 
different. The levels in some manifest variables will select various VSPs, 
along with other variables selecting parametric settings within the chosen 
VSP, and the response will be across all VSPs and all parameters 
selectable with the variables and factors that load on the invariant 
concepts in the set of SEM equation sets characterizing the VSPs.  

This is an exciting outcome, The mapping of an abstract system to a 
small set of VSP targets, that are selected systematically by the statistics 
underlying DAE, enables the DAE equations to be used predictively 
rather than just confirmatively (as with mesomorphic architecture). The 
individual SEM equations describe how well a set of abstract concepts 
can be realized using a parameterized VSP. The DAE driven process 
produces a set of regression equations across and within target VSPs 
that can be used to select suitable candidates from a broad range of 
VSPs to be targets for the mappers of abstract systems such as those 
described in Figures 3.  
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6. Evidence for the Empirical Framework 
Since the multivariate approach to experimentation is relatively new to 
engineering, the available data concerning SECS experimentation 
involves optimizing objective functions using intuitive experimentation, 
driven by hypothesis formation and refutation [14]. The objective 
functions are formulated as described in Section 4 – that is, event driven 
responses without formal factor or concept explanations of the observed 
behaviour. However, even this level of experimentation has yielded 
impressive results.  

The case studies below are both composites constructed from similar 
projects across 2 companies, in each case. 

6.1 New Architecture – Empirical 
Intervention 

A typically (intuitively) designed commercial controller incorporated 6 
signal processors,1 general purpose processor, 2 matrix switches, 
arbitrated interconnection buses and bus bridges, complex memory 
hierarchies with multiple DMA controllers, and many peripheral devices. 
Several of the central interconnects were multiplexed. It was unknown 
whether the controller could meet throughput, response time or 
processing headroom specifications.  

In the normal engineering process, an iteratively analyzed and refined 
version of the intuitive design would be reduced to an implementation 
(probably silicon) and the architecture subjected to trial post realization. 
Historically, complex, intuitively designed controllers are respun 2-5+ 
times in order to iron-out the architectural, as well as, the detailed 
hardware design and hardware-software interaction decisions. A pretty 
inefficient and very costly process. The estimated cost per architectural 
respin is a couple of million dollars, split between the cost of a new 
mask set and the engineering needed to rectify problems discovered so 
late in the design process. 

The new architectural design was a central plank in each company’s 
strategic new generation offering to its customers and prospects in a 
highly competitive, global market. A competitive differentiator would be 
the early availability of a system to customers and prospects so that 
software, to be sourced from the company, customers and 3rd party 
suppliers could be developed early. Accelerating the development of 
software is a major competitive factor, since it dominates the engineering 
effort and the critical development path for both a company and its 
customers. It is a universal hope that if a prospect begins serious 
software development using your VSP, they would be likely to commit 
to buying your silicon for the platform.  

The original design was modeled as a VSP in mid 2004 with high 
performance, timing accurate models which were heavily instrumented. 
The experimentation began with representative, trial software loads 
running on the processors. Several major architectural problems were 
found rapidly: inadequate response times, insufficient traffic throughput 
and insufficient processing headroom, amongst others. The VSP 
architecture was extensively and iteratively reworked with the each 
iteration candidate being subjected to heavy experimentation and 
measurement using the required software and input stimuli. The 
rearchitecting took place within a six month time frame. The final 
architecture was radically departure from that intuitively specified – 3 
DSPs, 1 general purpose processor (GPP), unmultiplexed buses, 
simpler memory hierarchies and interconnect fabric – and met the 

throughput, response time, and processing headroom specifications. 
This was all done prior to commitment to silicon. The VSP is currently 
being offered to customers and prospects to enable them to start on 
software porting and development, 9-12 months before availability of 
silicon – representing a TTM reduction near to 50%.  

Even though the result is very good, there is no way of determining, by 
using informal techniques, whether the platform is optimum for its 
intended purpose. The next step is to engage the more formal techniques 
outlined in this paper to try and achieve an optimal architecture. 

6.2 Iterating Architectures Quantitatively 
using VSPs 

In 2003/2004, a VSP of a closely-coupled, triple core architecture 
having 1x DSP, 2x GPP, a multilayered interconnect fabric, many bus 
bridges and peripheral devices, was built and delivered to a customer 
who then completed the VSP by adding all required peripheral devices 
and tuning the architecture. The VSP paralleled an existing design for 
which silicon was already being produced, and was used for developing 
tests suites, porting software, and to check the adequacy of the 
architecture for its intended purpose. The VSP was delivered to VaST’s 
customer’s customer 9 months in advance of the silicon. 

Twelve months later the next iterative architecture development was 
due. The functional specification required additional computing cycles 
for executing additional software, and several modified and new 
peripheral devices. Two lines of investigation were initiated, one dealing 
with processor microarchitecture modification to increase the CPU 
clock frequency and the other to use the VSP to experiment with the 
overall platform architecture and determine what improvements were 
available from that source. 

The microarchitecture investigation yielded the requirement for 
microarchitecture modifications to accommodate increased clock 
frequencies – a task that was engineering intensive and would result in 
an overall 10% increase in platform performance. The platform 
architecture experimentation yielded data indicating a number of 
straightforward changes, dealing, amongst other things, with memory 
hierarchy and latency, that resulted in a more than 50% improvement in 
performance.  

The results were somewhat surprising to the investigators, since a triple 
processor platform is regarded as processor centric. However, what the 
data is saying is that microarchitecture improvements produce 2nd order 
effects when placed in the context of systems platforms. This finding is 
consistent with the industry data that the results of heroic engineering 
efforts at the microarchitecture level are completely swamped by the 
twin effects of overall increased performance due to the underlying 
semiconductor technology (for example, moving from 130nm to 90nm 
technology) and the optimization of the platform architecture itself 
determined by quantitative experimentation with the mundane attributes 
of architectures, such as memory hierarchies and latencies (including 
cache), bus – bus bridge hierarchies and aggregate bandwidth and 
latencies; etc.  

Once again a surprising amount of optimization was yielded from basic 
quantitative investigation. Once again, the ad hoc experimentation did 
not look at the multi-factorial overall platform optimization issue.  
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7. Summary, Ongoing and Future Work 
It is clear that such experimentation techniques should always be 
required part of any architect’s tool kit and job responsibility, ideally 
prior to the commitment to an architecture, rather than as a post facto 
clean-up endeavour.  

Another aspect of architecture that will yield 1st order effects on the 
overall system is the formal experimentation with architecture, structure 
and algorithmic efficiency of the most complex component of the system 
– software. It will be very surprising if the systematic experimentation 
with software, and the improved fit between the hardware architecture 
and the software architecture, does not yield optimizations that will 
eclipse the effect of the platform and microarchitectures determined 
separately. 

A framework has been presented for ad hoc (event data driven) and 
systematic (concept driven) experimentation. Most engineering 
experimentation, when it is done at all, is of the former type where a 
progressive set of intuitive experiments is performed, measures taken 
and further experiments formulated based on evidence from the prior 
experiments. As can be seen from the experiences related in Section 6, 
when performed early in the engineering cycle this unstructured 
approach can have a profound effect – even structural, but it relies on 
expert intuition and that, however profound, is subjective. When these 
many hundreds of experiments are each structured to refute, with some 
level of significance, well thought through hypotheses, a degree of 
structure enters and the process accretes good attributes of the scientific 
method. 

The more structured approach, based on statistics that elevates the 
focus of system level considerations to more conceptual than operational 
concerns, followed by the systematic design of experiments offers a new 
way to efficiently approach the task of reducing the experimental effort 
when conceptualizing new architectures optimized for some purpose. 
The alternative is to perform thousands of ad hoc experiments driven by 
intuition and success and failure – the school of architecture of hard 
knocks. As yet there is little hard engineering result from the use of the 
SEM based approach. However, we are working with customers, 
especially in the early architectural phases, to see how the more 
structured approach affects their engineering product, as well as the 
efficacy of their engineering process. With several global companies, 
across several market sectors, involved in the effort, it is exciting times 
for empirical architecture.  

Future work involves a pragmatic assessment of the effectiveness of the 
empirical approach to the more conceptual areas of architecture 
development. This will require several projects (typical duration 12-18 
months) to go through the process to gather sufficient data to be able to 
report failure, success or progress. The second area of future work is to 
apply the same statistically-driven quantitative processes to the 
engineering process itself. The recognition that the DFD process of 
Figure 2, which describes the early stages of the engineering process, is 
structurally the same as the DFD of Figure 3A, which describes part of 
an abstract system architecture, makes this an exciting and promising 
field of investigation.  
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