
A UML 2.0 Profile for SystemC: Toward
High-level SoC Design ∗

E. Riccobene
Univ. di Milano

Dip. di Tec. dell’Inf.
Bramante 65, Crema, Italy

riccobene@dti.unimi.it

P. Scandurra
Univ. di Catania

Dip. di Mat. e Inf.
A. Doria 6, Catania, Italy

scandurra@dmi.unict.it

A. Rosti and S. Bocchio
STMicroelectronics Lab R&I
C.d.Colleoni 20041 Agrate

Brianza, Italy

{alberto.rosti,sara.bocchio}

@st.com

ABSTRACT
In this paper we present a UML 2.0 profile for the SystemC
language, which is a consistent set of modeling constructs
designed to lift both structural and behavioral features (in-
cluding events and time features) of the SystemC language
to UML level. The main target of this profile is to provide a
means for software and hardware engineers to improve the
current industrial Systems-on-a-Chip (SoC) design method-
ology joining the capabilities of UML and SystemC to oper-
ate at system-level.

Categories and Subject Descriptors: B.m [Miscella-
neous]: Design management

General Terms: Design, Languages.

Keywords: UML, UML profiles, SystemC, embedded sys-
tems, model-driven System on Chip design.

1. INTRODUCTION
To specify, design, and implement complex Systems on

Chip (SoC) that include hardware and software parts, the
Electronic Design Automation (EDA) communities are push-
ing a shift in design entry level. This additional abstraction
step implies that an increasing amount of system design will
be specified using system-level languages. Therefore, an is-
sue facing SoC designers is to decide which system-level lan-
guage to use and how the verification tasks will be accom-
plished. Any language proposed to support the SoC design
must address two important characteristics: the integration
of multiple heterogeneous models and the ability to work at
high levels of abstraction. Furthermore, a new design pro-
cess is needed; it should allow modular, component-based

∗This work has been supported in part by the project Tec-
niche e metodologie di progetto, documentazione, verifica
e validazione per i sistemi di IP (Intellectual Property) at
STMicroelectronics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05, September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

approach to both hardware and software design to face the
complexity of SoCs.

A new frontier system-level languages proposal [4, 8] con-
sists in extending standard lightweight software modeling
languages like UML [17] in order to apply them as higher
languages operating in synergy with some other lower level
languages. The work presented in this paper can be seen as
an effort further this new direction.

We defined a UML 2.0 profile for SystemC [16], able to
capture both the structural and the behavioral features of
the language. This UML profile defines a language that al-
lows to specify, analyze, design, construct, visualize and doc-
ument the software and hardware artifacts in a SoC design
flow. Leveraging the joint capabilities of UML and SystemC
we provide a modeling framework for systems in which high-
level functional models can be refined down to an implemen-
tation language. The choice of SystemC as implementation
language is intentional, and mainly motivated by the fact
that SystemC is becoming one of the most important play-
ers in the future of SoC design and verification. In [4], we
discuss how the current SoC design flow at STMicroelec-
tronics can be improved by UML and SystemC.

The paper is organized as follows. In section 2, we in-
troduce the SystemC language, while in section 3 we sketch
how to define a UML profile for a given language. In section
4 we present the UML 2.0 profile for SystemC. Finally, in
section 5 we provide an overview of the case tool support for
our profile, discuss about systems we are modeling as case
studies, and cite some related work.

2. SystemC OVERVIEW
SystemC [13, 16] is an open standard controlled by the

major companies in the EDA (Electronic Design Automa-
tion) industry. It is a promising system-level design lan-
guage intended to support the description and validation of
complex systems in an environment completely based on the
C++ programming language.

The SystemC language is defined in terms of a layered-
architecture. Built on top of the C++ language, the Core
Language and Data Types are the so called core layer (or
layer 0) of the standard SystemC. The Primitive Channels
represents, instead, the layer 1 of SystemC; it comes with a
predefined set of interfaces, ports and channels.

A design of a system is essentially broken down into a
containment hierarchy of modules. A module is a container
class able to encapsulate structure and functionality of hard-

138

Figure 1: Structure Stereotypes Definition

ware/software blocks. Each module may contain variables
as simple data members, ports for communication with the
surrounding environment and processes for performing mod-
ule’s functionality and expressing concurrency in the system.
Two kind of processes are available: method processes and
thread processes. They run concurrently in the design and
may be sensitive to events which are notified by other pro-
cesses. A port of a module is a proxy object through which
the process accesses to a channel interface. The interface
defines the set of access functions for a channel, while the
channel provides the implementation of these functions to
serve as a container to encapsulate the communication of
blocks. There are two kind of channels: primitive chan-
nels and hierarchical channels. Primitive channels do not
exhibit any visible structure, do not contain processes, and
cannot (directly) access other primitive channels. A hierar-
chical channel is a module, i.e., it can have structure, it can
contain processes, and it can directly access other channels.

3. UML PROFILES
Recently, UML [17] has been used in areas for which it was

not originally intended. Many proposals have been arisen for
extending UML for specific domains (as banking, telecom-
munications, aerospace, real-time systems, etc). In UML,
these extensions are called profiles. A UML profile is a set
of stereotypes. Each stereotype defines how the syntax and
the semantics of an existing UML construct (a class of the
UML metamodel) is extended for a specific domain termi-
nology or purpose. A stereotype can define additional se-
mantic constraints – the well-formedness rules – expressed
as OCL (Object Constraint Language) [12] formula over its
base metaclass, as well as tags to state additional properties.

For defining profiles, UML 2.0 is endowed with a standard
graphical notation. A package with keyword �profile�
denotes a profile. Within the profile package, a class of
the UML metamodel that is extended by a stereotype is
represented as a conventional class with the optional key-
word �metaclass�. A stereotype is depicted as a class
with the keyword �stereotype�. The extension relation-
ship between a stereotype and a metaclass is depicted by an
arrow with a solid black triangle pointing toward the meta-
class. In Figures 1 and 5 several examples of stereotypes
definition are reported.

At model level, when a stereotype is applied to a model
element (an instance of a UML metaclass), an instance of
a stereotype is linked to the instance of the corresponding
UML metaclass. From a notational point of view, the name
of the stereotype is shown within a pair of guillemets above
or before the name of the model element and the eventual

Figure 2: Structure Stereotypes Notation

tagged values displayed inside or close as name-value pairs.
Fig. 2 reports some examples of stereotypes application.

4. A UML 2.0 PROFILE FOR SystemC
This section introduces our UML profile for the SystemC

language based on the UML 2.0 specification [17] and on the
SystemC 2.0 specification [16].

The profile is defined at two distinct levels – the SystemC
core layer (or layer 0) and the SystemC layer of predefined
channels, ports and interfaces (or layer 1) – which reflect
the layered-architecture of SystemC. The core layer is the
foundation – the basic SystemC profile – upon which specific
libraries of model elements or also other modeling constructs
can be defined. It is logically structured as follows:

– The Structure and Communication part defines ste-
reotypes for the primitive building blocks of SystemC. They
are used in various UML structural diagrams (such as UML
class diagrams and composite structure diagrams) to repre-
sent hierarchical structures and communication blocks made
of modules, interfaces, ports and channels.

– The Behavior and Synchronization part defines ste-
reotypes which lead to a variation of the UML method state
machines, the SystemC Process State Machine (see [2]), to
allow high level specification of the behavior of SystemC pro-
cesses (methods and threads) within modules and channels.

– The Data types part defines UML classes for represent-
ing the set of SystemC data types. Since in UML a data type
is a special kind of classifier in our profile the SystemC data
types are represented in terms of UML classes, all contained
in a stand alone package imported by the SystemC profile’s
package.

The SystemC layer of predefined channels, ports and in-
terfaces provides concepts for the layer 1 of SystemC. These
concepts are implemented both as a class library, modelled
with the basic group of stereotypes of the SystemC core
layer, and as a group of stand alone stereotypes – the ex-
tended SystemC profile – which specializes the basic profile.

In the following sections, we describe the most significant
stereotypes of the SystemC core layer giving the semantics
in an informal way. We intentionally leave out the OCL
constraints due to lack of space. The complete UML profile
definition for SystemC is in [3]. Moreover, we assume the
reader is familiar with UML 2.0 and SystemC.

4.1 Structure and Communication
Fig. 1 shows the stereotypes definition using the standard

notation presented in sect. 3, while Fig. 2 depicts their
notation when they are applied at model level.

A SystemC module is modelled as an extension of an active
structured class of the UML with sc module stereotype; a
composite structure diagram can be further associated to
the module class to represent its internal structure (if any).

A SystemC interface is mapped to a UML interface with

139

Figure 3: Example of a module, its attributes, func-

tions, processes and ports

Figure 4: Example of a Composite Structure

sc interface stereotype, and uses its (longhand/shorthand)
notation.

The sc port stereotype maps the notion of SystemC port
directly to the notion of UML port, plus some constraints
to capture the concepts of simple, multi and behavior port.
The tag max if defined for the sc port stereotype specifies
the maximum number of channel interfaces that may be
attached to the port. The type of a port, namely its required
interface, is shown with the socket icon attached to the port
(see Fig. 2 and Fig. 3).

Since UML ports are linked by connectors, a SystemC con-
nector (binding of ports to channels) is provided as exten-
sion of the UML connector, by the sc connector stereotype.
A relay connector – the sc relay connector stereotype –
is another construct defined to represent the port-to-port
binding between a parent port and a child port1.

The sc prim channel and sc channel stereotypes define,
respectively, a SystemC primitive and hierarchical channel
as extension of a simple UML class that implements a cer-
tain number of interfaces (i.e. the provided interfaces of the
channel). A hierarchical channel can further have structure
(including ports), it can directly access other channels, and
it can contain processes.

Fig. 3 shows a module class count stim containing a
thread process stimgen, two input ports dout and clock,
and two output ports load and din. In particular, clock

is a behavior port since it provides events that trigger the
stimgen thread process within the module.

Instead, the composite structure diagram in Fig. 4 repre-

1A port-to-port connection is the binding of a module port
(parent port) to a lower level module port (child port).

Figure 5: Behavior Stereotypes Definition

sents the internal structure of a module top. This module
is used to assemble parts (groups of instances) of the inner
modules count, count stim and display, and of the two
clock and sc signal channels – predefined SystemC chan-
nels –. Note that in this example, all connectors are of kind
sc connector, even if the stereotype keyword is not shown
to make the diagram more readable.

4.2 Behavior and Synchronization
Fig. 5 shows the stereotypes definition for the SystemC

constructs used to model the behavioral aspects of a system.
Two kinds of processes are available: sc method and sc -

thread. Both behave like an operation with no arguments
and no return type. Each kind of process has a slight dif-
ferent reactive behavior. We defined [2] a new graphical
formalism, called SystemC Process State Machine, exploit-
ing the UML 2.0 method state machine [17], to allow high
level specification of the functionality of the reactive Sys-
temC processes and generation of efficient and compact ex-
ecutable SystemC code.

Our profile provides stereotype definitions (wait, sta-

tic wait, and, wait next trigger, next trigger action,
dont initialize) to model the static and dynamic sensi-
tivity mechanism of a process behavior.

The sc event stereotype models a SystemC event in terms
of a UML signal (instance of the class SignalEvent).

The notify action stereotype can be applied to an UML
action to model the SystemC function notify used to notify
events. The cancel action stereotype can be applied to an
UML action to model the SystemC function cancel used to
eliminate a pending notification of an event.

The sc time type is used to specify concrete time values
used for setting clocks objects, or for the specification of
UML time triggers.

As part of the UML profile for SystemC, the control struc-
tures while, if-then-else, etc. are represented in terms of
special stereotyped junction or choice pseudostates.

In addition to the stereotypes presented above, we defined
particular abstract behavior patterns of state machines to
specify the behavior of SystemC processes [2].

The left side of Fig. 6 depicts one of these behavior pat-
terns. It corresponds to a thread process which: (i) has
both a static (the event list e1s, . . . , eNs) and a dynamic
sensitivity (represented by the state WAITING FOR e* with

140

Figure 6: A Thread Process pattern

Figure 7: A thread process state machine

the stereotype wait)2, (ii) runs continuously (its function-
ality is enclosed by an infinite while loop), and (iii) is not
initialized (the state with the dont initialize stereotype
follows the top initial state). The right side of Fig. 6 shows
the corresponding SystemC pseudo-code.

Fig. 7) show the state machine of the stimgen thread
process of the module example given in Fig. 3, as a realist
example of the behavior pattern presented in Fig. 6.

5. CONCLUSIONS AND RELATED WORK
To support our design methodology a necessary condition

is the provision of a UML 2.0 visual modeling tool empow-
ered by our UML SystemC profile. Our current implemen-
tation is based on the Enterprise Architect (EA) tool [5],
however any other tool supporting UML 2.0 and UML pro-

2Note that the notation used for the wait state in the state
machine pattern given in Fig. 6 stands for a shortcut to
represent a generic wait(e*) call where the event e* matches
several cases. See [2] for more details.

files could be appropriate. The design of a system can easily
evolve from an initial functional UML model (corresponding
to a functional C/C++ specification in the traditional de-
sign methodology), adding new stereotyped elements and di-
agrams, and introducing packages for modularizing and de-
composing issues. Moreover, as the EA tool allows reverse-
engineering of C/C++ code, the design activity can also
start from the UML model obtained by reverse engineering
from an existing C/C++ functional specification, and then
evolves applying stereotypes and new stereotyped elements
as well. In addition, we endowed the EA tool with an add-in
for generating SystemC code – forward engineering – from
UML models, for both structural and behavioral aspects.
We have already developed several small case studies to test
the expressive power of our language in representing a va-
riety of architectural and behavioral aspects. Currently, to
evaluate the efficacy of our language to cope with complex
architectural designs, we are modeling the On Chip Com-
munication Network (OCCN) [11] library.

The possibility to use UML 1.x for SoC design [6, 7]
started at Cadence Design Systems in 1999. [1] attempts
to define a UML profile for SystemC based on UML 1.4;
but, as other proposals, no code generation capabilities for
behavioral information are considered. [9] faced the problem
of code generation but does not rely on a UML profile defi-
nition. Fujitsu [14] developed a new SoC design methodolo-
gy that employs UML and C/C++/SystemC programming
languages. The SysML (Systems Modeling Language) Part-
ners [15] are collaborating to customize UML 2.0 to define
a modeling language for systems engineering applications.
Since SysML preserves the basic semantics of UML 2.0 dia-
grams (state formalism, e.g., are unchanged), our UML pro-
file can be thought (and effectively made) a customization
of SysML rather than UML.

6. REFERENCES
[1] F. Bruschi and D. Sciuto. SystemC based Design Flow starting

from UML Model. In Proc. of ESCUG’02.

[2] E. Riccobene, P. Scandurra. Modelling SystemC Process
Behaviour by the UML Method State Machines. In Proc. of

RISE’04. LNCS 3475, Springer.

[3] E. Riccobene, P. Scandurra, A. Rosti and S. Bocchio. A UML
2.0 Profile for SystemC. ST Microelectronics Technical Report
AST-AGR-2005-3.

[4] E. Riccobene, P. Scandurra, A. Rosti, S. Bocchio. A SoC
Design Methodology Based on a UML 2.0 Profile for SystemC.
In Proc. of DATE’05. IEEE Computer Society Press.

[5] The Enterprise Architect tool: www.sparxsystems.com.au/.

[6] G.Martin. UML and VCC. White paper, Cadence Design
Systems, Inc, Dec. 1999.

[7] G.Martin, L.Lavagno, J.L.Guerin. Embedded UML: a merger
of real-time UML and co-design. In Proc. of CODES’01.

[8] A. Habibi and S. Tahar. A Survey on System On a Chip
Design Languages. In Proc. of IWSOC’03. IEEE Computer
Society Press.

[9] K. D. Nguyen, Z. Sun, P. S. Thiagarajan and Weng-Fai Wong.
Model-driven SoC Design Via Executable UML to SystemC. In
Proc. of RTSS’04. IEEE Computer Society Press.

[10] OMG. The Model Driven Architecture (MDA).
http://www.omg.org/mda/.

[11] OCCN Project Web site: http://occn.sourceforge.net/.

[12] OMG. UML 2.0 OCL Specification, ptc/03-10-14.

[13] The Open SystemC Initiative: www.systemc.org.

[14] Q.Zhu, R.Oishi, T.Hasegawa, T.Nakata. System on chip
validation using UML and CWL. In Proc. of CODES, 2004.

[15] SysML Partners web site: http://www.sysml.org/.

[16] T. Grotker, S. Liao, G. Martin, S. Swan. System Design with
SystemC. Kluwer Publisher, 2002.

[17] OMG. UML 2.0 Superstructure, ptc/04-10-02.

141

