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ABSTRACT
Network power optimization is becoming increasingly important
as the sizes of the data manipulated by parallel applications and
the complexity of inter-processor data communications are contin-
uously increasing. Several hardware-based schemes have been pro-
posed in the past for reducing network power consumption, either
by turning off unused communication links or by lowering volt-
age/frequency in links with low usage. While the prior research
shows that these schemes can be effective in certain cases, they
share the common drawback of not being able to predict the link
active and idle times very accurately. This paper, instead, proposes
a compiler-based scheme that determines the last use of communi-
cation links at each loop nest and inserts explicit link turn-off calls
in the application source. Specifically, for each loop nest, the com-
piler inserts a turn-off call per communication link. Each turned-
off link is reactivated upon the next access to it. We automated
this approach within a parallelizing compiler and applied it to eight
array-intensive embedded applications.
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D.3.4 [Software]: Programming Language—Processors,Optimization
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1. INTRODUCTION
Increasing energy consumption of parallel architectures makes

network power consumption an important target for optimization.
While network performance has received a lot of attention in the
past from both hardware and software communities, network power
optimization is a relatively new topic [1, 2, 8, 6]. To date, several
hardware-based schemes have been proposed for reducing network
power consumption, by either turning off unused communication
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Figure 1: An example link access pattern for a program with
three loop nests.

links or lowering voltage/frequency in links with low usage [12, 4,
7]. While the prior research shows that the hardware-based network
power optimization schemes can be very effective in certain cases
[10], they share a common drawback that they cannot extract the
high level network usage patterns (e.g., the order and timing of link
usages). As a result, they may be inefficient in certain cases by
reacting too late to the variations in network usage patterns. The
main goal of this paper is to explore whether a software-directed
approach to network power management is possible.

Figure 1 depicts the access pattern for a given communication
link in a sample program fragment with three separate loop nests.
In this figure, the time is assumed to progress from left to right, and
each active period (during which the link is active in communicat-
ing a message) of the link is specified using a pulse whose width
represents the length of the active period. The remaining periods
are idle periods (during which the link is not used for communi-
cation). Our focus is on idle periodsT1, T2, andT3. A common
characteristic of these three idle periods is that they are thelast idle
periods(times) in each nest, and represent the time frame between
the last use of the link and the end of the loop nest.

Figure 2 shows the communication link energy distribution be-
tween active periods and idle periods. One can observe from this
graph that the most of link energy consumption is spent during
idle periods (78.4% on an average). This result can be explained
as follows. In message-passing architectures, the application code
is generally parallelized in such a fashion that the interprocessor
communication is minimized as much as possible. To achieve this,
communication optimizations such as message vectorization, mes-
sage aggregation, and message coalescing [5] are used. As a conse-
quence of this, most of the communication links are idle at a given
time, and are responsible from a significant portion of the link en-
ergy consumption.

Figure 3 shows the the energy contribution of the last idle peri-
ods. In Figure 1, for example, this contribution amounts to{(E1 +
E2 + E3)/Etotal−idle} × 100, whereE1, E2, andE3 correspond
to the energy consumptions in idle periodsT1, T2, andT3, respec-
tively. Etotal−idle, on the other hand, captures the total idle time
energy when considering all three nests in the program (including
the energies consumed in the last idle times as well). An interesting
observation from Figure 3 is that a very significant portion of the
energy spent in idle times are spent in the last idle times, specifi-
cally, 60.2% when averaged over the eight benchmarks. This indi-
cates that a scheme that can exploit these last idle periods can be

134134



Figure 2: Distribution of link active and idle energies.

Figure 3: Energy contribution of the last idle periods (times),
when accumulated over all the loop nests in the application.

very useful in practice. The next section presents such a scheme
embedded within a parallelizing compiler.

Based on this observation, we propose acompiler-directedcom-
munication link shut-down (turn-off) strategy for reducing network
energy. The proposed strategy takes as input a parallelized applica-
tion code (using explicit message-passing directives such as those
supported by MPI [3]). It first analyzes the interprocessor commu-
nication pattern of the input code and identifies the link access pat-
tern, i.e., the order and timing of communication link usage. It then
inserts explicit link turn-off calls in the application source. Specifi-
cally, for each loop nest in the application code, the compiler inserts
a call that shuts down the links after their last uses. Each turned-off
link is reactivated upon the next access to it. Our approach targets
at small networks that are used by a single application at a time.

The next section explains the network abstraction used by our
approach. It also discusses the architectural support needed by our
compiler based scheme. Section 3 presents our compiler-based ap-
proach for exploiting this information by turning off the commu-
nication links that completed their last uses (communications) in a
given loop nest. Finally, Section 4 summarizes our major observa-
tions and gives pointers for future research directions.

2. NETWORK ABSTRACTION AND HARD-
WARE SUPPORT

In this section, we discuss the network abstraction our compiler-
directed approach uses and the architectural support needed. We
focus on anM × N (M rows,N columns) mesh architecture1 as
depicted in Figure 4. Each node in the mesh consists of a pro-
cessor, a memory module, and a switch.2 The node at theith

(i = 0, 1, ..., M − 1) row andjth (j = 0, 1, ..., N − 1) column
is labeled with an integer ID:i × N + j.

Figure 5 gives the structure of a switch. Each switch has five
in-coming ports (In-0 through In-4) and five out-going ports (Out-0
through Out-4). The ports In-0 and Out-0 are connected to the lo-
cal processor (the processor in the same node as the switch). The

1Our approach can also be used with other types of architectures.
We will elaborate on this issue later in the paper.
2Unless a confusion occurs, we use the terms “node” and “proces-
sor” interchangeably in our discussion.

remaining four in-coming ports and four out-going ports are con-
nected to the switches in the neighboring nodes by a set of wires. A
switch also provides a power control API that allows the local pro-
cessor to turn on/off each out-going port of this switch. As will be
discussed later, when an out-port is turned on/off, its corresponding
in-port (in the switch of a neighbor node) is also turned on/off.

In this paper, we definelink(i, j) as the directed physical con-
nection from a node (Ni) to one of its neighbors (Nj). We refer
to nodesNi andNj as the sender and receiver oflink(i, j), re-
spectively. In a mesh, each pair of adjacent nodes,Ni and Nj ,
are connected by a pair of links, namely,link(i, j) andlink(j, i).
Each link consists of a pair of ports (an out-going port of the sender
switch and an in-coming port of the receiver switch) and the wires
that connect these two ports.

Figure 6 shows the structure of a communication link from node
Ni andNj . A message to be transferred by a link is first stored in
the buffer of the out-going port of this link. The power control logic
in the out-going port checks the one-bit “CTRL” in the header of
this message. CTRL=0 indicates that the message in the buffer is
a data messagethat carries data that will be used by an application
process. This message is forwarded without any modification (i.e.,
as it is) from one link to another until it arrives at its destination,
and the contents of this message does not affect the power state of
any communication link on its path. CTRL=1, on the other hand,
indicates that the message in the buffer is apower control message.
The body of this message contains avector,each bit of which con-
trols the power state of a link in the path from the source node to the
destination node. This message is discarded by the switch on the
destination node, and thus it is never received by any application
process. When the power control logic detects that the message in
the buffer is a power control message, it signals the buffer to shift
the entire message body (not including the header) by one bit. The
first bit of the message body, which is shifted out of the buffer, is
stored in the one-bitpower state registerof the power control logic.
The shifted message is then forwarded to the in-coming port, which
is on the other end of this link. After that, the power control logic
sets the power state of the Tx unit based on the value of the power
state register. Specifically, if the value of the power state register
is one, the power control logic turns off the Tx unit immediately;
otherwise, the Tx unit remains in the active state. The link state
monitor of the in-coming port monitors the state of the Tx unit. It
turns on (off) the Rx unit when it detects that the corresponding Tx
unit has been turned on (off). In addition to controlling the power
state of a link using power control messages, a switch also provides
a programming interface for the local processor to turn on/off each
out-going port of this switch without sending any message.

A parallel program consists a set of parallel processes running on
different nodes of the mesh. A process sends messages to another
process through a logical connection (or connection for short). A
logical connection consists of multiple links if the sender and re-
ceiver processes are running on two nodes that are not adjacent to
each other. We useC(i, j) to denote the set of links in the con-
nection from the source nodeNi to the destination nodeNj . Since
a connection can be unambiguously identified by the set of links
used in this connection, we also useC(i, j) to denote the connec-
tion from Ni to Nj . Note that, using the power control messages,
we can control the power state of each link in any connection.

3. COMPILER SUPPORT
In this section, we discuss the details of our compiler algorithm

that exploits the last idle periods of communication links. We focus
on the array-based, loop-intensive embedded programs parallelized
over a mesh architecture. Such a program consists of a set of par-
allel processes running on different nodes in a mesh. Each process
consists a set of loop nests. These processes communicate with
each other through inter-node connections. We assume that all the
communication links in the mesh are initially turned off. A link
used by a process is turned on automatically upon its first use. Our
compiler inserts explicit link turn-off instructions (calls) in each
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Figure 4: A 3 × 3 mesh net-
work architecture.

Figure 5: The structure of a switch.

Figure 6: The structure of a link. PSR: power state register.
The out-going buffer contains a power control message with
power control bit vector (b1b2...bn). The first bit, b1 is shifted
out of the buffer and stored in PSR. The rest of this vector,
(b2...bn), is transferred to the in-coming port of this link, and
is subsequently forwarded to the next link.

loop nest to turn-off the communication links whose last usage has
taken place.

Before inserting the link turnoff instructions, we first break large
loop nests in the given program into a set of smaller loop nests (re-
ferred to as “sub-nests”) such that the sets of links used by each
pair of consecutive sub-nests are different. For a loop nest that
uses different communication links during different sets of itera-
tions, splitting it into sub-nests such that each pair of successive
sub-nests use different sets of links increases the opportunities for
link turnoff. Further, splitting large loop nests into smaller sub-
nests allows us to turn off links earlier since we can now turn off
links at the end of each sub-nests, instead of waiting for the entire
loop nest to terminate.

3.1 Splitting Loop Nests
We now present our compiler algorithm for splitting a loop nest

L into a set of sub-nests{L1,L2, ...,Ln}. These sub-nests are ex-
ecuted in the order ofL1,L2, ...,Ln so that the order in which the
iterations ofL are executed (which are now distributed into sub-
nests) is not changed.3 Assuming that the sets of links used in the
loop nestsLi andLi+1 areLK(Li) andLK(Li+1), respectively,
we can turn off the links in the setLK(Li) − LK(Li+1) to con-
serve energy without significantly degrading the performance of the
application since the links we turn off are not used in the following
loop nests. Our goal is to split a given loop nestL such that we can
keep more links in the power-off mode for longer period. In addi-
tion, since increasing the number of loop nests increases the size of
the application (which may have an adverse impact on code mem-
ory management), we split a loop nest only at certain points such
that each pair of successive sub-nests use different sets of links.
Note that, if two successive sub-nests use the same set of links, we
cannot turn off any link at the end of the first sub-nest. Our ap-
proach handles each loop nest in the application code one by one,
and in the following discussion, we explain our approach for nest
L.

We focus on a loop nestL, which can be expressed in an abstract
form as follows:

L: for ~I ∈ [~L, ~U ] { Body}

In this loop nest,~L and ~U are the lower and upper bound vectors,
and~I is the iteration vector.4 In this paper, we use[~L, ~U ], (~L, ~U ],
[~L, ~U), and(~L, ~U) to denote the sets{~I | ~L � ~I � ~U}, {~I | ~L ≺
~I � ~U}, {~I | ~L � ~I ≺ ~U}, and{~I | ~L ≺ ~I ≺ ~U}, respectively,
where� and≺ denote lexicographic ordering on vectors.

3That is, loop splitting does not affect any data dependence in the
loop nest, i.e., it is always legal.
4Vector~I keeps the loop indices from the outermost position to the
innermost position.~L and ~U are also defined as vectors and each
contains an entry for each loop index, again from the outer most
position to the inner most position.

Let us assume thatS(L) = {s1, s2, ..., sn} is the set of message-
sending instructions in the body of loop nestL. Each message-
sending instruction,si, has the form “send(di(p), m)”, wherem
is the message to be sent,p is the id of the node that executes this
loop nest, and functiondi(p) gives the id of the destination node
for messagem. si uses connectionC(p, di(p)). Note that,di(p)
is an invariant sincep cannot be changed after we assign the loop
nest to a node. It is possible that, in the application code we op-
timize, there might exist loop nests that the destination node for a
send instruction is not an invariant. In this case, we do not optimize
the loop nest under consideration.

The set of nodes to which nodep sends message during the exe-
cution of loop nestL can be expressed as:

D(p,L) = {di(p) | si ∈ S(L)}.
We useXi to denote the set of iterations at whichsi is executed.
If the execution ofsi does not depend on any conditional branch
instruction, we haveXi equal to the set containing all iterations of
loop nestL. In this paper, we only considerXi sets that can be
expressed using Presburger expressions [9].5 The set of iterations
at which connectionC(p, d) (whered ∈ D(p,L)) is used can be
computed as:

U(p, d) =
[

di(p)=d

Xi.

SinceXi can be expressed using Presburger expressions,U(p, d)
can also be expressed in terms of Presburger expressions. We define
~Imin(p, d) and~Imax(p, d) as the first and last iteration vectors for
connectionC(p, d); i.e., they can be computed as:

~Imin(p, d) = max
~I∈U(p,d)

~I,

~Imax(p, d) = max
~I∈U(p,d)

~I.

Now, we can define the splitting set for loopL as:

SP (p,L) = {~Imin(p, d) | d ∈ D(p,L)}
∪{~Imax(p, d) | d ∈ D(p,L)} ∪ {~L, ~U}.

We further assume that:

SP (p,L) = {~I1, ~I2, ..., ~In},
wheren = |SP (p,L)| and~I1 ≺ ~I2 ≺ ... ≺ ~In. Since~L, ~U ∈
SP (p,L), we have~I1 = ~L and ~In = ~U . Using the vectors in
5Presburger formula is a class of logical formulas which can be
built from affine constraints over integer variables, the logical con-
nectives (∨, ∧, and¬), and the existential and universal quantifiers
(∃ and∀). The Omega Library is an example tool that manipulates
integer tuple relations and sets, which are described using Pres-
burger formulas.
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splitting setSP (p,L), we can now split loop nestL into n − 1
smaller loop nests (sub-nests) as follows:

L1: for ~I ∈ [~I1, ~I2 ] { Body}
L2: for ~I ∈ (~I2, ~I3 ] { Body}

... ...

Ln: for ~I ∈ (~In−1, ~In ] { Body}

We handle the conditional statements that may occur withinL
conservatively. Specifically, if a message statement can access a
communication link depending on the runtime value of some con-
dition, we conservatively assume at compile time that the said state-
ment will access that link. This assumption helps us reduce the
potential performance penalty associated with link turn-offs.

3.2 Inserting Link Turnoff Instructions
Our compiler inserts calls (instructions) between each pair of

successive loop nests,Li andLi+1, to turn off the communica-
tion links that have been used inLi and will not be used inLi+1.
The set of links that are used in a given loop nestLi running on
nodep can be determined as follows:

LK(p,Li) =
[

d∈D(p,Li)

C(p, d),

whereD(p,Li) is the set of nodes to which nodep sends message
within loop nestLi. For a pair of consecutive loop nests,Li and
Li+1, the set of communication links that can be turned off afterLi

is: LK(p,Li)−LK(p,Li+1). If LK(p,Li)−LK(p,Li+1) = φ,
no link can be turned off afterLi. In this case, we merge loop nests
Li andLi+1 if they were extracted from the same loop nest in the
previous step.6

Figure 7 gives the pseudo code for our algorithm. This algorithm
has two phases. In the first phase, we insert code between each pair
of successive loop nests if there are links that can be turned off at
that point. In the second phase, we merge successive loop nests if
no link turnoff instruction is inserted between them.

In our algorithm, we generate link turnoff calls between loop
nestLi andLi+1 if LK(p,Li) − LK(p,Li+1) 6= φ. The link
turnoff instructions turn off the communication links by sending
power control messages. Let us assume:

D(p,Li) = {d1, d2, ..., dn}.
We send power control messagesm1, m2, ..., mn to nodesd1, d2,
..., dn, respectively, to turn off the links in the setLK(p,Li) −
LK(p,Li+1). Each messagemi carries a link control vector that
specifies the power state for each link in the connection from node
p to di. To each nodedi ∈ D(p,Li), the power control message
mi turns off the links in the following set:

F (p, di) = C(p, di) − (LK(p,Li+1) ∪
n[

j=i+1

C(p, dj)).

Since we have:

LK(p,Li) − LK(p,Li+1) =
n[

i=1

F (p, di),

control messagesm1, m2, ..., mn together turn off all the links in
LK(p,Li)−LK(p,Li+1). Messagemi does not turn off links in
C(p, di) ∩ LK(p,Li+1) because these links will be used inLi+1.
Messagemi does not turn off links inC(p, di) ∩ C(p, dj) where
i < j ≤ n either because these links are used by another power
control messagemj that will be sent aftermi. Therefore, in the
link control vector for messagemi, only those bits corresponding
to the links inF (p, di) are set to 1.
6This is because in this case loop splitting would only increase code
size without any energy benefits.

Input: A program consisting of loop nestsL1,L2, ...,Lm;
Output: A program augmented with explicit link turnoff calls;
// Phase-1
for each pair of consecutive loop nestsLi andLi+1 {

if (LK(p,Li) − LK(p,Li+1) 6= φ) {
assumeD(p,Li) − D(p, Li+1) = {d1, d2, ..., dn};
Sn = LK(p,Li+1);
for i = n − 1 to 1 step−1 { Si = Si+1 ∪ C(p, di+1); }
for i = 1 to n

if(C(p, di) − Si 6= φ) {
m.type = “CTRL”;
m.body = powercontrol vector(p, di, Si);
insert “send(di, m)” to the end ofLi

}
}

}
// Phase-2
for each pair of consecutive loop nestsLi andLi+1 {

if(LK(p, Li) − LK(p,Li+1) 6= φ) { mergeLi andLi+1 }
}
powercontrol vector(p, di, Si) {

assume that a message from nodep to di is transfered along linksl1, l2, ..., lk
for i = 1 to k { if(li ∈ Si) bi = 0; elsebi = 1; }
return vector(b1, b2, ..., bk);

}

Figure 7: Algorithm for inserting link turnoff instructions.

4. CONCLUDING REMARKS
Reducing power consumption of networks is an important op-

timization goal in many application domains, ranging from large-
scale simulation codes to embedded multi-media applications. Most
of the prior efforts on network power optimization are hardware
based schemes. These schemes are predictive by definition as they
control communication link status based on observations made in
the past. Since prediction may not be very accurate most of the
time, these hardware approaches can result in significant overheads
in terms of both performance and power. This paper proposes a
compiler-driven approach to link voltage management. In this ap-
proach, an optimizing compiler analyzes the application code and
identifies the last use of a link at each loop nest. It exploits this
information by inserting explicit link turn off instructions after the
last use of the link.
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