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ABSTRACT 
As the bandwidth of CPUs and networks continues to grow, it 
becomes more attractive, for efficiency reasons, to share such 
resources among several applications with the minimum level of 
interference. This can be achieved using temporal partitions, with 
each application assigned to its own partition and executing as if 
it was executing alone on a resource with lower bandwidth. The 
partitions are associated to servers that execute the application 
tasks according to a given application-level scheduler. On the 
other hand, the set of servers is scheduled by a system-level 
scheduler. This paper addresses the particular case of fixed 
priorities-based application-level schedulers together with a 
periodic server model at the system level. It starts with an 
adequate response time analysis based on the notion of server 
availability for a known server. Then it addresses the inverse 
problem of designing a server with minimum system-level 
resource requirements to fulfill the application time constraints. In 
this context, the paper shows that response time based 
schedulability tests with linear time bounds do not need to 
consider all tasks but just a small subset, which may lead to 
substantial speed-ups. The proposed method goes a step further 
with respect to other recent works in the literature by considering 
a more complete task model, effectively computing the server 
parameters and establishing a better trade-off concerning 
complexity and tightness.  

Categories and Subject Descriptors 
D.4.7 [Operating Systems]: Organization and Design – Real-time 
systems and embedded systems.  

General Terms 
Algorithms, Design, Theory. 

Keywords 
Real-time systems, real-time scheduling, hierarchical scheduling, 
response-time analysis. 

1. INTRODUCTION 
Hierarchical scheduling has been generating a considerable 
interest, recently, due to its ability to separate the concerns of 
scheduling at the system and application levels. It is a 
fundamental brick in the current trend towards higher integration 
and flexibility in embedded systems [8], which opens the way to 
higher efficiency and lower costs by means of resource sharing, as 
well as to higher resilience to hardware failures by means of 
dynamic reallocation of computing or communication entities [7]. 

Hierarchical scheduling is intimately connected with resource 
temporal partitioning according to which a shared resource, e.g. 
CPU or network, is used by several complex applications each of 
which is composed of a set of entities, e.g. tasks or streams. These 
entities must be scheduled internally to the application inside one 
specific resource partition to which they were allocated. At a 
higher level, all resource partitions are scheduled using a given 
system-level policy. The concept of server is well adapted to this 
level, supporting temporal isolation among partitions (Figure 1). 
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Figure 1. Hierarchical scheduling framework. 
 

However, two problems arise: how to derive real-time guarantees 
for the applications running within each server and, conversely, 
how to design the server for a given application so that it fulfils 
the application requirements with the least resource utilization. 

This paper addresses both problems. It relates directly to recent 
work available in the literature and constitutes a further 
contribution to the analysis and design of temporally partitioned 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
EMSOFT’04, September 27---29, 2004, Pisa, Italy. 
Copyright 2004 ACM 1-58113-860-1/04/0009...$5.00. 

95



systems. A preliminary work-in-progress version was presented in 
[10]. The related work is discussed in section 2, which also 
highlights the contributions of this paper, section 3 presents the 
task model, section 4 describes the response-time analysis and 
section 5 shows the server design approach, with an example in 
section 6. Finally, section 7 extends the previous results including 
intra-server blocking and section 8 concludes the paper. 

2. RELATED WORK 
The problem of hierarchical scheduling bears many resemblances 
with other scheduling problems that have been tackled in the past, 
such as those regarding exclusions [5] and inserted idle-time 
[9][2]. In fact, looking to the system from the perspective of one 
application executing within a server, i.e. a temporal partition, the 
periods of time in which the respective server cannot execute, e.g. 
because another server has been scheduled at the system level, can 
be seen as exclusion periods or periods of inserted idle-time. 

Moreover, within specific scopes, such as real-time 
communication over shared media, some forms of hierarchical 
scheduling/ temporal partitioning have long been used. This is the 
case with TDMA (as in TTP/C), in which each node has one or 
more dedicated slots in the TDMA round to transmit its traffic, as 
well as with the multi-phased cyclic framework (as in WorldFIP, 
FlexRay or FTT-CAN [1]), with several phases used in sequence 
within a micro-cycle, each for a given type of traffic (Figure 2). In 
both cases, either slots or phases can be taken as periodic servers 
within which several message streams must be scheduled. 
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 Figure 2. Common partitioning schemes for shared buses used in 
real-time communication . 

 

However, recent work has brought to light new results that are 
more general and abstract away the specific application scope. In 
[7] the authors use the concepts of virtual resource, virtual time, 
bounded-delay resource partitioning and server supply function to 
deduce real-time guarantees for hierarchical partition scheduling. 
In [6] the focus is on hierarchical resource partitioning using fixed 
priorities local schedulers and both deferrable and sporadic 
servers. It presents a response-time analysis as well as utilization 
bounds. In [4], the authors deduce a tighter schedulability test for 
partitions using fixed priorities local schedulers and address the 
issue of server design in order to meet the application time 
constraints. In [12], the authors present a response time analysis 
for a composed model in which EDF local scheduling is executed 
within a system-level fixed priorities framework. The task model 
considers several practical issues such as release jitter and inter-
task synchronization blocking. Finally, in [11] the authors present 
an analysis for hierarchical partition scheduling, considering both 
fixed priorities and EDF local scheduling, together with a generic 
periodic resource model. A general scheduling interface is also 
presented that facilitates the composition of partitions and 
derivation of real-time guarantees. The paper also addresses the 

inverse problem of defining a partition in order to meet a given set 
of real-time requirements.  

This paper relates closely to the works referred above. It is 
interesting to note that these works are very recent and some of 
them were submitted in parallel, leading to overlapping of short 
parts. Our motivation was to extend the work started in [13] and 
later improved in [1], in which we developed a response-time 
analysis for the asynchronous traffic within a double phase cyclic 
framework as depicted in Figure 2. In this paper we use the same 
reasoning but with a more general model that fits well in task 
scheduling. We will consider a fixed priorities local scheduler 
together with a periodic server model to manage a resource 
partition. Then, we derive upper bounds to the worst-case 
response time of tasks executing within a given server. We will 
also use the concept of server supply function as in [7], or 
resource supply in [11], but we will refer to it as server 
availability function for coherence with our previous work. The 
response-time analysis we propose is similar to the one for fixed 
priorities presented in [11] but we extend it to cover a more 
realistic task model that includes deadlines shorter than or equal 
to periods, release jitter and synchronization blocking. Our 
response-time analysis is also equivalent, despite different, to the 
one in [6] but we believe ours is more flexible since it can be 
easily adapted to irregular partitions as in [1] and [14], by 
describing them analytically in the respective server availability 
function (see further on). 

The server design problem is addressed in both [4] and [11]. 
When compared to the former one, our method is simpler but less 
tight and, as shown later, may represent a more favorable 
compromise between tightness and complexity in certain 
circumstances. On the other hand, [11] follows the same 
reasoning as we did in [13] of matching the application demand 
with the server supply to derive the worst-case response time. The 
corresponding result presented in [11] is equivalent to the one we 
presented in [10]. In this paper we extend that work by generating 
the server period that minimizes the server bandwidth together 
with the overhead caused by context switching at the system level, 
using the cost function proposed in [4]. Finally, we consider 
release jitter as well as intra-server blocking in our task model, 
which none of the other approaches does. 

In summary, this paper builds upon the work in [13],[1], [4] and 
[11] and proposes the following: 

• extension of the task model to a more realistic one; 

• alternative way of deducing the solution space for the 
server parameters; 

• new method to search the server solution space based 
on the new concept of application external points; 

• full computation of the server parameters that minimize 
a given cost function. 

3. TASK MODEL 
In this work, we consider that a given active resource, say a CPU, 
is used to execute a set of independent applications. Each 
application Ω is composed by a set ΓΩ of NΩ tasks, 
ΓΩ ≡ {τi (Ci,Ti,Di,Ji,Pi), i=1..NΩ}, in which each task, at this point, 
will be considered independent and fully preemptive. Each task τi 
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is characterized by a period Ti, a worst-case execution time Ci, a 
relative deadline Di that is shorter than or equal to the respective 
period, a maximum release jitter of Ji and a fixed priority Pi that 
may possibly be derived from the period, the deadline, or any sub-
optimal criterion. Also, the set of tasks ΓΩ executes by priority 
order within a periodic server SΩ, which is characterized, at a 
system level, by a period TS and a capacity CS. The server can be 
of any type as long as, under continuous demand, it behaves like a 
periodic task executing for CS time units within every TS time 
units interval. This is also the server model considered in [11] and 
[4] ([6] considers deferrable and sporadic models, only). 

The system-level scheduler that schedules partitions, and the 
current system load, determine when the server is available to 
execute application tasks. We thus define the server availability 
function, AS(t), which returns for each instant t the cumulative 
CPU time available for the application to execute since an 
arbitrary time origin. For static system level scheduling such as 
TDMA (Figure 2), AS(t) may be exactly characterized a priori. 
However, if an on-line system-level scheduling policy is used, the 
specific pattern of AS(t) may be difficult to predict. Therefore, for 
the sake of independence with respect to the system-level 
scheduling policy and load, it is helpful to use a lower bound 
A_S(t) that assures that the cumulative CPU time available for an 
application is never smaller than a given value. 

In order to determine a lower bound to the availability function, 
we can use the same reasoning as in [4] or [11]. Basically, it 
considers the worst-case server availability pattern with respect to 
the arbitrary time origin in which the server suffers maximum 
latency (∆) in the beginning and then follows a periodic pattern 
with its capacity available at the end of each periodic instance 
(Figure 3). The value of ∆ depends directly on the maximum 
finishing jitter1 of the server execution, as determined by the 
system scheduler. In certain cases, e.g. in regular TDMA 
schedules, such jitter is eliminated because the server executes in 
a strict periodic fashion, leading to ∆ = TS-CS. Thus, ∆ will vary 
between this best-case value and the worst-case depicted in Figure 
3 in which ∆ = 2*(TS-CS). For the sake of generality we will 
consider such initial latency as given by Equation 1. 

Cs Ts Ts-Cs 

0 

Cs 

As(t) 
A_s(t) 

 

time possible availability pattern 

availability lower bound 

∆ 

Figure 3. Server availability functions AS(t) and A_S(t). 

∆ 

 
                                                                 

1 Finishing jitter refers to the absolute jitter that affects the instant 
in which the server exhausts its capacity within each period. 

 ∆ = (1+β )*(TS-CS) (1) 

 with 

 β = (RS-CS) / (TS-CS) 

Notice that β (0 ≤ β ≤ 1) is a normalized measure of the maximum 
server finishing jitter, while RS (CS ≤ RS ≤ TS) is the maximum 
relative finishing instant of all server instances. To maintain 
independency from the system scheduling policy β = 1 should be 
considered (worst-case). 

For simplicity, in the remainder of the paper we will use the same 
expression availability function for the lower bound function, and 
refer to it as A_S(t) (Equation 2). In [4] this function is called 
server characteristic function, in [7] server supply function and in 
[11] resource supply bound function. 
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4. RESPONSE-TIME ANALYSIS 
A relatively simple but effective way of upper bounding the 
response-time for each task τi within a given server S is to use the 
same reasoning explained in [13] and [1]. The fact that we are 
now using a fully preemptive task model together with a periodic 
server further simplifies the analysis therein presented, which was 
based on non-preemption with inserted idle-time together with a 
background server. 

Therefore, we compute for each task τi and for each instant t the 
maximum load submitted to the server by the task itself after its 
release together with all higher priority tasks. We call this the 
level i submitted load function, Hi(t) (Equation 3). It can be 
determined by the usual methods in fixed-priorities response time 
analysis [3] since the critical instant for each task is not changed 
by the presence of the server [6]. Equation 3 considers ΓΩ sorted 
by decreasing priorities, ∀ i,j i<j ⇔ Pi>Pj. 
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The worst-case response time for task τi, referred to as Ri, can thus 
be obtained as expressed in Lemma 1. 

Lemma 1. Given the task set ΓΩ executed within a server S with 
availability function A_S(t), the worst-case response time Ri for 
task τi∈ ΓΩ is obtained by determining the earliest instant in which 
the maximum level i submitted load Hi(t) matches the least server 
availability A_S(t). 

Proof: Lemma 1 can be proved by considering the definitions of 
both A_S(t) and Hi(t). In fact, A_S(t) stands for the minimum 
execution time that the server can deliver to the application 
counted from t=0. On the other hand, Hi(t) stands for the 
maximum execution time required to execute τi to completion, 
when released at t=0 and considering the maximum interference it 
may suffer by higher priority tasks within the application. Thus, 
the worst-case response time is given by the instant when the least 
availability is just enough to cover the longest requested 
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execution time (Figure 4). If the server, in one or more instances, 
executes before than considered in A_S(t) the response time can 
only be shorter.♦   
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Figure 4. Worst-case response time of task τi. 

With Lemma 1, we can perform a trivial schedulability test as 
stated in theorem 1. 

Theorem 1. The task set ΓΩ executed within a server S with an 
availability function A_S(t) is schedulable if (and only if) ∀ τi∈ ΓΩ   
Ri ≤ Di 

Proof: The if is trivially proved but the only if requires Ri to be an 
accurate value. This depends on the accuracy of the availability 
lower bound A_S(t). In practice, this lower bound will be 
pessimistic because AS(t) will not suffer maximum delay in all 
instances after startup, thus there will always be a given load for 
which some exact worst-case response times are lower than the 
computed Ri. In this case, the test in Theorem 1 will be sufficient, 
only. However, in particular situations, such as regular TDMA 
schedules, A_S(t) = AS(t) and thus the test will be necessary (this is 
why we kept the only if within parenthesis). ♦   

The value of Ri can be determined using Equation 4 or, more 
efficiently, the equivalent Equation 5, which makes use of the 
inverse of the availability function A_S(t), referred to as AS

inv(t). 
This is formalized in Equation 6 (it is referred to as service time 
bound function in [11]).  

 Ri = earliest t:  A_S(t) = Hi (t) (4) 

 ⇔ Ri = earliest t:  t = AS
inv(Hi(t)) (5) 

Formally, inverting A_S(t) requires specifying the value of the 
inverse corresponding to the flat segments of the original 
function. We consider the lowest values of such intervals, as 
indicated in Figure 3, which result in the lowest availability. 

 AS
inv(u) = ∆ + m * TS + (u – m*CS) ,     m =  u/CS  – 1  

 ⇔ AS
inv(u) = (β +  u/CS  ) * (TS – CS ) + u (6) 

 
Equation 5 can be solved iteratively with 

Ri
0=Hi(0)   and   Ri

n+1 = AS
inv(Hi(Ri

n)) 

that either converges to Ri = Ri
n+1 = Ri

n or grows beyond the 

deadline Di, within finite iterations. This can be easily demons-
trated by the fact that, from iteration to iteration, the increment in 
Hi(t) is lower bounded by minj=1..i(Cj). If the whole CPU is 
available to execute the application, then A_S(t) = AS

inv(t) = t and 
Equations 4 and 5 reduce to the usual response time analysis for 
fixed priorities scheduling for a similar task model [3]. 

A simpler but less tight upper bound Ri’ for the response time of 
each task can be obtained considering a linear lower bound to the 
availability function, also proposed in [4] and [11], herein 
referred to as linear availability function A_’S(t) (Equation 7). 
This function is depicted in Figure 5, with an initial latency of ∆, 
such as A_S(t), and then grows linearly with slope α = CS / TS, i.e. 
the server bandwidth. 

 A_’S(t) = (t–∆) * α,    for   t >∆  and 0 otherwise (7) 

The response time upper bounds can be obtained rewriting 
Equation 5 using the inverse of A_’S(t) (Equation 8). 

 Ri’ = earliest t:  t = ∆ + Hi(t)/α (8) 

This allows us to state Theorem 2, which will be particularly 
helpful in the following section. 

Theorem 2. The task set ΓΩ, executed within a server S with 
initial latency ∆ and bandwidth α, is schedulable if  
∀ τi∈ ΓΩ   Ri’ ≤ Di. 

Proof: This can be proved noticing that, for every task τi the 
intersection between Hi(t) and A_’S(t) (i.e. Ri’), is always later 
than or coincident with that between Hi(t) and A_S(t) (i.e. Ri). 
Thus, ∀ τi∈ ΓΩ   Ri ≤ Ri’, proving the theorem. ♦  

5. SERVER DESIGN 
In this section we tackle the opposite problem of the previous one, 
i.e. given an application Ω, which parameters (CS,TS), or 
equivalently (α, ∆), should the server SΩ have so that it requires 
the least system resources and still meets the application time 
constraints? In order to address this problem we will start by 
noticing that such a server should be as tight as possible 
concerning fulfilling the application time constraints, otherwise it 
would over consume system resources. Therefore, using the 
approach presented in the previous section for Theorem 1, we will 
consider that, for each task τi the respective Ri is just on the 
deadline Di. This means that the availability function A_S(t) 
should be such that intersects Hi(t) exactly at t=Di. To achieve 
this, we start by defining the set of deadline points 
DPΩ≡{DPi(Di,Hi(Di)), i=1..NΩ} (Figure 5), which represent the 
lowest availability required for meeting all application deadlines. 
Our purpose, then, is to define A_S(t) so that it is higher than but 
as close as possible to the set of such points. 

In [11] (theorem 5), given a fixed server period TS, the authors 
suggest performing an extensive search for the minimum server 
capacity CS that still allows meeting the tasks deadlines. However, 
the search method is not specified. We suggest using Binary 
Search in the interval [0, TS], which is relatively efficient. For 
example, if a resolution of 1/256 of TS is enough, only 8 iterations 
are needed. 

Correspondingly, we can use the approach suggested in Theorem 
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2 to find the lowest linear bound A_’S(t) that passes above or 
through all deadline points DPi. This is also proposed in [11] 
(theorem 6), where CS is determined as a function of the period TS 
so that A_’S(t) touches at least one deadline point. Notice that all 
task deadlines, i.e. all deadline points, are tested against the linear 
lower bound. 
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Figure 5. Determining the availability function A_S(t). 

However, we are not interested in determining just CS as a 
function of TS but rather in analyzing the space of possible 
solutions (CS, TS) to choose the one that minimizes the use of 
system resources. For this purpose we determine the subset of 
external points, EΩ≡{Ej(xj,yj), j=1..NE} ⊂  DPΩ (Figure 5), that is 
the subset of deadline points through which a linear bound (α, ∆) 
can be drawn that fulfills Theorem 2. Necessarily, such linear 
bound must also respect its boundary constraints namely α ≤ 1 
(the server cannot use more than the total CPU bandwidth) and, 
for each Ej, α ≥ yj /xj (otherwise, ∆<0 and, since α >0, it would 
lead to TS<0 and CS<0). This directly leads to Theorem 3. 

Theorem 3. The task set ΓΩ, executed within a server S with 
initial latency ∆ and bandwidth α, is schedulable if  
∀ τi: DPi ∈  EΩ , Ri’ ≤ Di. 

Proof: Informally, Theorem 3 says that it is sufficient to test the 
schedulability of the external points to guarantee that the task set 
is schedulable (Figure 5). It can be proved just by observing the 
definition of external points. If these points are below a given 
linear availability function, then all other deadline points are and 
thus the whole set is schedulable. ♦  

The determination of the EΩ subset is carried out using a simple 
algorithm that goes through all deadline points in ascending 
deadline order, starting with the assumption that the first deadline 
point is an external point. Notice that the slopes of the segments 
that join every two consecutive external points must be 
monotonically decreasing from the maximum α =1 to the 
minimum α = yNE

 /xNE
. Therefore, the algorithm removes from the 

set of deadline points all those that would violate this decreasing 
slope pattern and the referred limits. At the end, the points that 
remain are the external points. The time complexity of the 
algorithm varies with the characteristics of the task set between 

NΩ and NΩ
2. Also, in general, the number of external points NE is 

substantially smaller than the number of deadline points NΩ (i.e. 
the number of tasks), which contributes to decrease the 
complexity of the remaining part of the process. 

Figure 6 plots the number of external points against the number of 
tasks for 1500 randomly generated sets, each constrained to a total 
bandwidth smaller than but close to 50% and with up to 120 
tasks. It is surprising to see how small the number of external 
points normally is, between 1 and 5, and that there is still a 
tendency for reduction as the number of tasks grows (for large 
task sets, the most frequent number of external points is 1 !). 

 

 

Figure 6. Number of external points in random sets. 

Hence, the use of external points may accelerate substantially the 
execution of repetitive response time based schedulability tests, 
for example in optimization processes, in which the task set 
remains unchanged and several server parameters are tested. This 
is depicted in Figure 7 for several implementations of the test 
corresponding to theorem 6 in [11], to determine CS for 200 
different values of TS, and using random task sets of different 
sizes (each point corresponds to the average of 10 sets with the 
same size). We used a direct implementation in Matlab 
([11](th.6)) and an improved version ([11] (th.6)_imp), as well as 
both cases using external points, (with ext.pt.) and (with 
ext.pt._imp), respectively. The benefits of using external points 
are clear for task sets with more than 8 tasks. 

The set of external points defines a solution space for the server 
design problem. In fact, all linear availabilities A_’S(t) that touch 
at least one external point with a valid slope are possible 
solutions. Valid slopes are those in between the slopes of the 
segments that join each point with the previous and with the next, 
considering the absolute maximum and minimum for the points in 
the extremes. This can be represented by the union of the 
following NE subintervals:  

α ∈ {[1 α(E1,E2)]∪ [α(E1,E2) α(E2,E3)]∪ …∪ [α(ENE-1,ENE) yNE /xNE]} 

∆ 

slope α 
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Figure 7. Speed up by using external points. 

Each of these subintervals corresponds to A_’S(t) lines that pass 
through one external point Ej(xj,yj), j=1..NE, which can be 
characterized by the straight-line Equation 9 (left). 

 y=αj ( x- xj ) + yj   and   ∆j = xj - yj /αj (9) 

Equation 9(right) shows a hyperbolic relationship between α and 
∆ � around each point Ej and also allows determining the respective 
server period TS using Equation 10. 

 Tsj=∆j/((1+β)(1-αj)) (10) 
The complete solution space in terms of the server parameters 
(α, ∆) can be obtained by calculating the following intersection 
for all NE external points: 

 ∩j=1..NE   0 ≤ ∆j ≤ xj - yj /αj  and αj ≤ 1 (11) 

This solution space can equivalently be expressed in terms of the 
server parameters (CS,TS) by inserting ∆j from Equation 9 (right) 
into 10 and replacing αj with Csj/Tsj. The result is the following 
intersection for all NE external points: 

 ∩j=1..NE  Csj ≤ Tsj and  

( )( ) ( )( ) ( )
( )β

βββ
+

+++−++−−
≥

12

1411 2
jjjjjj

j

TsyTsxTsx
Cs  (12) 

Condition 12 is equivalent to the result presented in [11] (theorem 
6). Recall that xj = Dj and yj =Hj(Dj). 

Finally, in order to find one specific solution, we use the cost 
function proposed in [4], which considers both the bandwidth 
directly requested by the server, α=CS /TS, as well as the overhead 
bandwidth implicitly used by the server in context switching 
between applications at the system level. This latter factor can be 
roughly computed as CO/TS where CO is a system parameter 
representing the context switching time. The cost function can 
thus be expressed as F=α+CO/TS. Minimizing F corresponds to 
finding the balance between minimizing α and maximizing TS. 

Again inserting ∆ from Equation 9 (right) into Equation 10 we 
obtain Tsj=Tsj(αj), for each αj subinterval, i.e. each external point. 
Then, using Tsj(αj) within the cost function results in F=F(αj). 

The αj of minimum cost for each subinterval j (referred to as 
αj,min) can be easily determined with a closed formula (Equation 
13) obtained by differentiating F(αj) with respect to αj  and 
calculating the respective root. Whenever αj,min lies outside the 
respective subinterval, the closest extreme is considered for 
minimum. After having determined αj,min for all subintervals 
(j=1..NE) it is then just a matter of selecting the one that generates 
the absolute minimum cost (αmin). It is also necessary to identify 
to which subinterval the αmin value belongs to, in order to 
determine ∆ (Equation 9 right) and then TS (Equation 10). 
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The server parameters generated this way are not optimal due to 
several factors such as the pessimism included in the server initial 
latency ∆, the successive approximations of the effective server 
availability function AS(t) and the use of the deadline points that 
may lead to worse than necessary bandwidth requirements. 
However, concerning the A_S(t) approximation by A_’S(t), i.e. the 
linear bound, it is possible to carry out a simple final 
improvement step. The fact that A_’S(t) touches at least one 
deadline (external) point according to the design method 
presented above, it does not imply that the corresponding A_S(t) 
function also touches one, because ∀ t A_S(t) ≥ A_’S(t). Hence, we 
may allow A_S(t) to actually enter the area bounded by A_’S(t) 
until it also touches one deadline point (this assures that Theorem 
1 is still met). This can be done decreasing CS, increasing TS or a 
combination of both. 

For simplicity and efficiency according to tests with random sets, 
we propose increasing TS, according to Equation 14, which 
corresponds to maintaining the height of the steps in A_S(t) while 
expanding the function to the right. This also leads to a further 
reduction in α. The amount of benefit, however, depends on the 
task set. Using 1000 random task sets with uniformly distributed 
periods, we achieved a best improvement of 8% increase in TS and 
7.4% reduction in α. However, on average, the benefits were 
lower, with 1.8% increase in TS and 1.7% reduction in α. 
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This improvement can be carried out over any non-optimal result 
obtained by any periodic server based method. 

6. EXAMPLE 
To illustrate the design methodology presented above we make 
use of the example suggested in [4]. This example consists of an 
application Ω, with the task set ΓΩ={(Ci,Ti)= (1,4), (1,10), (3,25) 
and (Di=Ti, Ji=0, Pi=1/i)}. Firstly, we obtain the sets of deadline 
points DPΩ={(4,1), (10,4), (25,13)} and external points 
EΩ={(4,1), (25,13)}. Then, using the external points we can 
derive the α subintervals and using expressions 11 and 12 we can 
establish the (α,∆) and (CS,TS) solution spaces, respectively 
(Figure 8). 

In the (α,∆) figure we can see that our solution space is contained 
in the one derived in [4] and thus it is worse, although for a small 
difference (less than 4% in the low values of α). On the other 
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hand, the worst-case time complexity of the method in [4] may 
reach 2NΩ-1, contrasting with the simplicity of our method with a 
worst-case time complexity of NΩ

2. Executing the final 
improvement step with Equation 14 considering CO =0.1016 
generates an operating point (Figure 8) that is slightly better than 
both solution spaces, with (α,∆) = (0.544, 2.182) or equivalently 
(CS,TS) = (1.300, 2.391). Just for comparison, the corner in the 
solid line of Figure 8-a) corresponds to (α,∆) = (0.55, 2.182). 
Figure 9 shows the obtained availability functions (top) and 
variation of the cost function F with respect to TS (bottom).  
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Figure 8. Solution spaces for the given example 

7. SYNCHRONIZATION AMONG TASKS 
In many practical applications there is the need for 
synchronization in the access to shared resources that constitute 
critical sections. There are several protocols specifically 
developed for real-time systems that allow bounding priority 
inversions and blocking intervals as well as preventing deadlocks. 
Our issue here is to discuss whether and how can such protocols 
be used within the temporally partitioned framework considered 
in this paper, with fixed priorities local schedulers. 
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Figure 9. Availability and cost functions for the example 

In this paper, we consider intra-server synchronization, only, i.e. 
synchronization among tasks of the same application (Figure 10), 
which execute within the same partition and require access to 
resources that are exclusive to that application (application 
resources). These tasks eventually cause blocking to one another, 
the duration of which depends on the specific synchronization 
protocol used. Such blocking (application level blocking - Bi

a) 
consists on the execution of critical sections of lower priority 
tasks, i.e. the blocking tasks, while there are higher priority ones 
pending, i.e. the blocked tasks. Therefore, the application level 
blocking Bi

a causes interference to the blocked tasks, delaying 
them, and consequently must be considered in the respective level 
i submitted load Hi(t), which must be updated accordingly 
(Equation 15). 

  ∑
=

++=
i

j
jjj

a
ii CTJtBtH

1

*/)()(  (15) 

τ2 
 

blocking of τ1 
 

shared resource time 

Figure 10. Intra-server blocking. 

τ1 
 

server-1 
server 
suspension 

server-1 

 

101



Moreover, we can state Lemma 2 with respect to the properties of 
the synchronization protocols. 

Lemma 2. All properties of any synchronization protocol applied 
to shared application resources within a server S, remain the same 
as established in a non-partitioned processing system, namely the 
number and duration of priority inversions and deadlock 
avoidance. 

Proof: To prove Lemma 2 notice that semaphore locking and 
unlocking and the related blocking take place within the 
application, only, during the execution of the respective server. 
When the server is suspended until the next periodic instance, the 
status of all semaphores stays unaltered. Therefore, from the point 
of view of the synchronization protocol, whichever it is, these 
periods of time have no impact on the protocol properties, except 
on the inflation of the blocking that, obviously, can now extend 
across consecutive server instances. However, this extra delay due 
to server suspension is the same that the task would suffer just 
because of executing within a partition and that is already 
accounted for in the availability function of the server and should 
not be considered blocking. Thus, excluding this suspension 
delay, the application level blocking (Bi

a) that a task can suffer is 
the same as it would be if the respective application was executed 
in a dedicated system, i.e. non-partitioned. ♦  

Lemma 2 plus the updated load function lead to Theorem 4: 

Theorem 4. The response time analysis and the server design 
method proposed previously in this paper apply equally when the 
task model considers application level blocking as long as:  

• the updated load function is used (Equation 15); 

• the application tasks can always be suspended at any 
point of their execution when the server capacity is 
exhausted or the server is preempted as determined by the 
system scheduler. 

Proof: The proof of this theorem can be easily established by 
noting that, from a response time analysis point of view, and 
given Lemma 2, the blocking just represents extra load that is 
accounted for in the updated load function. Thus, all the reasoning 
behind the previously shown analysis that is based on the 
matching between server availability and submitted load still 
applies. The second requirement guarantees that there is no 
coupling between the application level synchronization protocol 
and the system level scheduling. This assures that a server does 
not execute more than its capacity in any instance, not 
causing/suffering extra interference on/from other servers running 
in the system, thus behaving according to our periodic model.♦   

The second requirement of Theorem 4 may conflict with 
synchronization protocols based on non-preemption. Thus, either 
preemptive protocols are used, e.g. Priority Inheritance (PIP), 
Priority Ceiling (PCP) and Stack Resource Protocols (SRP), or 
the execution platform must be able to separate preemption within 
the application from preemption at the system level and assuring 
that the latter is always possible, even when the server is 
executing a local non-preemptive application section. 

8. CONCLUSION 
This paper considered the case in which an application composed 
by several tasks executes within a periodic server with a fixed 
priorities local scheduling policy. Two main results are presented, 
the response time analysis for such tasks and the design of the 
server to allow fulfilling the application time constraints using the 
least system resources. 

The former contribution is a generalization of the well-known 
worst-case response time analysis for fixed-priority systems [3] 
that copes with the limited processor availability delivered by a 
server and it is based on the analysis previously developed for 
traffic scheduling within the asynchronous messaging system of 
FTT-CAN [1]. It is also equivalent to the one in [11] but includes 
a more complete task model with release jitter, deadlines earlier 
than periods and synchronization blocking. 

The latter contribution goes in the same direction as that of [4] but 
presents a different method that leads to a more favorable 
compromise between tightness of the solution (slightly lower) and 
complexity of the process (substantially lower). Again, the 
presented method also bears similarities with the one in [11] but, 
not only it includes a more complete task model as referred above, 
as it also presents an heuristic to deduce the server parameters that 
minimize resource utilization taking into account the context 
switch overhead at the system level. Moreover, we present a final 
optimization step that is applicable to our method as well as to [4] 
and [11], which reduces the required server utilization when a 
linear bound to the server service is used. 

A spin-off result that seems to have potential for more generalized 
use is the utilization of external points in the response time 
analysis. Further work will address the case of inter-server 
synchronization blocking as well as non-preemption at the 
application level and its impact at the system level. 
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