
Scheduling within Temporal Partitions:
Response-time Analysis and Server Design

Luis Almeida
LSE-IEETA/DET

Universidade de Aveiro
Aveiro, Portugal

lda@det.ua.pt

Paulo Pedreiras
LSE-IEETA/DET

Universidade de Aveiro
Aveiro, Portugal

pedreiras@det.ua.pt

ABSTRACT
As the bandwidth of CPUs and networks continues to grow, it
becomes more attractive, for efficiency reasons, to share such
resources among several applications with the minimum level of
interference. This can be achieved using temporal partitions, with
each application assigned to its own partition and executing as if
it was executing alone on a resource with lower bandwidth. The
partitions are associated to servers that execute the application
tasks according to a given application-level scheduler. On the
other hand, the set of servers is scheduled by a system-level
scheduler. This paper addresses the particular case of fixed
priorities-based application-level schedulers together with a
periodic server model at the system level. It starts with an
adequate response time analysis based on the notion of server
availability for a known server. Then it addresses the inverse
problem of designing a server with minimum system-level
resource requirements to fulfill the application time constraints. In
this context, the paper shows that response time based
schedulability tests with linear time bounds do not need to
consider all tasks but just a small subset, which may lead to
substantial speed-ups. The proposed method goes a step further
with respect to other recent works in the literature by considering
a more complete task model, effectively computing the server
parameters and establishing a better trade-off concerning
complexity and tightness.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design – Real-time
systems and embedded systems.

General Terms
Algorithms, Design, Theory.

Keywords
Real-time systems, real-time scheduling, hierarchical scheduling,
response-time analysis.

1. INTRODUCTION
Hierarchical scheduling has been generating a considerable
interest, recently, due to its ability to separate the concerns of
scheduling at the system and application levels. It is a
fundamental brick in the current trend towards higher integration
and flexibility in embedded systems [8], which opens the way to
higher efficiency and lower costs by means of resource sharing, as
well as to higher resilience to hardware failures by means of
dynamic reallocation of computing or communication entities [7].

Hierarchical scheduling is intimately connected with resource
temporal partitioning according to which a shared resource, e.g.
CPU or network, is used by several complex applications each of
which is composed of a set of entities, e.g. tasks or streams. These
entities must be scheduled internally to the application inside one
specific resource partition to which they were allocated. At a
higher level, all resource partitions are scheduled using a given
system-level policy. The concept of server is well adapted to this
level, supporting temporal isolation among partitions (Figure 1).

System level

Task 1

Application 1

Application 2
Application n

Application level

Task 2 Task m

Application
scheduler

System
scheduler

Servers
(capacity Csi,

period Tsi)

Fixed priorities

Figure 1. Hierarchical scheduling framework.

However, two problems arise: how to derive real-time guarantees
for the applications running within each server and, conversely,
how to design the server for a given application so that it fulfils
the application requirements with the least resource utilization.

This paper addresses both problems. It relates directly to recent
work available in the literature and constitutes a further
contribution to the analysis and design of temporally partitioned

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’04, September 27---29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009...$5.00.

95

systems. A preliminary work-in-progress version was presented in
[10]. The related work is discussed in section 2, which also
highlights the contributions of this paper, section 3 presents the
task model, section 4 describes the response-time analysis and
section 5 shows the server design approach, with an example in
section 6. Finally, section 7 extends the previous results including
intra-server blocking and section 8 concludes the paper.

2. RELATED WORK
The problem of hierarchical scheduling bears many resemblances
with other scheduling problems that have been tackled in the past,
such as those regarding exclusions [5] and inserted idle-time
[9][2]. In fact, looking to the system from the perspective of one
application executing within a server, i.e. a temporal partition, the
periods of time in which the respective server cannot execute, e.g.
because another server has been scheduled at the system level, can
be seen as exclusion periods or periods of inserted idle-time.

Moreover, within specific scopes, such as real-time
communication over shared media, some forms of hierarchical
scheduling/ temporal partitioning have long been used. This is the
case with TDMA (as in TTP/C), in which each node has one or
more dedicated slots in the TDMA round to transmit its traffic, as
well as with the multi-phased cyclic framework (as in WorldFIP,
FlexRay or FTT-CAN [1]), with several phases used in sequence
within a micro-cycle, each for a given type of traffic (Figure 2). In
both cases, either slots or phases can be taken as periodic servers
within which several message streams must be scheduled.

3

TDMA round with 3 nodes

Micro-cycle with 2 phases

1 2 3 1 2

sync async sync async sync

Bus time

Bus time

 Figure 2. Common partitioning schemes for shared buses used in
real-time communication .

However, recent work has brought to light new results that are
more general and abstract away the specific application scope. In
[7] the authors use the concepts of virtual resource, virtual time,
bounded-delay resource partitioning and server supply function to
deduce real-time guarantees for hierarchical partition scheduling.
In [6] the focus is on hierarchical resource partitioning using fixed
priorities local schedulers and both deferrable and sporadic
servers. It presents a response-time analysis as well as utilization
bounds. In [4], the authors deduce a tighter schedulability test for
partitions using fixed priorities local schedulers and address the
issue of server design in order to meet the application time
constraints. In [12], the authors present a response time analysis
for a composed model in which EDF local scheduling is executed
within a system-level fixed priorities framework. The task model
considers several practical issues such as release jitter and inter-
task synchronization blocking. Finally, in [11] the authors present
an analysis for hierarchical partition scheduling, considering both
fixed priorities and EDF local scheduling, together with a generic
periodic resource model. A general scheduling interface is also
presented that facilitates the composition of partitions and
derivation of real-time guarantees. The paper also addresses the

inverse problem of defining a partition in order to meet a given set
of real-time requirements.

This paper relates closely to the works referred above. It is
interesting to note that these works are very recent and some of
them were submitted in parallel, leading to overlapping of short
parts. Our motivation was to extend the work started in [13] and
later improved in [1], in which we developed a response-time
analysis for the asynchronous traffic within a double phase cyclic
framework as depicted in Figure 2. In this paper we use the same
reasoning but with a more general model that fits well in task
scheduling. We will consider a fixed priorities local scheduler
together with a periodic server model to manage a resource
partition. Then, we derive upper bounds to the worst-case
response time of tasks executing within a given server. We will
also use the concept of server supply function as in [7], or
resource supply in [11], but we will refer to it as server
availability function for coherence with our previous work. The
response-time analysis we propose is similar to the one for fixed
priorities presented in [11] but we extend it to cover a more
realistic task model that includes deadlines shorter than or equal
to periods, release jitter and synchronization blocking. Our
response-time analysis is also equivalent, despite different, to the
one in [6] but we believe ours is more flexible since it can be
easily adapted to irregular partitions as in [1] and [14], by
describing them analytically in the respective server availability
function (see further on).

The server design problem is addressed in both [4] and [11].
When compared to the former one, our method is simpler but less
tight and, as shown later, may represent a more favorable
compromise between tightness and complexity in certain
circumstances. On the other hand, [11] follows the same
reasoning as we did in [13] of matching the application demand
with the server supply to derive the worst-case response time. The
corresponding result presented in [11] is equivalent to the one we
presented in [10]. In this paper we extend that work by generating
the server period that minimizes the server bandwidth together
with the overhead caused by context switching at the system level,
using the cost function proposed in [4]. Finally, we consider
release jitter as well as intra-server blocking in our task model,
which none of the other approaches does.

In summary, this paper builds upon the work in [13],[1], [4] and
[11] and proposes the following:

• extension of the task model to a more realistic one;

• alternative way of deducing the solution space for the
server parameters;

• new method to search the server solution space based
on the new concept of application external points;

• full computation of the server parameters that minimize
a given cost function.

3. TASK MODEL
In this work, we consider that a given active resource, say a CPU,
is used to execute a set of independent applications. Each
application Ω is composed by a set ΓΩ of NΩ tasks,
ΓΩ ≡ {τi (Ci,Ti,Di,Ji,Pi), i=1..NΩ}, in which each task, at this point,
will be considered independent and fully preemptive. Each task τi

96

is characterized by a period Ti, a worst-case execution time Ci, a
relative deadline Di that is shorter than or equal to the respective
period, a maximum release jitter of Ji and a fixed priority Pi that
may possibly be derived from the period, the deadline, or any sub-
optimal criterion. Also, the set of tasks ΓΩ executes by priority
order within a periodic server SΩ, which is characterized, at a
system level, by a period TS and a capacity CS. The server can be
of any type as long as, under continuous demand, it behaves like a
periodic task executing for CS time units within every TS time
units interval. This is also the server model considered in [11] and
[4] ([6] considers deferrable and sporadic models, only).

The system-level scheduler that schedules partitions, and the
current system load, determine when the server is available to
execute application tasks. We thus define the server availability
function, AS(t), which returns for each instant t the cumulative
CPU time available for the application to execute since an
arbitrary time origin. For static system level scheduling such as
TDMA (Figure 2), AS(t) may be exactly characterized a priori.
However, if an on-line system-level scheduling policy is used, the
specific pattern of AS(t) may be difficult to predict. Therefore, for
the sake of independence with respect to the system-level
scheduling policy and load, it is helpful to use a lower bound
A_S(t) that assures that the cumulative CPU time available for an
application is never smaller than a given value.

In order to determine a lower bound to the availability function,
we can use the same reasoning as in [4] or [11]. Basically, it
considers the worst-case server availability pattern with respect to
the arbitrary time origin in which the server suffers maximum
latency (∆) in the beginning and then follows a periodic pattern
with its capacity available at the end of each periodic instance
(Figure 3). The value of ∆ depends directly on the maximum
finishing jitter1 of the server execution, as determined by the
system scheduler. In certain cases, e.g. in regular TDMA
schedules, such jitter is eliminated because the server executes in
a strict periodic fashion, leading to ∆ = TS-CS. Thus, ∆ will vary
between this best-case value and the worst-case depicted in Figure
3 in which ∆ = 2*(TS-CS). For the sake of generality we will
consider such initial latency as given by Equation 1.

Cs Ts Ts-Cs

0

Cs

As(t)
A_s(t)

time possible availability pattern

availability lower bound

∆

Figure 3. Server availability functions AS(t) and A_S(t).

∆

1 Finishing jitter refers to the absolute jitter that affects the instant
in which the server exhausts its capacity within each period.

 ∆ = (1+β)*(TS-CS) (1)

 with

 β = (RS-CS) / (TS-CS)

Notice that β (0 ≤ β ≤ 1) is a normalized measure of the maximum
server finishing jitter, while RS (CS ≤ RS ≤ TS) is the maximum
relative finishing instant of all server instances. To maintain
independency from the system scheduling policy β = 1 should be
considered (worst-case).

For simplicity, in the remainder of the paper we will use the same
expression availability function for the lower bound function, and
refer to it as A_S(t) (Equation 2). In [4] this function is called
server characteristic function, in [7] server supply function and in
[11] resource supply bound function.

 ()()
() ()

() S

SSSS

SSSSSS

Ttk

TktCTkCk

CTktTkCTkt

t

tA

/

1,*1

**,*

,0

)(_

∆−=







++∆<≤++∆+
++∆<≤+∆−+∆−

∆<
=

 (2)

4. RESPONSE-TIME ANALYSIS
A relatively simple but effective way of upper bounding the
response-time for each task τi within a given server S is to use the
same reasoning explained in [13] and [1]. The fact that we are
now using a fully preemptive task model together with a periodic
server further simplifies the analysis therein presented, which was
based on non-preemption with inserted idle-time together with a
background server.

Therefore, we compute for each task τi and for each instant t the
maximum load submitted to the server by the task itself after its
release together with all higher priority tasks. We call this the
level i submitted load function, Hi(t) (Equation 3). It can be
determined by the usual methods in fixed-priorities response time
analysis [3] since the critical instant for each task is not changed
by the presence of the server [6]. Equation 3 considers ΓΩ sorted
by decreasing priorities, ∀ i,j i<j ⇔ Pi>Pj.

  ∑
=

+=
i

j
jjji CTJttH

1

*/)()((3)

The worst-case response time for task τi, referred to as Ri, can thus
be obtained as expressed in Lemma 1.

Lemma 1. Given the task set ΓΩ executed within a server S with
availability function A_S(t), the worst-case response time Ri for
task τi∈ ΓΩ is obtained by determining the earliest instant in which
the maximum level i submitted load Hi(t) matches the least server
availability A_S(t).

Proof: Lemma 1 can be proved by considering the definitions of
both A_S(t) and Hi(t). In fact, A_S(t) stands for the minimum
execution time that the server can deliver to the application
counted from t=0. On the other hand, Hi(t) stands for the
maximum execution time required to execute τi to completion,
when released at t=0 and considering the maximum interference it
may suffer by higher priority tasks within the application. Thus,
the worst-case response time is given by the instant when the least
availability is just enough to cover the longest requested

97

execution time (Figure 4). If the server, in one or more instances,
executes before than considered in A_S(t) the response time can
only be shorter.♦

0 5 10 15 20
0

2

4

6

8

10

12

le
ve

l i
 s

u
b

m
itt

e
d

 lo
a

d

tim e

A_
s
(t)

H
i
(t)

 R
i

Figure 4. Worst-case response time of task τi.

With Lemma 1, we can perform a trivial schedulability test as
stated in theorem 1.

Theorem 1. The task set ΓΩ executed within a server S with an
availability function A_S(t) is schedulable if (and only if) ∀ τi∈ ΓΩ
Ri ≤ Di

Proof: The if is trivially proved but the only if requires Ri to be an
accurate value. This depends on the accuracy of the availability
lower bound A_S(t). In practice, this lower bound will be
pessimistic because AS(t) will not suffer maximum delay in all
instances after startup, thus there will always be a given load for
which some exact worst-case response times are lower than the
computed Ri. In this case, the test in Theorem 1 will be sufficient,
only. However, in particular situations, such as regular TDMA
schedules, A_S(t) = AS(t) and thus the test will be necessary (this is
why we kept the only if within parenthesis). ♦

The value of Ri can be determined using Equation 4 or, more
efficiently, the equivalent Equation 5, which makes use of the
inverse of the availability function A_S(t), referred to as AS

inv(t).
This is formalized in Equation 6 (it is referred to as service time
bound function in [11]).

 Ri = earliest t: A_S(t) = Hi (t) (4)

 ⇔ Ri = earliest t: t = AS
inv(Hi(t)) (5)

Formally, inverting A_S(t) requires specifying the value of the
inverse corresponding to the flat segments of the original
function. We consider the lowest values of such intervals, as
indicated in Figure 3, which result in the lowest availability.

 AS
inv(u) = ∆ + m * TS + (u – m*CS) , m =  u/CS – 1

 ⇔ AS
inv(u) = (β +  u/CS) * (TS – CS) + u (6)

Equation 5 can be solved iteratively with

Ri
0=Hi(0) and Ri

n+1 = AS
inv(Hi(Ri

n))

that either converges to Ri = Ri
n+1 = Ri

n or grows beyond the

deadline Di, within finite iterations. This can be easily demons-
trated by the fact that, from iteration to iteration, the increment in
Hi(t) is lower bounded by minj=1..i(Cj). If the whole CPU is
available to execute the application, then A_S(t) = AS

inv(t) = t and
Equations 4 and 5 reduce to the usual response time analysis for
fixed priorities scheduling for a similar task model [3].

A simpler but less tight upper bound Ri’ for the response time of
each task can be obtained considering a linear lower bound to the
availability function, also proposed in [4] and [11], herein
referred to as linear availability function A_’S(t) (Equation 7).
This function is depicted in Figure 5, with an initial latency of ∆,
such as A_S(t), and then grows linearly with slope α = CS / TS, i.e.
the server bandwidth.

 A_’S(t) = (t–∆) * α, for t >∆ and 0 otherwise (7)

The response time upper bounds can be obtained rewriting
Equation 5 using the inverse of A_’S(t) (Equation 8).

 Ri’ = earliest t: t = ∆ + Hi(t)/α (8)

This allows us to state Theorem 2, which will be particularly
helpful in the following section.

Theorem 2. The task set ΓΩ, executed within a server S with
initial latency ∆ and bandwidth α, is schedulable if
∀ τi∈ ΓΩ Ri’ ≤ Di.

Proof: This can be proved noticing that, for every task τi the
intersection between Hi(t) and A_’S(t) (i.e. Ri’), is always later
than or coincident with that between Hi(t) and A_S(t) (i.e. Ri).
Thus, ∀ τi∈ ΓΩ Ri ≤ Ri’, proving the theorem. ♦

5. SERVER DESIGN
In this section we tackle the opposite problem of the previous one,
i.e. given an application Ω, which parameters (CS,TS), or
equivalently (α, ∆), should the server SΩ have so that it requires
the least system resources and still meets the application time
constraints? In order to address this problem we will start by
noticing that such a server should be as tight as possible
concerning fulfilling the application time constraints, otherwise it
would over consume system resources. Therefore, using the
approach presented in the previous section for Theorem 1, we will
consider that, for each task τi the respective Ri is just on the
deadline Di. This means that the availability function A_S(t)
should be such that intersects Hi(t) exactly at t=Di. To achieve
this, we start by defining the set of deadline points
DPΩ≡{DPi(Di,Hi(Di)), i=1..NΩ} (Figure 5), which represent the
lowest availability required for meeting all application deadlines.
Our purpose, then, is to define A_S(t) so that it is higher than but
as close as possible to the set of such points.

In [11] (theorem 5), given a fixed server period TS, the authors
suggest performing an extensive search for the minimum server
capacity CS that still allows meeting the tasks deadlines. However,
the search method is not specified. We suggest using Binary
Search in the interval [0, TS], which is relatively efficient. For
example, if a resolution of 1/256 of TS is enough, only 8 iterations
are needed.

Correspondingly, we can use the approach suggested in Theorem

98

2 to find the lowest linear bound A_’S(t) that passes above or
through all deadline points DPi. This is also proposed in [11]
(theorem 6), where CS is determined as a function of the period TS
so that A_’S(t) touches at least one deadline point. Notice that all
task deadlines, i.e. all deadline points, are tested against the linear
lower bound.

0 5 10 15 20
0

2

4

6

8

10

12

D
i

H
i(D

i)

deadline points
external points
A_

S
(t)

A_'
S

(t)

Figure 5. Determining the availability function A_S(t).

However, we are not interested in determining just CS as a
function of TS but rather in analyzing the space of possible
solutions (CS, TS) to choose the one that minimizes the use of
system resources. For this purpose we determine the subset of
external points, EΩ≡{Ej(xj,yj), j=1..NE} ⊂ DPΩ (Figure 5), that is
the subset of deadline points through which a linear bound (α, ∆)
can be drawn that fulfills Theorem 2. Necessarily, such linear
bound must also respect its boundary constraints namely α ≤ 1
(the server cannot use more than the total CPU bandwidth) and,
for each Ej, α ≥ yj /xj (otherwise, ∆<0 and, since α >0, it would
lead to TS<0 and CS<0). This directly leads to Theorem 3.

Theorem 3. The task set ΓΩ, executed within a server S with
initial latency ∆ and bandwidth α, is schedulable if
∀ τi: DPi ∈ EΩ , Ri’ ≤ Di.

Proof: Informally, Theorem 3 says that it is sufficient to test the
schedulability of the external points to guarantee that the task set
is schedulable (Figure 5). It can be proved just by observing the
definition of external points. If these points are below a given
linear availability function, then all other deadline points are and
thus the whole set is schedulable. ♦

The determination of the EΩ subset is carried out using a simple
algorithm that goes through all deadline points in ascending
deadline order, starting with the assumption that the first deadline
point is an external point. Notice that the slopes of the segments
that join every two consecutive external points must be
monotonically decreasing from the maximum α =1 to the
minimum α = yNE

 /xNE
. Therefore, the algorithm removes from the

set of deadline points all those that would violate this decreasing
slope pattern and the referred limits. At the end, the points that
remain are the external points. The time complexity of the
algorithm varies with the characteristics of the task set between

NΩ and NΩ
2. Also, in general, the number of external points NE is

substantially smaller than the number of deadline points NΩ (i.e.
the number of tasks), which contributes to decrease the
complexity of the remaining part of the process.

Figure 6 plots the number of external points against the number of
tasks for 1500 randomly generated sets, each constrained to a total
bandwidth smaller than but close to 50% and with up to 120
tasks. It is surprising to see how small the number of external
points normally is, between 1 and 5, and that there is still a
tendency for reduction as the number of tasks grows (for large
task sets, the most frequent number of external points is 1 !).

Figure 6. Number of external points in random sets.

Hence, the use of external points may accelerate substantially the
execution of repetitive response time based schedulability tests,
for example in optimization processes, in which the task set
remains unchanged and several server parameters are tested. This
is depicted in Figure 7 for several implementations of the test
corresponding to theorem 6 in [11], to determine CS for 200
different values of TS, and using random task sets of different
sizes (each point corresponds to the average of 10 sets with the
same size). We used a direct implementation in Matlab
([11](th.6)) and an improved version ([11] (th.6)_imp), as well as
both cases using external points, (with ext.pt.) and (with
ext.pt._imp), respectively. The benefits of using external points
are clear for task sets with more than 8 tasks.

The set of external points defines a solution space for the server
design problem. In fact, all linear availabilities A_’S(t) that touch
at least one external point with a valid slope are possible
solutions. Valid slopes are those in between the slopes of the
segments that join each point with the previous and with the next,
considering the absolute maximum and minimum for the points in
the extremes. This can be represented by the union of the
following NE subintervals:

α ∈ {[1 α(E1,E2)]∪ [α(E1,E2) α(E2,E3)]∪ …∪ [α(ENE-1,ENE) yNE /xNE]}

∆

slope α

99

0 2 0 4 0 6 0 8 0 1 00
0

0 .2

0 .4

0 .6

0 .8

1

N um b er o f tas k p e r tas ks e t

E
x

e
c

u
ti

o
n

 t
im

e
 i

n
 s

e
c

o
n

d
s w ith e xt.p t._ im p

[1 1](th.6)_ im p
w ith e xt.p t.
[1 1](th.6)

Figure 7. Speed up by using external points.

Each of these subintervals corresponds to A_’S(t) lines that pass
through one external point Ej(xj,yj), j=1..NE, which can be
characterized by the straight-line Equation 9 (left).

 y=αj (x- xj) + yj and ∆j = xj - yj /αj (9)

Equation 9(right) shows a hyperbolic relationship between α and
∆ � around each point Ej and also allows determining the respective
server period TS using Equation 10.

 Tsj=∆j/((1+β)(1-αj)) (10)
The complete solution space in terms of the server parameters
(α, ∆) can be obtained by calculating the following intersection
for all NE external points:

 ∩j=1..NE 0 ≤ ∆j ≤ xj - yj /αj and αj ≤ 1 (11)

This solution space can equivalently be expressed in terms of the
server parameters (CS,TS) by inserting ∆j from Equation 9 (right)
into 10 and replacing αj with Csj/Tsj. The result is the following
intersection for all NE external points:

 ∩j=1..NE Csj ≤ Tsj and

()() ()() ()
()β

βββ
+

+++−++−−
≥

12

1411 2
jjjjjj

j

TsyTsxTsx
Cs (12)

Condition 12 is equivalent to the result presented in [11] (theorem
6). Recall that xj = Dj and yj =Hj(Dj).

Finally, in order to find one specific solution, we use the cost
function proposed in [4], which considers both the bandwidth
directly requested by the server, α=CS /TS, as well as the overhead
bandwidth implicitly used by the server in context switching
between applications at the system level. This latter factor can be
roughly computed as CO/TS where CO is a system parameter
representing the context switching time. The cost function can
thus be expressed as F=α+CO/TS. Minimizing F corresponds to
finding the balance between minimizing α and maximizing TS.

Again inserting ∆ from Equation 9 (right) into Equation 10 we
obtain Tsj=Tsj(αj), for each αj subinterval, i.e. each external point.
Then, using Tsj(αj) within the cost function results in F=F(αj).

The αj of minimum cost for each subinterval j (referred to as
αj,min) can be easily determined with a closed formula (Equation
13) obtained by differentiating F(αj) with respect to αj and
calculating the respective root. Whenever αj,min lies outside the
respective subinterval, the closest extreme is considered for
minimum. After having determined αj,min for all subintervals
(j=1..NE) it is then just a matter of selecting the one that generates
the absolute minimum cost (αmin). It is also necessary to identify
to which subinterval the αmin value belongs to, in order to
determine ∆ (Equation 9 right) and then TS (Equation 10).










 +−+−
−+=

jj

OjOj
jjj xy

CxCy
xy

/

)*)1(/()*)1((
11*/min,

ββ
α

 (13)

The server parameters generated this way are not optimal due to
several factors such as the pessimism included in the server initial
latency ∆, the successive approximations of the effective server
availability function AS(t) and the use of the deadline points that
may lead to worse than necessary bandwidth requirements.
However, concerning the A_S(t) approximation by A_’S(t), i.e. the
linear bound, it is possible to carry out a simple final
improvement step. The fact that A_’S(t) touches at least one
deadline (external) point according to the design method
presented above, it does not imply that the corresponding A_S(t)
function also touches one, because ∀ t A_S(t) ≥ A_’S(t). Hence, we
may allow A_S(t) to actually enter the area bounded by A_’S(t)
until it also touches one deadline point (this assures that Theorem
1 is still met). This can be done decreasing CS, increasing TS or a
combination of both.

For simplicity and efficiency according to tests with random sets,
we propose increasing TS, according to Equation 14, which
corresponds to maintaining the height of the steps in A_S(t) while
expanding the function to the right. This also leads to a further
reduction in α. The amount of benefit, however, depends on the
task set. Using 1000 random task sets with uniformly distributed
periods, we achieved a best improvement of 8% increase in TS and
7.4% reduction in α. However, on average, the benefits were
lower, with 1.8% increase in TS and 1.7% reduction in α.

  





++

−
+=

Ω=
SSi

ii
inv
Si

Ni
SimpS TCD

DHAD
TT

/)*)1((

))((
min

..1
, β

 (14)

This improvement can be carried out over any non-optimal result
obtained by any periodic server based method.

6. EXAMPLE
To illustrate the design methodology presented above we make
use of the example suggested in [4]. This example consists of an
application Ω, with the task set ΓΩ={(Ci,Ti)= (1,4), (1,10), (3,25)
and (Di=Ti, Ji=0, Pi=1/i)}. Firstly, we obtain the sets of deadline
points DPΩ={(4,1), (10,4), (25,13)} and external points
EΩ={(4,1), (25,13)}. Then, using the external points we can
derive the α subintervals and using expressions 11 and 12 we can
establish the (α,∆) and (CS,TS) solution spaces, respectively
(Figure 8).

In the (α,∆) figure we can see that our solution space is contained
in the one derived in [4] and thus it is worse, although for a small
difference (less than 4% in the low values of α). On the other

1

1

2

3
4

3

2

4

100

hand, the worst-case time complexity of the method in [4] may
reach 2NΩ-1, contrasting with the simplicity of our method with a
worst-case time complexity of NΩ

2. Executing the final
improvement step with Equation 14 considering CO =0.1016
generates an operating point (Figure 8) that is slightly better than
both solution spaces, with (α,∆) = (0.544, 2.182) or equivalently
(CS,TS) = (1.300, 2.391). Just for comparison, the corner in the
solid line of Figure 8-a) corresponds to (α,∆) = (0.55, 2.182).
Figure 9 shows the obtained availability functions (top) and
variation of the cost function F with respect to TS (bottom).

0 0 .2 0 .4 0 .6 0 .8 1
0

0 .5

1

1 .5

2

2 .5

3

alfa

d
e

lta

O ur so lution space
So lution space in [4]

O perating po int
with im proved Ts

a) (α,∆) solution space

0 1 2 3 4 5
0

1

2

3

4

5

Cs1
Cs2
Ts
m ax(Csj)

(Cs,Ts) so lution space
Cs

Ts

Operational po int
with improved Ts

b) (Cs,Ts) solution space

Figure 8. Solution spaces for the given example

7. SYNCHRONIZATION AMONG TASKS
In many practical applications there is the need for
synchronization in the access to shared resources that constitute
critical sections. There are several protocols specifically
developed for real-time systems that allow bounding priority
inversions and blocking intervals as well as preventing deadlocks.
Our issue here is to discuss whether and how can such protocols
be used within the temporally partitioned framework considered
in this paper, with fixed priorities local schedulers.

0 5 10 15 20 25
0

5

10

15
o deadline points
+ external points

A_s(t)
A_'s(t)

t

a) Availability functions plus deadline and external points

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

alfa
Co overhead
Total bandwid th

Ts

F

b) cost function with respect to Ts

Figure 9. Availability and cost functions for the example

In this paper, we consider intra-server synchronization, only, i.e.
synchronization among tasks of the same application (Figure 10),
which execute within the same partition and require access to
resources that are exclusive to that application (application
resources). These tasks eventually cause blocking to one another,
the duration of which depends on the specific synchronization
protocol used. Such blocking (application level blocking - Bi

a)
consists on the execution of critical sections of lower priority
tasks, i.e. the blocking tasks, while there are higher priority ones
pending, i.e. the blocked tasks. Therefore, the application level
blocking Bi

a causes interference to the blocked tasks, delaying
them, and consequently must be considered in the respective level
i submitted load Hi(t), which must be updated accordingly
(Equation 15).

  ∑
=

++=
i

j
jjj

a
ii CTJtBtH

1

*/)()((15)

τ2

blocking of τ1

shared resource time

Figure 10. Intra-server blocking.

τ1

server-1
server
suspension

server-1

101

Moreover, we can state Lemma 2 with respect to the properties of
the synchronization protocols.

Lemma 2. All properties of any synchronization protocol applied
to shared application resources within a server S, remain the same
as established in a non-partitioned processing system, namely the
number and duration of priority inversions and deadlock
avoidance.

Proof: To prove Lemma 2 notice that semaphore locking and
unlocking and the related blocking take place within the
application, only, during the execution of the respective server.
When the server is suspended until the next periodic instance, the
status of all semaphores stays unaltered. Therefore, from the point
of view of the synchronization protocol, whichever it is, these
periods of time have no impact on the protocol properties, except
on the inflation of the blocking that, obviously, can now extend
across consecutive server instances. However, this extra delay due
to server suspension is the same that the task would suffer just
because of executing within a partition and that is already
accounted for in the availability function of the server and should
not be considered blocking. Thus, excluding this suspension
delay, the application level blocking (Bi

a) that a task can suffer is
the same as it would be if the respective application was executed
in a dedicated system, i.e. non-partitioned. ♦

Lemma 2 plus the updated load function lead to Theorem 4:

Theorem 4. The response time analysis and the server design
method proposed previously in this paper apply equally when the
task model considers application level blocking as long as:

• the updated load function is used (Equation 15);

• the application tasks can always be suspended at any
point of their execution when the server capacity is
exhausted or the server is preempted as determined by the
system scheduler.

Proof: The proof of this theorem can be easily established by
noting that, from a response time analysis point of view, and
given Lemma 2, the blocking just represents extra load that is
accounted for in the updated load function. Thus, all the reasoning
behind the previously shown analysis that is based on the
matching between server availability and submitted load still
applies. The second requirement guarantees that there is no
coupling between the application level synchronization protocol
and the system level scheduling. This assures that a server does
not execute more than its capacity in any instance, not
causing/suffering extra interference on/from other servers running
in the system, thus behaving according to our periodic model.♦

The second requirement of Theorem 4 may conflict with
synchronization protocols based on non-preemption. Thus, either
preemptive protocols are used, e.g. Priority Inheritance (PIP),
Priority Ceiling (PCP) and Stack Resource Protocols (SRP), or
the execution platform must be able to separate preemption within
the application from preemption at the system level and assuring
that the latter is always possible, even when the server is
executing a local non-preemptive application section.

8. CONCLUSION
This paper considered the case in which an application composed
by several tasks executes within a periodic server with a fixed
priorities local scheduling policy. Two main results are presented,
the response time analysis for such tasks and the design of the
server to allow fulfilling the application time constraints using the
least system resources.

The former contribution is a generalization of the well-known
worst-case response time analysis for fixed-priority systems [3]
that copes with the limited processor availability delivered by a
server and it is based on the analysis previously developed for
traffic scheduling within the asynchronous messaging system of
FTT-CAN [1]. It is also equivalent to the one in [11] but includes
a more complete task model with release jitter, deadlines earlier
than periods and synchronization blocking.

The latter contribution goes in the same direction as that of [4] but
presents a different method that leads to a more favorable
compromise between tightness of the solution (slightly lower) and
complexity of the process (substantially lower). Again, the
presented method also bears similarities with the one in [11] but,
not only it includes a more complete task model as referred above,
as it also presents an heuristic to deduce the server parameters that
minimize resource utilization taking into account the context
switch overhead at the system level. Moreover, we present a final
optimization step that is applicable to our method as well as to [4]
and [11], which reduces the required server utilization when a
linear bound to the server service is used.

A spin-off result that seems to have potential for more generalized
use is the utilization of external points in the response time
analysis. Further work will address the case of inter-server
synchronization blocking as well as non-preemption at the
application level and its impact at the system level.

9. ACKNOWLEDGMENTS
The authors would like to thank E. Bini and G. Lipari for the
fruitful discussions concerning the server design problem that
helped in improving the respective part of this paper.

10. REFERENCES
[1] Almeida L., P. Pedreiras, J. A. Fonseca, The FTT-CAN

Protocol: Why and How, IEEE Transactions on Industrial
Electronics, 49(6), December 2002.

[2] Almeida L., J. Fonseca. Analysis of a Simple Model for Non-
Preemptive Blocking-Free Scheduling. Proc. of ECRTS’01
(EUROMICRO Conf. on Real-Time Systems). Delft,
Holland. June 2001.

[3] Audsley, N., A. Burns, M. Richardson, K. Tindell and A.
Wellings. Applying New Scheduling Theory to Static
Priority Pre-Emptive Scheduling. Software Engineering
Journal, 8(5): 285-292, 1993.

[4] Lipari G. and E. Bini. Resource Partitioning among Real-
Time Applications. Proc. of ECRTS’03 (EUROMICRO
Conf. on Real-Time Systems). Porto, Portugal. July 2003.

[5] Xu, J., D.L. Parnas. Scheduling processes with release times,
deadlines, precedence and exclusion relations. IEEE Trans.
on Software Engineering, 16:360-369 March 1990.

102

[6] Saewong, S., R. Rajkumar, J.P. Lehoczky, M.H. Klein.
Analysis of hierarchical fixed priority scheduling. Proc. of
ECRTS’02 (EUROMICRO Conf. on Real-Time Systems).
Vienna, Austria. June 2002.

[7] Mok, A., X. Feng. A model of hierarchical real-time virtual
resources. Proc. of RTSS’02 (IEEE Real-Time Systems
Symposium). Austin, USA. December 2002.

[8] Rushby, J., A Comparison of Bus Architectures for Safety-
Critical Embedded Systems, CSL Technical Report, SRI
International, September 2001.

[9] Howell, R. and M. Venkatrao. On Non-Preemptive
Scheduling of Recurring Tasks Using Inserted Idle Times.
Information and Computation, 117, 1995.

[10] Almeida, L. Response-Time Analysis and Server Design for
Hierarchical Scheduling. Proc. of the Work-in-Progress
session of RTSS’03 (IEEE Real-Time Systems Symposium).
Cancun, Mexico. December 2003.

[11] Shin, I. and I. Lee. Periodic Resource Model for
Compositional Real-Time Guarantees. Proc. of RTSS’03
(IEEE Real-Time Systems Symposium). Cancun, Mexico.
Dec 2003.

[12] Harbour M. and J. Palencia. Response-Time Analysis for
Tasks Scheduled under EDF within Fixed Priorities. Proc. of
RTSS’03 (IEEE Real-Time Systems Symposium). Cancun,
Mexico. December 2003.

[13] Pedreiras, P. and L. Almeida. Combining Time and Event-
triggered Traffic in FTT-CAN. Proc. of WFCS’00 (IEEE
Work. Factory Communication Systems). Porto, Portugal.
Sept 2000.

[14] Mok, A., X. Feng. Real-time virtual resource: A Timely
Abstraction for Embedded Systems. Proc. of EmSoft’02 (2nd
Int. Conf. on Embedded Software). Grenoble, France.
October 2002.

103

