Energy-Efficient, Utility Accrual Scheduling under
Resource Constraints for Mobile Embedded Systems

Haisang Wu~, Binoy Ravindran*, E. Douglas Jensent, and Peng Li*

*ECE Dept., Virginia Tech "The MITRE Corporation
Blacksburg, VA 24061, USA Bedford, MA 01730, USA
fhswu02,binoy,peli2g@vt.edu jensen@mitre.org
ABSTRACT Dynamic voltage scaling (DVS) is a common mechanism stud-

ied in the past to save CPU energy (see [4,9,13,18,21-23] and the
references therein). DVS addresses the trade-off between perfor-
mance and battery life by taking into account two important char-
acteristics of most current computer systems: (1) For CMOS-based
processors, the maximum clock frequency scales almost linearly
with the power supply voltage, and the energy consumed per cy-
cle is proportional to the square of the voltage; and (2) the peak

omputing rate needed is much higher than the average throughput
hat must be sustained. A lower frequency (i.e., speed) hence en-
ables a lower voltage and yields a quadratic energy reduction, at the
expense of roughly linearly increased sojourn time [8].

We present an energy-efficient real-time scheduling algorithm called
theResource-constrainedrtergy-Efficient Wility Accrual Algorithm

(or ReUA). ReUA considers an application model where activities
are subject to time/utility function-time constraints, resource de-
pendencies including mutual exclusion constraints, and statistical
performance requirements including probabilistically satisfied, ac-
tivity (timeliness) utility bounds. Further, ReUA targets mobile
embedded systems where system-level energy consumption is
major concern. For such a model, we consider the scheduling ob-
jectives of (1) satisfying statistical performance requirements, and
(2) maximizing system-level energy efficiency, while respecting re-
source dependencies. Since the problemViB-hard, ReUA al- .

locates resources using statistical properties of application cyclel'l TUFs and UA SChedu“ng

demands and heuristically computes schedules with a polynomial- In this paper, we focus on dynamic, adaptive, embedded real-
time cost. We analytically establish several timeliness and non- time control systems at any level(s) of an enterprise, e.g., devices
timeliness properties of the algorithm. Further, our simulation ex- in the defense domain such as multi-mode phased array radars [2]
periments illustrate ReUA's effectiveness. and battle management [1]. Such embedded systems include time

Categories and Subject DescriptorsD.4.7 [Operating Systems]: fﬁaqség%ntlseirnat gﬁlea;(i)\ritt (gte:\ﬁeﬁr;h:ﬁ|t?§st3{?nh§c:(rﬁén(tgiiz\?gse
Organization and Design+eal-time systems and embedded sys- or ne ati?/e) uglit to theys sten>; and that utility de endg on the
tems D.4.1 [Operating Systems]: Process Managemestheduling i tg | t'y . |\3/'| o ey oft é’ ep o

J.7 [Computers in Other Systems]: Real-time; (3.3[SpeciaI-PurposeaC vity's compietion ime. VIoreover, they often desire a Soft ime-

and Application-Based Systems]:Real-time and embedded systemsl'me.s.s'.Opt'mallty criterion .SUCh as c_o_mpletlng all t_|me_-constra|ned
activities as close as possible to thgtimalcompletion times—so

General Terms: Algorithms, Design, Experimentation, Perfor- as to yield maximal collective utility—is the objective.

mance Jensen’sime/uility f unctions [12] (or TUFs) allow the seman-

Keywords: Real-time systems, time/utility functions, energy-efficienttics of soft time constraints to be precisely specified. A TUF, which

scheduling, utility accrual scheduling is a generalization of the deadline constraint, specifies the utility to
the system resulting from the completion of an activity as a func-
tion of its completion time.

1. INTRODUCTION Rl e

)] ~ Figures 1(a)-1(c) show time constraints of two embedded real-

Energy consumption has become one of the primary concerns intime applications specified using TUFs. The applications include:
electronic system design due to the recent popularity of portable (1) the AWACS (Arborne WAning and @ntrol System) surveil-
devices and the environmental concerns related to desktops andance mode tracker system [6] built by The MITRE Corporation
servers. For mobile and pOIjtable embedded .Systems, minimizingand The Open Group; and (2) a coastal air defense System [20]
energy consumption results in longer battery life. built by General Dynamics and Carnegie Mellon University.

Saving energy without substantially affecting application perfor- Figure 1(a) shows the TUF of theack associatioractivity of
mance is crucial for embedded real-time systems that are mobilethe AWACS; Figures 1(b) and 1(c) show TUFs of three activities of
and battery-powered, because most real-time applications runningthe coastal air defense system calgat correlation track main-
on energy-limited systems inherently impose temporal constraints tenance and missile contral Note that Figure 1(c) shows how
on the sojourn time [4]. the TUF of the missile control activity dynamically changes as the

guided interceptor missile approaches its target.

The classical deadline constraint is a binary-valued, downward

“step” shaped TUF. This is shown in Figure 1(d).
Permission to make digital or hard copies of all or part of this work for When time constraints are expressed with TUFs, the scheduling
personal or classroom use is granted without fee provided that copies aregptimality criteria are based on maximizing accrued utility from
not mafje or‘dlstnbuted for p_r0f|‘t or commgrmal advantage and that copies those activities, e.g., maximizing the sum, or the expected sum, of
beargp'?“t"t'ce "’;”d the full C'tatt'on %’? tth%f'{Sttp?gte' To copy Otherw'se'}.o the activities’ attained utilities. Such criteria are callétlity Ac-
republish, to post on servers or to redistribute to lists, requires prior specific . -, (or UA) criteria, and sequencing (scheduling, dispatching) al-
Ei;gg,i?gigi/g{eﬂgg 27-29, 2004, Pisa, Italy. g_orithms that consider UA criteria are caIIed_ UA sequ_encing _algp-
Copyright 2004 ACM 1-58113-860-1/04/000955.00. rithms. In general, other factors may also be included in the criteria,

Utility Utility Utility Utility 4
U, Ue Plot Correlation Intercept
e Mid-course
U2 :
Uz 1
Us Time 1
> - > > -
te Time 0 ty 2ty o Time Time
(a) Track Asso. (b) Corrln. & Maint. (c) Missile Control (d) A Step TUF

Figure 1: Example Time Constraints Specified Using Time/Utility Functions

such as resource dependencies and precedence constraints. Severabdel. We integrate run-time-based DVS [9,18,22] with UA schedul-
UA scheduling algorithms are presented in the literature [7,14,15]. ing using a single system-level performance metric callgtity

. and Energy Ratio (or UER). UER facilitates optimization of time-
1.2 System-Level Energy Consumption liness objectives and energy efficiency in a unified way.

Most of the past work on energy-efficient real-time scheduling Given the metric of UER, our scheduling objective is two-fold:
using DVS only considers the energy consumed by the CPU. How- (1) satisfy the lower bounds on individual activity utilities; and
ever, the battery life of a system is determined by #iystem’s (2) maximize the system’s UER. This problemN§P-hard; thus,
energy consumption, and not just the CPU’s energy consumption. we present a polynomial-time, heuristic algorithm callecdRhsource-
Therefore, energy consumption models used in past efforts are notconstrained Bergy-Efficient Uility Accrual Algorithm(or ReUA).
accurate for prolonging the battery life. We analytically establish several timeliness and non-timeliness

Based on the experimental observations that some componentgproperties of the algorithm including timeliness optimality during
in computer systems consume constant power, and some consumender-loads, sufficiency on probabilistic satisfaction of timeliness
power only scalable to frequency (i.e., voltage), Martin proposed a lower bounds, deadlock-freedom, and correctness. We also evalu-
system-levetnergy consumption model in [19]. In this model, the ate ReUAs performance through simulation. Our simulation stud-
system-level energy consumption per cycle does not scale quadraties reveal that ReUA provides statistical assurances on activity time-
ically to the CPU frequency. Instead, a polynomial is used to repre- liness behavior, and improves system-level energy-efficiency.
sent the relation. We elaborate on this energy model in Section 2.6. Therefore, the contribution of the paper is the ReUA algorithm.

) .) To the best of our knowledge, we are not aware of any other efforts
1.3 Contributions and Paper Outline that solve the problem solved by ReUA.

Most of the past efforts on energy-efficient real-time scheduling The rest of the paper is organized as follows: In Section 2, we
focus on the deadline time constraint and deadline-based timeli- outline our activity, resource, and timeliness models, and state the
ness optimality criteria such as meeting all or some percentage of UA scheduling criterion. We present ReUA in Section 3. In Sec-
deadlines [4, 8,22, 25]. Exceptions include [23, 25]. tion 4, we establish the algorithm’s timeliness and non-timeliness

The work in [23] considers the criterion of maximizing collective properties. Section 5 discusses the simulation studies. Finally, we
value, where value is equivalent to our utility notion. However, [23] conclude the paper in Section 6.
is restricted to step value functions or step TUFs (see Figure 1(d)).

The work in [25] considers non-step TUFs, but is restricted to
resource-independent activities, i.e., activities that do not accessz' MODELS AND OBJECTIVES
shared resources, which are subject to mutual exclusion constraints
Resource sharing is important in many embedded systems [11].2'1 Ta_SkS and Jobs
To the best of our knowledge, only the work in [26] models and ~ We consider the application to consist of a set of tasks, denoted
studies voltage scheduling for periodic real-time tasks with non- asT = {71,7z,--- ,T,.}. Eachtask; has a number of instances,
preemptible blocking sections. However, [26] is restricted to dead- and these instances may be released either periodically or sporadi-
lines and deadline-based timeliness optimality. cally with a known minimal inter-arrival time. The period or mini-

UA scheduling under resource dependencies has been studied ifnal inter-arrival time of a task; is denoted ag’.
the past [7, 15]. But energy-efficient UA scheduling has not been An instance of a task is calledjab, and we refer to thg*" job
studied. Further, all past UA scheduling algorithms maximize col- 0f taskT;, which is also thg*" invocation of7;, asJ; ;. The basic
lective utility. They provide no assurance on activity timeliness Scheduling entity we consider is the job abstraction. Thus, weuse
behavior such as assured lower bounds on utilities. to denote a job without being task specific, as seen by the scheduler

For the optimality criterion of meeting all deadlines, past DVS atany scheduling evenfy; can be used to represent a job in the job
schemes focus on minimizing CPU’s energy consumption without Scheduling queue. Jobs can be preempted at arbitrary times.
resource dependencies. The work in [25] considers system-level
energy consumption, but is restricted to independent activities and 2.2 Resource Model
provides no assurance on activity timeliness behavior. Jobs can access non-CPU resources, which in general, are seri-

In this paper, we consider the problem that intersects: (1) UA ally reusable. Examples include physical resources (e.g., disks) and
scheduling under TUF time constraints, providing assurances onlogical resources (e.g., critical sections guarded by mutexes).
timeliness behavior; (2) activity scheduling respecting resource de- Similar to fixed-priority resource access protocols (e.g., priority
pendencies; and (3) CPU scheduling for reduced system-level en-inheritance, priority ceiling) [24] and that for UA algorithms [7,
ergy consumption. 15], we consider a single-unit resource model. Thus, only a single

We consider application activities that are subject to TUF time instance of a resource is present and a job must explicitly specify
constraints, resource dependencies including mutual exclusion con-the resource that it wants to access.
straints, and statistical performance requirements including lower Resources can be shared and can be subject to mutual exclusion
bounds on individual activity utilities that are probabilistically sat- constraints. A job may request multiple shared resources during its
isfied. Further, we consider system-leveknergy consumption lifetime. The requested time intervals for holding resources may

65

be nested, overlapped or disjoint. We assume that a job explicity 2.6 ~Energy Consumption Model

releases all granted resources before the end of its execution. We consider Martin's system-level energy consumption model [19,
Jobs of different tasks can have precedence constraints. For ex25] to derive the energy consumption per cycle. In this model,

ample, a johJ, can become eligible for execution Only_ after a job when the CPU operates at a frequerfcyits dynamic power con-

Ji; has completed, becaugg may require/;’s results. As |n_[7,15], sumption, denoted a&,, is given byP; = C.; x V2 x f, where

we program such precedences as resource dependencies. C. is the effective switch capacitance awg; is the supply volt-

age. On the other hand, the clock frequency is almost linearly re-
(Vag—Vi)?

2.3 Timeliness Model

A job’s time constraint is specified using a TUF. Jobs of a task lated to the supply voltagef (o« Vaa), sincej = k x =47, =,
] | nti Im usi . . . :
have the same TUF. Thus, we uSe(-) to denote task}’s TUF, wherek is constant and; is the threshold voltage [25]. By approx

and usel; ; () to denote the TUF offy’s jth job, which has the ~ imation, f = a x Vaa, wherea is constant. Thusp, = 25" x f?,

same shape ds; (-). Without being task specific, we ugéy, to which is equivalent t’; = S5 x f*, whereSs is constant. Here,
denote the TUF of a job}; thus completion of the jold}, at a time both the supply voltage and the clock frequency can be scaled.
t will yield a utility Uy, (t). Besides the CPU, there are also other system components that

TUFs can be classified into unimodal and multimodal functions. consume energy. Given the equatiBpn= C.; x Vz; x f, power
Unimodal TUFs are those for which any decrease in utility can- consumption equations for all other system components can be de-
not be followed by an increase. Figure 1 shows examples. TUFs rived. Some components, such as the main memory, must operate at
which are not unimodal are multimodal. In this paper, we restrict a fixed voltage and thus their power can only scale with frequency.
our focus tonon-increasing unimodal TUFs i.e., those unimodal In this case(.; x V.7, can be represented as another constant such
TUFs for which utility never increases as time advances. Fig- assSi, and the equation becomé&s = S; x f. Other components
ures 1(a), 1(b), and 1(d) show examples. in the system consume constant power with respect to the clock

Each TUFU, ;,i € {1,---,n} has an initial timel; ; and a frequency. Examples include display devices. Thus, their power
termination timeX; ;. Initial and termination times are the earliest consumption can be representedsagswheresS is constant.
and the latest times for which the TUF is defined, respectively. We For completeness in fitting the measured power of a system to
assume thak; ; is equal to the arrival time of; ;, andX; ; — I ; the cubic equation, the quadratic tefta = S» x V.7, is included.
is equal to the period or minimal inter-arrival tinf¢ of the task Since we have o Vyq, Py is represented aB; = Sz x f2. This
T;. If a job’s termination is reached and its execution has not been term does not represent the dynamic power consumption of CMOS,
completed, an exception is raised. Normally, this exception will because it implies thdiy, is being lowered without also lower-

cause the job’s abortion and execution of exception handlers. ing f. Butin practice, this term may appear because of variations
o . . . in DC-DC regulator efficiency across the range of output power,
2.4 Statistical Timeliness Requirement CMOS leakage currents, and other second order effects [19].
Each task needs to accrue some percentage of its maximum pos- Summing the power consumption of all system components to-
sible utility. Thestatistical performance requiremenf a taskT; gether, an equation for system-level energy consumption of a task

is denoted agu;, p; }, which implies that task; should accrue at ~ 1i IS obtained asts; = e;x S5 x Pt Sex f24+ 51 x f+ S0,
leasty; percentage of its maximum possible utility with the prob- wheree,; denotesT’;’'s expected execution time. Therefore, the ex-

ability p;. This is also the requirement for each job of the task pected energy consumption per cycle is given by:
E.g., if {v;, p;} = {0.7,0.93}, then the task; needs to accrue 5 So
at leastr0% of the maximum possible utility with a probability no E(f)=83x f"+S2x f+ 51+ 7 (1)

less thar®3%. For step TUFsy can only take the value 0 or 1.
This statistical performance requirement on the utility of a task 2.7 Scheduling Criterion
implies a corresponding requirement on the range of task sojourn
times. For non-increasing unimodal TUFs, this range is decided
only by an upper bound, while for increasing unimodal TUFs, both
a lower bound and an upper bound are needed. We care about th
upper bound in this paper; thus, we focus on non-increasing TUFs.

Given the models previously described, we consider the UER
metric to integrate timeliness performance and energy consump-
tion. The UER of a job measures the amount of utility that can be

ccrued per unit energy consumption by executing the job and the
job(s) that it depends upon (due to resource dependencies). A job
also has a Local UER (LoUER), which is defined as the UER that
2.5 TaSk_Cyde Demands .. thejob can potentially a(lccrue b)y itself at the current time, if it were
UA scheduling and DVS are both dependent on the prediction to continue its execution. We define thgstem-leveUER as the

gf ta_Sbk cycle demands. We esg{in’rl]atea the stgtistiﬁal pr:operr;[ies (€-9.ratio of the total accyyed utilities and total consumed energy of the
istribution, mean, variance) of the demand rather than the Worst- ¢ o o 17 — Bt Ui,

case demand because: (1) many embedded real-time applications i=1 i .
exhibit a large variation in theiactual workload [6]. Thus, the Thus, the ReUA algorithm that we present considers a two-fold
statistical estimation of the demand is much more stable and hencescheduling criterion: (1) assure that each taskccrues the speci-
more predictable than the actual workload; (2) worst-case workload fied percentage; of its maximum possible utility with at least the
is usually a very conservative prediction of the actual workload [4], SPecified probability»;; and (2) maximize theystem-leveUER,
resulting in resource over-supply, and exacerbates the power con-Which implies the system’s “energy efficiency.”
sumption problem; and (3) allocating cycles based on the statistical ~ This problem is\"P-hard because it subsumes the problem of
estimation of tasks’ demands can provide statistical performance Scheduling dependent tasks with step-shaped TUFs, which has been
assurances, which is sufficient for the applications of interest to us. Shown to be\'P-hard in [7].

Let Y; be the random variable of a tagk’s cycle demand. We
assume that the mean and varianc&pére finite and determined 3. THE REUA ALGORITHM
through either online or off-line profiling. We denote the expected o . .
number of processor cycles required by a tasks E(Y;), and the 3.1 Determining Task Critical Time

variance on the workload d8ar(Y;). Note that, under a constant Let s; ; be the sojourn time of théth job of task7;. Then
speed i.e., frequency (given in cycles per second), the expected the task’s statistical performance requirement can be represented
execution time of a task; is given bye; = % as Pr(Ui(si;) > v x U®®) > p;. By the assumption of

66

non-increasing TUFs, it is sufficient to haver(s;; < D;) > We define thesystem loaqLoad) as
pi, Where D; is the upper bound on the sojourn time of tagk

We call D; “critical time” hereafter, and it is calculated d3%; = Load — i > Q A3)

U7 (v x U™, whereU;” ' (z) denotes the inverse function of fm _, Pi

TUF U; (). If there are more than one point on the time axis that . . .

correspond tas; x U™, we choose the latest point. Thuk, and define theritical time-based loadCload) as

is probabilistically assured to accrue at least the utility percentage 1 X

v, = U;(D;) U™**, with probability p;. Cload = — = 4)
Note that the period or minimum inter-arrival tinfi& and critical fm i=1 D;

time D; of the taskT; have the following relations: (1¥; = D; For downward step TUF&load = Load.

for a binary-valued, downward step TUF; and @) > D;, for

If the system is overloaded, it is possjble that the qu
other non-increasing TUFs. y P s|§; ’ queie

whosequeue loadQload) is defined a% v (Cop (e X —
tcur)), is also overloaded. Note thdit. X refers to the termination

3.2 Statistical Estimation of Demand time of J,. Thus, upon inserting a job, ReUA checks the tenta-
) . o L tive schedule’s feasibility and ensures feasibility by dropping some
To provide statistical timeliness assurances while maximizing

.y Y _jobs; that is, the predicted completion time of each job in the tenta-
energy efficiency, ReUA allocates cycles to each task based on 't.stive schedule never exceeds its termination time.

statistical reql’urements and demand. Knowing the mean and vari- To calculate a CPU frequency for the currently selected job i.e.,
aﬁce’ OT taslﬂ“ils dent:anin, by a one-trzlilled.versmn of the Cheby- the one at the head of the tentative schedule, we adopt a stochastic
shev's inequality, whep > E(Y), we have: DVS technique similar to the Look-Ahead EDF (LaEDF) technique
discussed in [22]. The calculated value is compared with the job’s

(y — E(Y?))? local optimal frequency, and the higher one is selected as the CPU

priYs <yl > Var(Y:) + (y — E(Y))? ©) frequency. This process is elaborated in Section 3.4.
. . . ’ . o Intuitively, during overloads, it is quite possible for the DVS

Equation 2 s the direct result of the cumulative distribution func- technique to select the highest frequerfy for the processor ex-

tion of the taskr’;’s cycle demands. Knowing that each jab; of ecution, since the aggregate CPU demaétd is higher thanf,.,.
taskT; should accrue; percentage of utility with a probability;, Therefore, during overloads, with the constant energy consumption
to satisfy this requirement, we Ipt = o (?;;(EC(Y_%(YV))Q and at frequencyf,,, to maximize the collective utility per unit energy,
) L) ml we need to maximize the collective utility. This is exactly why we

obtain the minimal required@; = E(Y;) + 2572722, sort the jobs based on their UERs and check the schedule feasibil-

Thus, the scheduler allocaté$ cycles to each joly; ;, so that ity. Such heuristics are explained in detail in the next section.
the probability that jobJ; ; requires no more than the allocatéd -
cycles is at leasp; i.e., Pr[Y; < Ci] > p. 3.4 Procedural Description

3.4.1 Overview

3.3 UA Scheduling with DVS ReUA's scheduling events include the arrival and completion of a
job, aresource request, a resource release, and a time constraint ex-
viration such as the arrival of a TUF’s termination time. To describe
eUA, we define the following variables and auxiliary functions:
e T is the task set.D{ is taskT;’s current invocation’s absolute
critical time; C; is its current job’s remaining computation cycles.
e 7. is the current unscheduled job setis the ordered schedule.

The paramete€’; determinesiow long(in number of cycles) to
execute each task. We now discuss the other scheduling dimension
how fast(i.e., CPU speed scaling) amcthento execute each task.

We assume that the processor can be operatedfetquencies
{fisf2,- -, fm f1 < -+ < fm}, and that there are tasks and
each task is allocate@; cycles vyl't;hin itsD;. The aggregate CPU

} T Ji € Jrisajob;J,.Dep is its dependency list.
_ n C; _ k re - A I : . i
demand of the task setistil =, million cycles persec- "7 “nigjop J, s critical time; Ji, X is its termination timeyly,.C

ond (MHz). To peet this aggregate demand, the CPU only needs s ts remaining cycleT'(J;) returns the corresponding task of job

to run at speed _, g— Actually, Util gives the static, opti- Jk. Thus, ifT; = T(Jy), thenJ,.C = C7, andJ,.D = D{.

mal CPU speed to minimize the total energy while meeting all the e FunctionOwner(R) denotes the jobs that are currently holding

D; under the traditional energy consumption modskuming that resourceR; reqRes(T') returns the resource requestediy

Util < f.,, and that each task presents its worst-case workload to e headOf(o) returns the first job inr; sortByUER(o) sorts

the processor at every instanpg. o by each job’s UERselectFreq(«) returns the lowest fre-
However, the cycle demands of tasks often vary greatly. In par- quencyf; € {f1, f2, -, fm J1 <:-+ < fm}, suchthat < f;.

ticular, a task may, and often does, complete a job before using upe Insert(T, o, I) insertsT in the ordered list at the position
its allocated cycles. Such early completion often results in CPU indicated by indexZ; if there are already entries im with the
idle time, thereby wasting energy. To save this energy, we need to indexI, T is inserted before them. After insertion, the indexbf
dynamically adjust the CPU speed. in o is updated td.

We consider the energy consumed by slysteninstead of that e Remove(T, o, I) removesT from ordered list at the posi-
by just the processor and seek to maximize energy efficiency UER. tion indicated by indeX; if T is not present at the position i
Equation 1 indicates that there is an optimal value (not necessarily the function takes no action.

the lowest one) for clock frequency that minimizBsfor a taskT;. e lookup(T, o) returns the index value associated with the first
ReUA first decides the optimal frequency for each t@skhat occurrence of"" in the ordered list.

maximizes the task’s local UER. At each scheduling event, for all e feasible(o) returns a boolean value indicating schedxie

then' jobs J. = {J1,Jo, -+, J,} currently in the scheduling feasibility. For a schedule to be feasible, the predicted comple-

queue, ReUA sorts them based on their UERs under the highest tion time of each job i, determined under the highest frequency
frequencyf,,, in a non-increasing order. The algorithm then inserts f,,,, must not exceed its termination time.

the jobs into a tentative schedule in the orderafiest gitical time A description of ReUA at a high level of abstraction is shown in
first (or ECF), while respecting their resource dependencies. Algorithm 1. The procedurefflineComputing() of line 3

67

is shown in Algorithm 2, which calculate®; and C; for each
task. It also computes the optimal frequeng, for each task
T; that maximizes the task LOUER. LoUER is defined(a$t +
Sy (C; x E(f)), whereE(f) is derived using Equation 1. This

Kl
calculation is performed dt= 0

Algorithm 1: ReUA: High Level Description
. input T={T1, -, Tu}, Tr = {J1, -~
output selected Job]mC and frequencyfeze;
: offlineComputing (T);
. Initialization: ¢ := teyr, 0 1= 0;
: switch triggering evendo
casetaskrelease(?;)
casetaskcompletion(?;)
otherwise
for VJ, € J, do
if feasible(
‘ abort(

else
L Ji.Dep :=buildDep(

’ Jn/};

C; Ci;
cl =0
UpdateC’T

ONTRLON R

J) =falsethen
Jik);

e
OO

JIk) s

13:
14:

15:
16:
17:
18:

for VJ, € J, do
| Jk.UER:=calculateUER(

O¢mp :=SOMBYUER(J7,);
for VJy € o¢mp from head to taido
L if Ju.UER > 0then

Ji, 1)

o := insertByECF(
19: else break

20: Jeze:=headOf(o);

. fexe:=decideFreq(
22: return Jeze and fege;

o, J),;) N

T, Jewe, 1) ;

When ReUA is invoked at time..,., the algorithm first updates
each task’s remaining cycle (tswitch starting from line 5). The
algorithm then checks the feasibility of the jobs. If the earliest pre-
dicted completion time of a job is later than its termination time, it
can be safely aborted (line 11). Otherwise, ReUA builds the depen-
dency list for the job (line 12).

Algorithm 2: offlineComputing()

1: input: Task sefT’; output: D,, C;, fT

2. D;=U; Y x umeey;

3 Ci=E(vi) + et

4: Decide fq‘i such that U;(CJ C; X E(f%i) =
max(Us($4)/ (Ci x B(f;)). vie (1,2, m);

The UER of each job is computed bglculateUER() , and
the jobs are then sorted by their UERs (line 14 and 15). In each
step of thefor loop from line 16 to 19, the job with the largest
UER and its dependencies are inserted mfdf it can produce a
positive UER. The output scheduteis then sorted by the jobs’
critical times by the proceduiiasertByECF()

Algorithm 3 follows the chain of resource request/ownership.
For convenience, the input jaly, is also included in its own de-
pendency list. Each job; other thanJy in the dependency list
has a successor job that needs a resource which is currently held
by J;. Algorithm 3 stops either because a predecessor job does not
need any resource or the requested resource is free. Note'that “
denotes an append operation. Thus, the dependency list starts with
Ji. 's farthest predecessor and ends with

To handle deadlocks, we consider a deadlock detection and reso-
lution strategy, instead of a deadlock prevention or avoidance strat-
egy. Our rationale for this is that deadlock prevention or avoidance
strategies normally pose extra requirements; for example, resources
must always be requested in ascending order of their identifiers.

Further, restricted resource access operations that can prevent or
avoid deadlocks, as done in many resource access protocols, are not
appropriate for the class of embedded real-time systems that we fo-
cus on. For example, the Priority Ceiling protocol [24] assumes that
the highest priority of jobs accessing a resource is known. Like-
wise, the Stack Resource policy [5] assumes preemptive “levels”
of threadsa priori. Such assumptions are too restrictive for the
class of systems that we focus on (due to their dynamic nature).

Recall that we are assuming a single-unit resource request model.
For such a model, the presence of a cycle in the resource graph
is the necessargnd sufficient condition for a deadlock to occur.
Thus, the complexity of detecting a deadlock can be mitigated by a
straightforward cycle-detection algorithm.

Algorithm 4: Deadlock Detection and Resolution

: input: Requesting jobJy, tcyr;
/ » deadlock detection
. Deadlock := false;
Jp = Owner(reqRes(Jk));
: while J; # 0
Jp. LoUER =Uy, (teur +2
if J; = Jx then
Deadlock := true;
break;

else
| Ji :=Owner(reqRes(J;));

*/;

LY (1.C X B(fm));

N N RN B

©

/ = deadlock resolution if any
if Deadlock = true then
| abort(The jobJ,, with the minimalLoU E R in the cyclg ;

*/ ;
10:
11:

The deadlock detection and resolution algorithm (Algorithm 4)
is invoked by the scheduler whenever a job requests a resource.
Initially, there is no deadlock in the system. By induction, it can be
shown that a deadlock can occur if and only if the edge that arises in
the resource graph due to the new resource request lies on a cycle.
Thus, it is sufficient to check if the new edge resulting from the
job’s resource request produces a cycle in the resource graph.

To resolve the deadlock, some job needs to be aborted. If a job
J, were to be aborted, then its timeliness utility is lost, but energy
is still consumed. To minimize such loss, we compute the LOUER

Finally, ReUA analyzes the demands of the task set and appliesof each job at..,. at the frequency,,.. ReUA aborts the job with

DVS to decide the CPU frequendy... (line 21). The selected job
Jeze, Which is at the head af, is executed af... (line 20-22).

3.4.2 Resource and Deadlock Handling

the minimal LOUER in the cycle to resolve a deadlock.

3.4.3 Manipulating Partial Schedules
ThecalculateUER() algorithm (Algorithm 5) accepts a job

Before ReUA can compute job partial schedules, the dependencyJi (with its dependency list) and the current time,-. On comple-

chain of each job must be determined, as shown in Algorithm 3.

Algorithm 3: buildDep()

input: JobJy,; output: Jy.Dep ;

Initialization : Jy,.Dep := Jy/ Prev := Jy;

while reqRes(Prev) # 0

Owner(reqRes(Prev)) # () do
Ji.Dep :=Owner(reqRes(Prev)) -Ji.Dep;
Prev := Owner(reqRes(Prev));

apr whe

68

tion, the algorithm determines UER fdf;, by assuming that jobs
in Ji.Dep are executed from the current position (at titpg.) in
the schedule, while following the dependencies.

To computeJi’s UER at timet..,, ReUA considers each job
J; that is inJ’s dependency chain, which needs to be completed
before executing.. The total computation cycles that will be exe-
cuted upon completing is counted using the variab(&. of line
4. With the known expected computation cycles of each task, we
can derive the expected completion time and expected energy con-

Algorithm 5: calculateUER()

input: Ji, tewr; output: J, UER;

Initialization: C. := 0, E := 0,U := 0;

for VJ; € Ji.Dep, from head to taido
L C.:=C.+ J.C,;

U:=U+Uj, (teur + £5)

complete by then (lines 12—13, Algorithm 6). Finally, if this inser-
tion produces a feasible schedule, then the jobs are included in the
schedule; otherwise, not (lines 14-15).

It is worth noting that the proceduiiesertByECF() sorts
jobs in the non-decreasing critical time order if possible, but its
sub-proceduréeasible() checks the feasibility of .+ based
on each job’s termination time. This is because a job’s critical time
is smaller or equal to its termination time. So even if a job cannot
complete before its critical time, it may still accrue some utility, as
long as it finishes before its termination time. Thus, we need to
prevent “over-killing” infeasible() . The effectiveness of such
prevention is further illustrated in Section 5.3.

E := E(fm) x Cq;
Jr.UER :=U E;
return J, . UER;

ONO TRWNE

sumption underf,,, for each task, and thus get their accrued utility
to calculate UER fotJj,.

Thus, the total execution time (undgr,) of the job.J;, and its
dependents consists of two parts: (1) the time needed to execute the
jobs holding the resources that are needed to exekyend (2) the ¢ ;
remaining execution time of;, itself. According to the process of ~ @s shown in Algorithm 7. o _
buildDep() , all the relative jobs are included ifi,. Dep. ReUA keeps track of the remaining computation cyd&s as

Note that we are calculating each job’s UER assuming that the Updated fromline 5 to line 8 of Algorithm 1. Unlike LaEDF, ReUA
jobs are executed at the current position in the schedule. This wouldUSes the aggregate CPU demdnd! during the process of DVS.
not be true in the output schedute and thus affects the accuracy From line 2 to line 9, the algorithm considers the interval until the
of UERS calculated. But with the non-increasing shape of each Nexttask critical time and tries to “push” as much work as possible
job’s TUF, we are calculating the highest possible UER of each job Peyond the critical time. The algorithm considers the tasks in the

3.4.4 Deciding the Processor Frequency
ReUA adopts a stochastic DVS technique similar to LaEDF [22],

by assuming that it is executed at the current position. Intuitively, latest-critical-time-first order in line 4.

this would benefit the final UER, sindesertByECF() always
takes the job with the highest UER at each insertioa 0Also, the

Algorithm 7: DecideFreq()

UER calculated for the scheduled job, which is at the head of the 1: input: T, Jege, teur; OUtPUL: fegpe ;

feasible schedule, is always accurate.

The details ofnsertByECF() in line 18 of Algorithm 1 are
shown in Algorithm 6. insertByECF() updates the tentative
schedules by attempting to insert each job along with all of its
dependencies t6. The updated is an ordered list of jobs, where
each job is placed according to the critical time it should meet.

Algorithm 6: insertByECF()

input : Ji, and an ordered job list;
output : the updated list;
if J, ¢ o then

COpY o iNtO Otent: Otent =0,

Insert(Jk, otent, Jk.D);

CuCT = Jy.D;

for VJ; € {Ji.Dep — Jy } from tail to headdo

if Ji € orent then

CT=lookup(Ji, 0tent)
if CT < CuCT then continug
elseRemove(J;, otent, CT) ;

CuCT:=min(CuCT,J;.D);

P
Gh BN FovoNousw N B

Insert(Ji, 0tent, CuCT);
if feasible(otent) then
L 0= 0tent;
16: return o;

2. Util := C1 /D1 + -+ + Cp/Dy;

3 s:=0;

4: fori =1ton,T; € {Ty,--- ,T, D} >--- > Dy} do
| = reverse EDF order of tasks *[;

5: Util :== Util — C,;/Dy;

6: T ::maxk(), Cl — (fm — Util) x (D{ — D)) ;

1, if DY — D% =0
£ Util:= gy 4 DC(_}:DIQ , otherwise
8: s:= s+ ')

9: f:=min(fim, s/ (D% — teur));
10: fexe:=selectFreq (f);
11 fewe:=max(fexe, f%(]emc)))

x is the minimum number of cycles that the task must execute
before the closest critical timd)g, in order for it to complete by
its own critical time (line 6), assuming worst-case aggregate CPU
demandUtil by tasks with earlier critical times. The aggregate
demandUtil is adjusted to reflect the actual demand of the task
for the time afterDy. (line 7). s is simply the sum of the: values
calculated for all of the tasks, and therefore reflects the minimum
number of cycles that must be executed/By in order for all tasks
to meet their critical times (line 8). In line 9, the CPU frequency is
set just fast enough to executeycles over this interval.
Thus,decideFreq() capitalizes on early task completion by
deferring work for future tasks in favor of scaling the current task.

Note that the time constraint that a job should meet is not neces- |n addition, in line 7, we consider the case that jobs of different

sarily the job critical time. In fact, the index value of each jolrin
is the actual time constraint that the job must meet.

tasks have the same absolute critical times, which sometimes oc-
curs, especially during overloads. Also, it is possible that dur-

A job may need to meet an earlier critical time in order to enable ing overloads, the required frequency may be higher tharand

another job to meet its time constraint. Whenever a job is consid- selectFreq()

ered for insertion i, it is scheduled to meet its own critical time.

However, all of the jobs in its dependency list must execute before

would fail to return a value. In line 9, we solve
this by setting the upper limit of the required frequency tofhe
Finally, the result oelectFreq() is compared with the op-

it can execute, and therefore, must precede it in the schedule. Thetimal frequency ofl'(J....) decided inofflineComputing()

index values of the dependencies can be changedimsgthrt()
in line 13 of Algorithm 6.

The variableCuCT is used to keep track of this information.
Initially, it is set to be the critical time of joly,, which is tenta-

tively added to the schedule (line 6, Algorithm 6). Thereafter, any

job in Ji.Dep with a later time constraint tha@uC'T is required
to meetCuCT. If, however, a job has a tighter critical time than

CuCT, then it is scheduled to meet the tighter critical time, and

CuCT is advanced to that time since all jobs leftip. Dep must

69

(line 11). The higher frequency is selected to preserve the statistical
performance assurance and maximize system-level UER.

4. PROPERTIES OF REUA

4.1 Non-Timeliness Properties

We now discuss ReUA's non-timeliness properties, i.e., deadlock-
freedom, correctness, and mutual exclusion.

ReUA respects resource dependencies by ensuring that the job ReUA also provides statistical performance assurances under pos-
selected for execution can execute immediately. Thus, no job is sible conditions. With condition (1), the utility requirement of a
ever selected for normal execution if it is resource-dependent on task can only taker = 0 or v = 1. From Corollary 2, we can

some other job.

THEOREM 1. ReUA ensures deadlock-freedom.

PROOF A cycle in the resource graph is the sufficiamd nec-

essary condition for a deadlock in the single-unit resource request

model. ReUA does not allow such a cycle by deadlock detection
and resolution; so it is deadlock free. U

LEMMA 1. IninsertByECF() ’s output, all the dependents

derive the properties of ReUA on performance assurances.

THEOREM 4. Under conditions (1) and (2), ReUA meets all
statistical performance requirements.

PrRoOF From Corollary 2, under conditions (1) and (2), ReUA
can meet all task termination times. This ensuresithat 1 can be
satisfied for each task. Based on the results of Equation 2, at least
p; demanded processor cycles of tdslare less than the allocated
cycles. From Corollary 2, all the allocated cycles can be completed

of a job must execute before it can execute, and therefore, mustyefore their termination times. Thus, for tak ReUA can meet

precede it in the schedule.

PROOF insertByECF() seeks to maintain an output queue
ordered by jobs’ critical times, while respecting resource depen-
dencies. Consider jold, and its dependent;. If J;.D is earlier
than Ji.D, thenJ; will be inserted beforeJy in the schedule. If
Ji.D is later thanJy..D, J;.D is advanced to bdy.D by the op-
eration withCuC'T. According to the definition oinsert() ,
after advancing the critical timég; will be inserted beforg,. [

THEOREM 2. When a johJ; that requests a resourcg is se-
lected for execution by ReUA.’s requested resourc& will be
free. We call this ReUA's correctness property.

PrROOF From Lemma 1, the output schedulés correct. Thus,
ReUA is correct. [

Thus, if a resource is not available for a jdh's request, jobs
holding the resource will becomé,’s predecessors. We present
ReUA's mutual exclusion property by a corollary.

COROLLARY 1. ReUA satisfies mutual exclusion constraints in
resource operations.

4.2 Timeliness Properties

We consider timeliness properties under no resource dependen

cies, where ReUA can be compared with a number of well-known
algorithms. Specifically, we consider the following two conditions:

(1) a set of independent periodic tasks, where each task has a singl|
computational thread with a downward step TUF (such as the one
shown in Figure 1(d)); and (2) there are sufficient processor cycles

for meeting all task termination times—i.e., there is no overload.

THEOREM 3. Under conditions (1) and (2), a schedule pro-
duced by EDF [10] is also produced by ReUA, yielding equal total
utilities. Not coincidentally, this is simply a termination time or-
dered schedule.

PROOF We prove this by examining Algorithms 1 and 6. For
a job J without dependencies]. Dep only containsJ itself. For
periodic tasks with step TUFs, a task’s critical time is the same
as its termination time. During non-overload situatioasfrom
line 18 of Algorithm 1 is termination time ordered.

The TUF termination time that we consider is analogous to a
deadline in [10]. As proved in [10,16], a deadline-ordered schedule
is optimal (with respect to meeting all deadlines) when there are no
overloads. Thusy yields the same total utility as EDF. |

Some important corollaries about ReUAs timeliness behavior
during under-loads can be deduced from EDF’s optimality [10].

COROLLARY 2. Under conditions (1) and (2), ReUA always
meets all task termination times.

COROLLARY 3. Under conditions (1) and (2), ReUA yields the
minimum possible maximum lateness.

70

at leastp; termination times; i.e., ReUA accrues utility with a
probability at leasp;. |

From Theorem 4, we can derive its counterpart for non-increasing
TUFs with the definitions of Equations 3 and 4.

THEOREM 5. For a set of independent periodic tasks, where
each task has a single computational thread with a non-increasing
TUF, Cload <= 1 is the sufficient condition for ReUA to meet alll
statistical performance requirements.

PROOF With v; andp; of taskT;, ReUA converts the perfor-
mance assurance problem to the problem of meeting critical times.
If Cload <= 1, according to Theorem 4, the assertion holds.]

Note that Theorem 5 only states th@toad <= 1 is the suf-
ficient condition. Actually, it is not the necessary condition. We
illustrate this with an example in Section 5.

5. EXPERIMENTAL RESULTS
5.1 Simulation Methodology

We performed extensive simulations to experimentally evaluate
ReUA’s performance. The simulator takes as input a taskGset

‘Which contains tasks selected from Table 1. The table also summa-

rizes these tasks’ input parameters, including the periods/minimum
inter-arrival times (or P/I.A.), means/variances of cycle demands,

&nd task TUFs.

Table 1: Experimental Tasks
[Task J[Jobs [PILA.] TUF

T 130 21 step,height = 10
T> 124 22 step,height = 80
Ts 137 20 step,height = 10
Ty 109 25 step,height = 80
2
T 130 21 —0.025¢7 +10, 0<t<20
0, otherwise
—42+80, 0<t<20
Ts 124 22 0, otherwise
2
T 137 25 —0.01z — 0.15z + 10, 0<t S 25
0, otherwise
—0.52+10, 0<t<20
Ts 124 21 0, otherwise
Ty 124 20 the same a9%’s
Tio 124 25 the same a¥%s’s

For each demantf;, we keepVar(Y;) =~ E(Y;), and generate
normally-distributed cycle demands. We change the tasks’ cycle
demands to change the system loaddd defined in Equation 3).

The energy consumption per cycle at a particular frequency is
calculated using Equation 1. In practice, thig Sz, S1, and.Sy
terms depend on the power management state of the system and its
subsystems. For example, if a laptop has its display onStierm
will be large relative to the others. Butif the display has been turned

o
[N
N

—o—ReUA
---4--- LaEDF-NA
—a—LaEDF
—o— StaticEDF

—uo—ReUA
---4--- LaEDF-NA
[—a—LaEDF

©
O
o
=)

g & 13 —o— StaticEDF
L§ ol » BaseEDF 5412 , L§1_2 = BaseEDF
~ = <
S S S e R = o = A —
5,0 3 ; 3 B
£4 S08 1 _ . poua g08 W]
S 2 ---4--- LaEDF-NA S |

2 - 04 [—o—LaEDF 04 f

- N S - —o—StaticEDF
o = BaseEDF .
o b v v ey ol v ey 0 ot
0.2 06 1 Load 14 1.8 02 0.6 1 Load 14 1.8 0.2 0.6 1 Load 14 1.8
(a) Energy Settingv, (b) Energy Setting” (c) Energy Settingzs

Figure 2: Normalized UER vsLoad with Step TUFs under Various Energy Model Settings

off, the Sy term will be much smaller. Different types of systems During overloads, the normalized UERs produced by LaEDF,

will also have different relative values for tl$eterms. TheS; term StaticEDF, and BaseEDF converge to 1. This is because, all three
is probably a much larger fraction of the total power in a PDA than algorithms select the highest frequency by DVS calculation during
itisin a laptop [19, 25]. overloads, and bear no difference in scheduling. As the tgyim

We use experimental settings that are similar to those in Martin’s the energy model increases, ReUA adjusts the selected frequency to
PhD thesis [19], but de-normalize the terms. For comparison, the accrue more UER. This effect is more pronounced utdgigwhen
experiments are carried out under three energy model settings, at aEDF, LaEDF-NA, and StaticEDF perform worse than BaseEDF,
shown in Table 2. Note thdt; is the same as the traditional energy while ReUA still outperforms BaseEDF during all loads.

model, which only considers the CPU’s energy consumption. We speculate that, the UER gap between ReUA and the other
schemes is because ReUA saves more energy during under-loads,
Table 2: Energy Model Settings and accrues higher utility during overloads. Our speculation is ver-
[EnergyModel | S5 [52 [S5 | S0 | ified in Figure 3, which shows the accrued utility and energy con-
o 0T o010 5 sumption normalized to BaseEDF, under energy model seling
E> 075] 0 0 [0.25f3
Es 05| 0 | 0 [05f3 o ——” S ——
-+ -- LaEDF-NA ---4--- LaEDF-NA .-
16 F —s—LaEDF 16 [s LaEDF o
We consider a processor that supports seven different frequen- £, | v amor =
cies, {360, 550, 640, 730, 820, 910, 1000 MHzThese frequen- R e T oderee ey
cies reflect the setting that is available on a platform incorporating £°° Ha M
an AMD k6 processor with AMD’'$owerNow! mechanism [3]. “os ‘ o4
In addition to ReUA, we implemented the following schemes . b | .
for comparison: BaseEDF, LaEDF, StaticEDF, and LaEDF-NA. 02 06 1 Load 14 18 02 06 1 Load 14 18

BaseEDF is the EDF scheduler without any DVS support and uses o
the highest frequency. LaEDF is the Look-ahead RT-DVS for EDF (@) Norm. Utlity vs. Load (b) Norm. Energy vsLoad
scheduler [22]. StaticEDF uses the constant speed given by therigure 3: Norm. Energy/Utility vs.Load with Step TUFs andz,
aggregate demanttil and a “ceiling” up to the lowest suitable
frequency in{f1, f2,--- , fm}. StaticEDF switches to the lowest From Figure 3(a), we observe that during under-loads, all schemes
frequency whenever there is no ready task. Combining the static accrue the same (optimal) utility because of EDF’s optimality [10]
schemes in [4] and [22], StaticEDF is the static optimal solution during such situations. But during overload situations, LaEDF-NA
to the DVS problem for periodic tasks with step TUFs under avail- suffers domino effects and accrues almost no utility [17]. On the
able frequencies. The previous three schemes abort infeasible tasksther hand, ReUA seeks to schedule jobs with higher UERs, and
during overloads. Thus, LaEDF-NA is LaEDF with no abortion. thus accrues remarkably higher utility than the others.

LaEDF, LaEDF-NA, and StaticEDF perform DVS on periodic In Figure 3(b), during under-loads, we observe that ReUA saves
tasks with known worst-case workload, which is unavailable in our more energy than the other schemes. Further, this portion of the
application model. Thus, we use the minimum inter-arrival time curves is nearly symmetric to the corresponding portion of Fig-

and cycles allocated by ReUA as their inputs. ure 2(b). The energy consumption of LaEDF-NA increases linearly
with Load, because it performs no abortion and executes every job
5.2 Impact of Energy Models that arrives. Since no strategies except ReUA consider the system-
In our first set of simulation experiments, we determine the ef- level energy consumption, we only use the energy maégeh our
fects of our new energy model. We consider the task(set= further simulation experiments.

{T1,T>,T5,T4}, and apply different schemes 6# under differ-
ent energy settings. We consider downward step TUFs, since all 9.3 Performance Assurance

the other algorithms compared can only deal with deadlines. Each To evaluate the statistical performance assurances provided by

taskT; has the performance requirementof= 1 andp; = 0.96. ReUA, we first consider the task s8t with the performance re-
Figure 2 shows the UER for all the DVS schemes normalized quirement of{(v; = 1,p; =0.96),i =1,--- ,4}.
to the BaseEDF under energy model settifigs F», and Es, as Figure 4 shows the accrued utility ratio (AUR) and critical-time

Load varies from 0.2 to 1.8. We observe that under all three energy meet ratio (DMR) of each task under increasingzd. AUR is the
settings, ReUA performs the best among all strategies under all ratio of accrued aggregate utility to the maximum possible utility,
loads, especially during overloads. We also observe that LaEDF- and DMR is the ratio of the jobs meeting their critical times to the
NA yields almost zero UER during overloads. total job releases of a task. For a task with a downward step TUF,

71

its AUR and DMR are identical; so we show them in one plot. Note
that the system-level AUR and DMR can be different due to the mix
of different utility of tasks.

—a—T7

07 11 Cload 15 19 07 11 Cload 15 19

T (a) AUR vs.Cload (b) DMR vs. Cload

20 —a—T3

. . Figure 5: AUR and DMR vs.Cload of G2 underE;

0.2 0.6 1 road 14 1.8 0.2 0.6 1 road 14 1.8

AUR and DMR (%)

(a) ReUA (b) LaEDF more AUR and DMR than the other tasks with non-step TUFs. This
.) is becauseT’s full utility can be accrued as long as it is completed
Figure 4: AUR and DMR vs.Load of G, underE, before its termination time, while completing other tasks just before
As Figure 4(a) shows, with ReUA during under-loads, all tasks their termination times may result in very low utility. In addition,
accrue 100% AUR and DMR, except tagk, whose AUR and among taskds, T, andT» with non-step TUFs, the one with the
DMR is 99.23% atLoad = 0.3. Thus, ReUA delivers the statis- highest maximum utility i.e.Ts, is favored by ReUA to accrue
tical performance assurance of being able to accrue 100% of taskmore system-wide utility.
maximum utility with a probability at least 96% for all tasks. This . »
also validates Theorem 4. 5.4 Effectiveness of Utility Accrual
Comparing the results during overloads in Figure 4(a) and 4(b), From experiments of the previous sections, we observe that ReUA
we observe that ReUA still achieves near 100% AUR/DMR of task mimics the behavior of EDF during under-loaded situations. Dur-
T> andTx, but achieves less AUR/DMR dfi andTs. One the jng overloads, all schemes tend to selggtas the execution fre-

other hand, LaEDF decreases the AUR/DMRIafand 7', more quency by DVS, and thus have the same energy consumption. Thus,
than the other two. This is becausk, and7i have TUFs with the higher UER produced by ReUA than the others is due to the fact
higher “heights” and thus higher utility; so ReUA accrues more hat ReUA seeks to accrue more utility during such situations. In
system-wide utility by completing these tasks before their termina- pig section, we vary the TUF shape of each task to demonstrate
tion times. Schemes based on EDF cannot make such schedulingreya's utility accrual capability.

decisions—; and T} are not favored by LaEDF since they have e roughly define the ratio of the maximum and minimum heights
longer critical times thaf, and73. We show the comparison of of TUFs in a task set apeak feight ratio (or PHR). We con-
utility accrual for various schemes in Section 5.4. sider two task set&'s and G4 with step TUFs and linear TUFs,
Besides7:, we also consider the task $&t = {75, T5, Ts, T7 } respectively. Gs is the setGs = {T1,T»,Ts,Ts}, where the
that contains linear-shaped and parabolic-shaped TUFs (with non-peights of/, and U, are varied from 10 to 100G, is the set
increasing portion) as well as step TUFs. The performance re- ¢, "— {Ts, Ts, To, T1o}, where the crossing points of thgility-
quirements of'; are{(vs = 1.0, p3 = 0.80), (v5 = 0.55,p5 = axes withUs and U, are varied from 10 to 100. In addition, the

0.80), (vs = 0.5, ps = 0.80), (v7 = 0.55, p7 = 0.80)}. _ intersections with thé¢-axes of all TUFs inG, are maintained at
Figure 5 shows the AUR and DMR of each taskGh with t = 20. Thus, bothG3 andG4 have P H Rs varying from 1 to 10.
Cload varying from 0.7 to 2.0. Systenhoad also changes with Figure 6(a) shows the UERs for ReUA and LaEDF that are nor-

Cload, and the corresponding values are shown in Table 3. malized to LaEDF undef's with Load = 1.5. During overloads,

LaEDF, StaticEDF, and BaseEDF yield the same performance; so
Table 3: Cload and Load we only show LaEDF here. We observe thatPdf R = 1, ReUA

Cload || 0.7 | 08 | 09 | 1.0 | 1.1 | 1.2 | 1.3 : i :
Croui o 05 [osriosfortosiuns] (e e same schedbing deecions as Ao, Boves -
[Cload [1.4 | 15 [1.6 [1.7 | 18 [1.9 | 2.0 | ' 9 Y)
| Load |[0.89 | 0.95| 1.01 | 1.06 | 1.13 | 1.2 | 1.26 |

2 2.4
We consider tasi; as an example to illustrate how ReUA deliv- 16 2 /Mw‘*l
ers statistical performance assurances. As shown in Figure 5, when 16

Cload < 1, taskT is assured to accrue at leagst = 55% of
its maximum utility with a probability no less thawy = 80%.

Normalized UER
Normalized UER

For example, aCCload = 1, ReUA accrues AUR=86.97% and oa | TR oal T

DMR=100%, which implies that it can complete all the demanded S L

cycles of the task before their critical times. Furthermore, 86.97% 1 3 5 pur 7 ° 1 3 5 pg 7 B

of the task maximum utility can be accrued at a probability 100%— . s

much more than the performance requirements. (@) Gs: Step TUFs (b) Ga: Linear TUFs
But Cload < 1 is not the necessary condition for delivering sta- Figure 6: Normalized UER vsPH R underE;

tistical performance assurances. For examplellaiad = 1.6

and Load = 1.02, taskT; can still accrue AUR=71.21% and Figure 6(b) shows the normalized UERs for ReUA and LaEDF

DMR=89.91%. This is because, for a task with a non-step and non- underG4 with Load = 1.5 andCload = 1.85. We observe simi-

increasing TUF, even if the task misses its critical time, the task can lar trends as that in Figure 6(a), but with larger performance gap as

complete before its termination time and accrue some amount of PH R increases. The two strategies’ different scheduling criteria

utility, which depends on the TUF shape. Therefore, these experi- result in different performance even2fH/ R = 1.

ments validate Theorem 5. Since not all critical times can be satisfied during overloads,
Another major pattern that can be observed from Figure 5 is that, ReUA considers the UER of each job and seeks to schedule jobs

as Cload and Load increases, tasils with a step TUF accrues with high UERs, while maintaining the critical time order of jobs.

72

But LaEDF simply schedules according to tasks’ critical times, We establish several timeliness and non-timeliness properties of
and conforms to the critical time order. In addition, during over- ReUA such as timeliness optimality during under-loads, deadlock-
loads, ReUA tends to abort jobs with low UERSs in the feasibility freedom, correctness, and mutual exclusion. Our simulation exper-
check. This results in higher system-level utility than that obtained iments illustrate that ReUA provides statistical performance assur-
by LaEDF, which always aborts jobs with the largest critical time. ances when possible and improves system-level energy efficiency.
Several aspects of the work are directions for further research.
5.5 Results under Resource Dependency Example directions include considering the multi-unit resource re-

To construct dependent task sets, we consider tasketd quest model [5], tasks with stochastic arrivals, and aperiodic tasks.

G2 and have each job randomly request and release resources from

some available set of resources during the job's life cycle. The Acknowledgements

resource request and release times are uniformly distributed within
ajob’s life cycle. We conducted experiments on the task sets, which
are scheduled by ReUA under no resources, two shared resources
and five shared resources.

Figure 7(a) shows UERs normalized to the casé&/ofwith no
resources, adoad varies from 0.2 to 1.8. Figure 7(b) shows the
same metric foiG2, asCload varies from 0.7 to 2.0. From the
figures, we observe that whdrvad or Cload increases, the per-
formance of ReUA on dependent task sets decreases. Higher the 2
number of shared resources, the more performance decrease can
be observed. This is because, ReUA respects resource dependen-[3]
cies in scheduling, which in the worst-case may cause jobs to be
executed in the reverse order of UERs or critical times. So with
dependent task sets, ReUA cannot provide performance assurances
and suffers UER losses, especially during high loads.

7.
[1]

4

g
::' 0.95 [8]
5 09 I o ReUA-NoResources é 0.9 I __5 ReUA-No Resources
= ogs | -t ReUAZ Resources 2 o5 || -+ ReUAZ Resources [0l
—a—ReUA-5 Resources) —a— ReUA-5 Resources
08 Lt v 08 [10]
0.2 0.6 1 Load 14 18 0.7 11 Cload 15 19
11
(a) UER vs.Load of G (b) UER vs.Cload of G]
. . . [12]
Figure 7: Norm. UER with Resource Dependencies under
[13]

However, at very highiLoad or Cload and with five shared re-
sources, normalized UERs of ReUA on the independent task sets
are just better than those on dependent task sets by no more thanf4
10%. This is because, ReUA aborts a task when its expected com- |15
pletion time is less than its termination time. Thus, the job queue
seen by the ReUA scheduler at any scheduling event has a length

no more than the number of tasks. With our experimental settings, (16]
we have only limited performance loss in our simulation, but we ;7
expect more performance drop with larger task sets.

[18]
6. CONCLUSIONS, FUTURE WORK [19]

This paper presents the design and evaluation of ReUA, a resource-

constrained, energy-efficient, utility-accrual real-time scheduling [20]
algorithm for mobile embedded systems. ReUA considers appli-
cation activities that are subject to TUF time constraints, resource 1]
dependencies, and system-level energy consumption concerns.

The key underpinning of ReUA is the observation that embed- [22]
ded real-time applications usually exhibit large variations in their 23]

actual cycle demands. This provides opportunities for providing
statistical, timeliness performance assurances, while respecting re-
source dependencies, and for improving system-level energy effi- [24]
ciency. To realize this, the algorithm statistically allocates cycles to
individual application tasks and executes their allocated cycles at
different speeds with DVS. ReUA makes such stochastic decisions
based on the statistical properties of the task demands. During over-
load situations, ReUA heuristically schedules tasks to maximize [26]
collective utility so as to improve system-level energy efficiency.

[25]

73

This work was sponsored by the US Office of Naval Research un-
der Grant N00014-00-1-0549 and The MITRE Corporation under
Grant 52917.

REFERENCES

Bmc3i battle management, command, control, communications and
intelligence http:

Ilwww.globalsecurity.org/space/systems/bmc3i.htm/

Multi-platform radar technology insertion prograhitp://www.
globalsecurity.org/intell/systems/mp-rtip.htm/

Advanced Micro Devices Corporation. Mobile AMD-K6-2+ Processor Data
Sheet. Publication #23446, June 2000.

H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and
aggressive scheduling techniques for power-aware real-time systet&&Hn
RTSSpages 95 —105, December 2001.

T. P. Baker. Stack-based scheduling of real-time proce3semal of

Real-Time System3(1):67-99, March 1991.

R. Clark, E. D. Jensen, and et al. An adaptive, distributed airborne tracking
system. InProc. 7th WPDRTSrolume 1586 of NCS pages 353-362.
Springer-Verlag, April 1999.

R. K. Clark.Scheduling Dependent Real-Time ActivitieeD thesis, CMU,

1990. CMU-CS-90-155.

R. Graybill and R. MelhemPower Aware Computindluwer

Academic/Plenum Publishers, 2002.

F. Gruian. Hard real-time scheduling for low energy using stochastic data and
dvs processors. IACM/IEEE ISLPED August 2001.

W. Horn. Some simple scheduling algorithr&val Research Logistics
Quaterly, 21:177-185, 1974.

E. D. Jensen. A timeliness paradigm for mesosynchronous real-time systems.
Invited Talk IEEE RTAS, 2003http://www.real-time.org

E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven schedulmg model for
real-time systems. IFEEE RTSSpages 112—-122, December 1985.

W. Kim, J. Kim, and S. L. Min. Dynamic voltage scaling algorithm for
fixed-priority real-time systems using work-demand analysi&@M/IEEE
ISLPED August 2003.

G. Koren and D. Shasha. D-over: An optimal on-line scheduling algorithm for
overloaded real-time systems.|lBEE RTSSpages 290-299, December 1992.
P. Li. A Utility Accrual Scheduling Algorithm for Resource-Constrained
Real-Time ActivitiesPhd dissertation proposal, Virginia Tech, 2003.
http://iwww.ee.vt.edu/ ~realtime/li-proposal03.pdf

C. L. Liuand J. W. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environmenlACM, 20(1):46-61, 1973.

C. D. Locke.Best-Effort Decision Making for Real-Time SchedulifgD

thesis, Carnegie Mellon University, 1986. CMU-CS-86-134.

J. Lorch and A. Smith. Improving dynamic voltage scaling algorithms with
pace. INnACM SIGMETRICSJune 2001.

T. Martin. Balancing Batteries, Power and Performance: System Issues in
CPU Speed-Setting for Mobile ComputifithD thesis, Carnegie Mellon
University, August 1999.

D. P. Maynard, S. E. Shipman, et al. An example real-time command, control,
and battle management application for alpha. Technical Report Archons
Project TR-88121, CMU Computer Science Department, December 1988.

T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the IPARM
microprocessor system. RCM/IEEE ISLPED July 2000.

P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power
embedded operating systemsAGM SOSPpages 89-102, 2001.

C. Rusu, R. Melhem, and D. Mosse. Multi-version scheduling in rechargeable
energy-aware real-time systems Horomicro Conference on Real-Time
SystemsJuly 2003.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An
approach to real-time synchronizatidBEE Transactions on Computers
39(9):1175-1185, 1990.

J. Wang, B. Ravindran, and T. Martin. A power aware best-effort real-time
task scheduling algorithm. IfEEE Workshop on Software Technologies for
Future Embedded Systems, |IEEE ISOR&yes 21-28, May 2003.

F. Zhang and S. T. Chanson. Blocking-aware processor voltage scheduling for
real-time tasksACM TECS$ 3(2):307-335, May 2004.

