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ABSTRACT
We present an energy-efficient real-time scheduling algorithm called
theResource-constrained Energy-Efficient Utility Accrual Algorithm
(or ReUA). ReUA considers an application model where activities
are subject to time/utility function-time constraints, resource de-
pendencies including mutual exclusion constraints, and statistical
performance requirements including probabilistically satisfied, ac-
tivity (timeliness) utility bounds. Further, ReUA targets mobile
embedded systems where system-level energy consumption is a
major concern. For such a model, we consider the scheduling ob-
jectives of (1) satisfying statistical performance requirements, and
(2) maximizing system-level energy efficiency, while respecting re-
source dependencies. Since the problem isNP-hard, ReUA al-
locates resources using statistical properties of application cycle
demands and heuristically computes schedules with a polynomial-
time cost. We analytically establish several timeliness and non-
timeliness properties of the algorithm. Further, our simulation ex-
periments illustrate ReUA’s effectiveness.

Categories and Subject Descriptors:D.4.7 [Operating Systems]:
Organization and Design—real-time systems and embedded sys-
tems; D.4.1 [Operating Systems]: Process Management—scheduling;
J.7 [Computers in Other Systems]: Real-time; C.3 [Special-Purpose
and Application-Based Systems]:Real-time and embedded systems;

General Terms: Algorithms, Design, Experimentation, Perfor-
mance

Keywords: Real-time systems, time/utility functions, energy-efficient
scheduling, utility accrual scheduling

1. INTRODUCTION
Energy consumption has become one of the primary concerns in

electronic system design due to the recent popularity of portable
devices and the environmental concerns related to desktops and
servers. For mobile and portable embedded systems, minimizing
energy consumption results in longer battery life.

Saving energy without substantially affecting application perfor-
mance is crucial for embedded real-time systems that are mobile
and battery-powered, because most real-time applications running
on energy-limited systems inherently impose temporal constraints
on the sojourn time [4].
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Dynamic voltage scaling (DVS) is a common mechanism stud-
ied in the past to save CPU energy (see [4,9,13,18,21–23] and the
references therein). DVS addresses the trade-off between perfor-
mance and battery life by taking into account two important char-
acteristics of most current computer systems: (1) For CMOS-based
processors, the maximum clock frequency scales almost linearly
with the power supply voltage, and the energy consumed per cy-
cle is proportional to the square of the voltage; and (2) the peak
computing rate needed is much higher than the average throughput
that must be sustained. A lower frequency (i.e., speed) hence en-
ables a lower voltage and yields a quadratic energy reduction, at the
expense of roughly linearly increased sojourn time [8].

1.1 TUFs and UA Scheduling
In this paper, we focus on dynamic, adaptive, embedded real-

time control systems at any level(s) of an enterprise, e.g., devices
in the defense domain such as multi-mode phased array radars [2]
and battle management [1]. Such embedded systems include time
constraints that are “soft” (besides those that are hard) in the sense
that completing an activity at any time will result in some (positive
or negative) utility to the system, and that utility depends on the
activity’s completion time. Moreover, they often desire a soft time-
liness optimality criterion such as completing all time-constrained
activities as close as possible to theiroptimalcompletion times—so
as to yield maximal collective utility—is the objective.

Jensen’s time/utility f unctions [12] (or TUFs) allow the seman-
tics of soft time constraints to be precisely specified. A TUF, which
is a generalization of the deadline constraint, specifies the utility to
the system resulting from the completion of an activity as a func-
tion of its completion time.

Figures 1(a)–1(c) show time constraints of two embedded real-
time applications specified using TUFs. The applications include:
(1) the AWACS (Airborne WArning and Control System) surveil-
lance mode tracker system [6] built by The MITRE Corporation
and The Open Group; and (2) a coastal air defense system [20]
built by General Dynamics and Carnegie Mellon University.

Figure 1(a) shows the TUF of thetrack associationactivity of
the AWACS; Figures 1(b) and 1(c) show TUFs of three activities of
the coastal air defense system calledplot correlation, track main-
tenance, and missile control. Note that Figure 1(c) shows how
the TUF of the missile control activity dynamically changes as the
guided interceptor missile approaches its target.

The classical deadline constraint is a binary-valued, downward
“step” shaped TUF. This is shown in Figure 1(d).

When time constraints are expressed with TUFs, the scheduling
optimality criteria are based on maximizing accrued utility from
those activities, e.g., maximizing the sum, or the expected sum, of
the activities’ attained utilities. Such criteria are calledUtility Ac-
crual (or UA) criteria, and sequencing (scheduling, dispatching) al-
gorithms that consider UA criteria are called UA sequencing algo-
rithms. In general, other factors may also be included in the criteria,
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Figure 1: Example Time Constraints Specified Using Time/Utility Functions

such as resource dependencies and precedence constraints. Several
UA scheduling algorithms are presented in the literature [7,14,15].

1.2 System-Level Energy Consumption
Most of the past work on energy-efficient real-time scheduling

using DVS only considers the energy consumed by the CPU. How-
ever, the battery life of a system is determined by thesystem’s
energy consumption, and not just the CPU’s energy consumption.
Therefore, energy consumption models used in past efforts are not
accurate for prolonging the battery life.

Based on the experimental observations that some components
in computer systems consume constant power, and some consume
power only scalable to frequency (i.e., voltage), Martin proposed a
system-levelenergy consumption model in [19]. In this model, the
system-level energy consumption per cycle does not scale quadrat-
ically to the CPU frequency. Instead, a polynomial is used to repre-
sent the relation. We elaborate on this energy model in Section 2.6.

1.3 Contributions and Paper Outline
Most of the past efforts on energy-efficient real-time scheduling

focus on the deadline time constraint and deadline-based timeli-
ness optimality criteria such as meeting all or some percentage of
deadlines [4,8,22,25]. Exceptions include [23,25].

The work in [23] considers the criterion of maximizing collective
value, where value is equivalent to our utility notion. However, [23]
is restricted to step value functions or step TUFs (see Figure 1(d)).

The work in [25] considers non-step TUFs, but is restricted to
resource-independent activities, i.e., activities that do not access
shared resources, which are subject to mutual exclusion constraints.
Resource sharing is important in many embedded systems [11].
To the best of our knowledge, only the work in [26] models and
studies voltage scheduling for periodic real-time tasks with non-
preemptible blocking sections. However, [26] is restricted to dead-
lines and deadline-based timeliness optimality.

UA scheduling under resource dependencies has been studied in
the past [7, 15]. But energy-efficient UA scheduling has not been
studied. Further, all past UA scheduling algorithms maximize col-
lective utility. They provide no assurance on activity timeliness
behavior such as assured lower bounds on utilities.

For the optimality criterion of meeting all deadlines, past DVS
schemes focus on minimizing CPU’s energy consumption without
resource dependencies. The work in [25] considers system-level
energy consumption, but is restricted to independent activities and
provides no assurance on activity timeliness behavior.

In this paper, we consider the problem that intersects: (1) UA
scheduling under TUF time constraints, providing assurances on
timeliness behavior; (2) activity scheduling respecting resource de-
pendencies; and (3) CPU scheduling for reduced system-level en-
ergy consumption.

We consider application activities that are subject to TUF time
constraints, resource dependencies including mutual exclusion con-
straints, and statistical performance requirements including lower
bounds on individual activity utilities that are probabilistically sat-
isfied. Further, we consider asystem-levelenergy consumption

model. We integrate run-time-based DVS [9,18,22] with UA schedul-
ing using a single system-level performance metric calledUtility
and Energy Ratio (or UER). UER facilitates optimization of time-
liness objectives and energy efficiency in a unified way.

Given the metric of UER, our scheduling objective is two-fold:
(1) satisfy the lower bounds on individual activity utilities; and
(2) maximize the system’s UER. This problem isNP-hard; thus,
we present a polynomial-time, heuristic algorithm called theResource-
constrained Energy-Efficient Utility Accrual Algorithm(or ReUA).

We analytically establish several timeliness and non-timeliness
properties of the algorithm including timeliness optimality during
under-loads, sufficiency on probabilistic satisfaction of timeliness
lower bounds, deadlock-freedom, and correctness. We also evalu-
ate ReUA’s performance through simulation. Our simulation stud-
ies reveal that ReUA provides statistical assurances on activity time-
liness behavior, and improves system-level energy-efficiency.

Therefore, the contribution of the paper is the ReUA algorithm.
To the best of our knowledge, we are not aware of any other efforts
that solve the problem solved by ReUA.

The rest of the paper is organized as follows: In Section 2, we
outline our activity, resource, and timeliness models, and state the
UA scheduling criterion. We present ReUA in Section 3. In Sec-
tion 4, we establish the algorithm’s timeliness and non-timeliness
properties. Section 5 discusses the simulation studies. Finally, we
conclude the paper in Section 6.

2. MODELS AND OBJECTIVES

2.1 Tasks and Jobs
We consider the application to consist of a set of tasks, denoted

asT = {T1, T2, · · · , Tn}. Each taskTi has a number of instances,
and these instances may be released either periodically or sporadi-
cally with a known minimal inter-arrival time. The period or mini-
mal inter-arrival time of a taskTi is denoted asPi.

An instance of a task is called ajob, and we refer to thejth job
of taskTi, which is also thejth invocation ofTi, asJi,j . The basic
scheduling entity we consider is the job abstraction. Thus, we useJ
to denote a job without being task specific, as seen by the scheduler
at any scheduling event;Jk can be used to represent a job in the job
scheduling queue. Jobs can be preempted at arbitrary times.

2.2 Resource Model
Jobs can access non-CPU resources, which in general, are seri-

ally reusable. Examples include physical resources (e.g., disks) and
logical resources (e.g., critical sections guarded by mutexes).

Similar to fixed-priority resource access protocols (e.g., priority
inheritance, priority ceiling) [24] and that for UA algorithms [7,
15], we consider a single-unit resource model. Thus, only a single
instance of a resource is present and a job must explicitly specify
the resource that it wants to access.

Resources can be shared and can be subject to mutual exclusion
constraints. A job may request multiple shared resources during its
lifetime. The requested time intervals for holding resources may
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be nested, overlapped or disjoint. We assume that a job explicitly
releases all granted resources before the end of its execution.

Jobs of different tasks can have precedence constraints. For ex-
ample, a jobJk can become eligible for execution only after a job
Jl has completed, becauseJk may requireJl’s results. As in [7,15],
we program such precedences as resource dependencies.

2.3 Timeliness Model
A job’s time constraint is specified using a TUF. Jobs of a task

have the same TUF. Thus, we useUi (·) to denote taskTi’s TUF,
and useUi,j (·) to denote the TUF ofTi’s jth job, which has the
same shape asUi (·). Without being task specific, we useUJk to
denote the TUF of a jobJk; thus completion of the jobJk at a time
t will yield a utility UJk (t).

TUFs can be classified into unimodal and multimodal functions.
Unimodal TUFs are those for which any decrease in utility can-
not be followed by an increase. Figure 1 shows examples. TUFs
which are not unimodal are multimodal. In this paper, we restrict
our focus tonon-increasing, unimodal TUFs i.e., those unimodal
TUFs for which utility never increases as time advances. Fig-
ures 1(a), 1(b), and 1(d) show examples.

Each TUFUi,j , i ∈ {1, · · · , n} has an initial timeIi,j and a
termination timeXi,j . Initial and termination times are the earliest
and the latest times for which the TUF is defined, respectively. We
assume thatIi,j is equal to the arrival time ofJi,j , andXi,j − Ii,j

is equal to the period or minimal inter-arrival timePi of the task
Ti. If a job’s termination is reached and its execution has not been
completed, an exception is raised. Normally, this exception will
cause the job’s abortion and execution of exception handlers.

2.4 Statistical Timeliness Requirement
Each task needs to accrue some percentage of its maximum pos-

sible utility. Thestatistical performance requirementof a taskTi

is denoted as{νi, ρi}, which implies that taskTi should accrue at
leastνi percentage of its maximum possible utility with the prob-
ability ρi. This is also the requirement for each job of the taskTi.
E.g., if {νi, ρi} = {0.7, 0.93}, then the taskTi needs to accrue
at least70% of the maximum possible utility with a probability no
less than93%. For step TUFs,ν can only take the value 0 or 1.

This statistical performance requirement on the utility of a task
implies a corresponding requirement on the range of task sojourn
times. For non-increasing unimodal TUFs, this range is decided
only by an upper bound, while for increasing unimodal TUFs, both
a lower bound and an upper bound are needed. We care about the
upper bound in this paper; thus, we focus on non-increasing TUFs.

2.5 Task Cycle Demands
UA scheduling and DVS are both dependent on the prediction

of task cycle demands. We estimate the statistical properties (e.g.,
distribution, mean, variance) of the demand rather than the worst-
case demand because: (1) many embedded real-time applications
exhibit a large variation in theiractual workload [6]. Thus, the
statistical estimation of the demand is much more stable and hence
more predictable than the actual workload; (2) worst-case workload
is usually a very conservative prediction of the actual workload [4],
resulting in resource over-supply, and exacerbates the power con-
sumption problem; and (3) allocating cycles based on the statistical
estimation of tasks’ demands can provide statistical performance
assurances, which is sufficient for the applications of interest to us.

Let Yi be the random variable of a taskTi’s cycle demand. We
assume that the mean and variance ofYi are finite and determined
through either online or off-line profiling. We denote the expected
number of processor cycles required by a taskTi asE(Yi), and the
variance on the workload asV ar(Yi). Note that, under a constant
speed i.e., frequencyf (given in cycles per second), the expected
execution time of a taskTi is given byei = E(Yi)

f
.

2.6 Energy Consumption Model
We consider Martin’s system-level energy consumption model [19,

25] to derive the energy consumption per cycle. In this model,
when the CPU operates at a frequencyf , its dynamic power con-
sumption, denoted asPd, is given byPd = Cef × V 2

dd × f , where
Cef is the effective switch capacitance andVdd is the supply volt-
age. On the other hand, the clock frequency is almost linearly re-

lated to the supply voltage (f ∝ Vdd), sincef = k × (Vdd−Vt)
2

Vdd
,

wherek is constant andVt is the threshold voltage [25]. By approx-
imation,f = a×Vdd, wherea is constant. Thus,Pd =

Cef

a2 × f3,
which is equivalent toPd = S3 × f3, whereS3 is constant. Here,
both the supply voltage and the clock frequency can be scaled.

Besides the CPU, there are also other system components that
consume energy. Given the equationPd = Cef × V 2

dd × f , power
consumption equations for all other system components can be de-
rived. Some components, such as the main memory, must operate at
a fixed voltage and thus their power can only scale with frequency.
In this case,Cef ×V 2

dd can be represented as another constant such
asS1, and the equation becomesPd = S1 × f . Other components
in the system consume constant power with respect to the clock
frequency. Examples include display devices. Thus, their power
consumption can be represented asS0, whereS0 is constant.

For completeness in fitting the measured power of a system to
the cubic equation, the quadratic termPd = S2 × V 2

dd is included.
Since we havef ∝ Vdd, Pd is represented asPd = S2 × f2. This
term does not represent the dynamic power consumption of CMOS,
because it implies thatVdd is being lowered without also lower-
ing f . But in practice, this term may appear because of variations
in DC-DC regulator efficiency across the range of output power,
CMOS leakage currents, and other second order effects [19].

Summing the power consumption of all system components to-
gether, an equation for system-level energy consumption of a task
Ti is obtained as:Ei = ei×

�
S3 × f3 + S2 × f2 + S1 × f + S0

�
,

whereei denotesTi’s expected execution time. Therefore, the ex-
pected energy consumption per cycle is given by:

E(f) = S3 × f2 + S2 × f + S1 +
S0

f
(1)

2.7 Scheduling Criterion
Given the models previously described, we consider the UER

metric to integrate timeliness performance and energy consump-
tion. The UER of a job measures the amount of utility that can be
accrued per unit energy consumption by executing the job and the
job(s) that it depends upon (due to resource dependencies). A job
also has a Local UER (LoUER), which is defined as the UER that
the job can potentially accrue by itself at the current time, if it were
to continue its execution. We define thesystem-levelUER as the
ratio of the total accrued utilities and total consumed energy of the
system i.e.,UER =

Pn
i=1 UiPn
i=1 Ei

.

Thus, the ReUA algorithm that we present considers a two-fold
scheduling criterion: (1) assure that each taskTi accrues the speci-
fied percentageνi of its maximum possible utility with at least the
specified probabilityρi; and (2) maximize thesystem-levelUER,
which implies the system’s “energy efficiency.”

This problem isNP-hard because it subsumes the problem of
scheduling dependent tasks with step-shaped TUFs, which has been
shown to beNP-hard in [7].

3. THE REUA ALGORITHM

3.1 Determining Task Critical Time
Let si,j be the sojourn time of thejth job of taskTi. Then

the task’s statistical performance requirement can be represented
as Pr (Ui(si,j) ≥ νi × Umax

i ) ≥ ρi. By the assumption of
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non-increasing TUFs, it is sufficient to havePr(si,j ≤ Di) ≥
ρi, whereDi is the upper bound on the sojourn time of taskTi.
We call Di “critical time” hereafter, and it is calculated asDi =
U−1

i (νi × Umax
i ), whereU−1

i (x) denotes the inverse function of
TUF Ui (·). If there are more than one point on the time axis that
correspond toνi × Umax

i , we choose the latest point. Thus,Ti

is probabilistically assured to accrue at least the utility percentage
νi = Ui(Di)

�
Umax

i , with probabilityρi.
Note that the period or minimum inter-arrival timePi and critical

time Di of the taskTi have the following relations: (1)Pi = Di

for a binary-valued, downward step TUF; and (2)Pi ≥ Di, for
other non-increasing TUFs.

3.2 Statistical Estimation of Demand
To provide statistical timeliness assurances while maximizing

energy efficiency, ReUA allocates cycles to each task based on its
statistical requirements and demand. Knowing the mean and vari-
ance of taskTi’s demandYi, by a one-tailed version of the Cheby-
shev’s inequality, wheny ≥ E(Yi), we have:

Pr[Yi < y] ≥ (y − E(Yi))
2

V ar(Yi) + (y − E(Yi))2
(2)

Equation 2 is the direct result of the cumulative distribution func-
tion of the taskTi’s cycle demands. Knowing that each jobJi,j of
taskTi should accrueνi percentage of utility with a probabilityρi,

to satisfy this requirement, we letρi = (Ci−E(Yi))
2

V ar(Yi)+(Ci−E(Yi))2
and

obtain the minimal requiredCi = E(Yi) +
q

ρi×V ar(Yi)
1−ρi

.

Thus, the scheduler allocatesCi cycles to each jobJi,j , so that
the probability that jobJi,j requires no more than the allocatedCi

cycles is at leastρi i.e.,Pr[Yi < Ci] ≥ ρi.

3.3 UA Scheduling with DVS
The parameterCi determineshow long(in number of cycles) to

execute each task. We now discuss the other scheduling dimensions—
how fast(i.e., CPU speed scaling) andwhento execute each task.

We assume that the processor can be operated atm frequencies
{f1, f2, · · · , fm

��f1 < · · · < fm}, and that there aren tasks and
each task is allocatedCi cycles within itsDi. The aggregate CPU
demand of the task set isUtil =

Pn
i=1

Ci
Di

million cycles per sec-
ond (MHz). To meet this aggregate demand, the CPU only needs
to run at speed

Pn
i=1

Ci
Di

. Actually, Util gives the static, opti-
mal CPU speed to minimize the total energy while meeting all the
Di under the traditional energy consumption model,assuming that
Util ≤ fm, and that each task presents its worst-case workload to
the processor at every instance[4].

However, the cycle demands of tasks often vary greatly. In par-
ticular, a task may, and often does, complete a job before using up
its allocated cycles. Such early completion often results in CPU
idle time, thereby wasting energy. To save this energy, we need to
dynamically adjust the CPU speed.

We consider the energy consumed by thesysteminstead of that
by just the processor and seek to maximize energy efficiency UER.
Equation 1 indicates that there is an optimal value (not necessarily
the lowest one) for clock frequency that minimizesEi for a taskTi.

ReUA first decides the optimal frequency for each taskTi that
maximizes the task’s local UER. At each scheduling event, for all
the n′ jobsJr = {J1, J2, · · · , Jn′} currently in the scheduling
queue, ReUA sorts them based on their UERs under the highest
frequencyfm, in a non-increasing order. The algorithm then inserts
the jobs into a tentative schedule in the order of earliest critical time
first (or ECF), while respecting their resource dependencies.

We define thesystem load(Load) as

Load =
1

fm

nX
i=1

Ci

Pi
(3)

and define thecritical time-based load(Cload) as

Cload =
1

fm

nX
i=1

Ci

Di
(4)

For downward step TUFs,Cload = Load.
If the system is overloaded, it is possible that the queueJr,

whosequeue load(Qload) is defined as1
fm

Pn′
k=1(CJk

�
(Jk.X −

tcur)), is also overloaded. Note thatJk.X refers to the termination
time of Jk. Thus, upon inserting a job, ReUA checks the tenta-
tive schedule’s feasibility and ensures feasibility by dropping some
jobs; that is, the predicted completion time of each job in the tenta-
tive schedule never exceeds its termination time.

To calculate a CPU frequency for the currently selected job i.e.,
the one at the head of the tentative schedule, we adopt a stochastic
DVS technique similar to the Look-Ahead EDF (LaEDF) technique
discussed in [22]. The calculated value is compared with the job’s
local optimal frequency, and the higher one is selected as the CPU
frequency. This process is elaborated in Section 3.4.

Intuitively, during overloads, it is quite possible for the DVS
technique to select the highest frequencyfm for the processor ex-
ecution, since the aggregate CPU demandUtil is higher thanfm.
Therefore, during overloads, with the constant energy consumption
at frequencyfm, to maximize the collective utility per unit energy,
we need to maximize the collective utility. This is exactly why we
sort the jobs based on their UERs and check the schedule feasibil-
ity. Such heuristics are explained in detail in the next section.

3.4 Procedural Description

3.4.1 Overview
ReUA’s scheduling events include the arrival and completion of a

job, a resource request, a resource release, and a time constraint ex-
piration such as the arrival of a TUF’s termination time. To describe
ReUA, we define the following variables and auxiliary functions:
• T is the task set.Da

i is taskTi’s current invocation’s absolute
critical time;Cr

i is its current job’s remaining computation cycles.
• Jr is the current unscheduled job set;σ is the ordered schedule.
Jk ∈ Jr is a job;Jk.Dep is its dependency list.
• Jk.D is jobJk ’s critical time;Jk.X is its termination time;Jk.C
is its remaining cycle.T (Jk) returns the corresponding task of job
Jk. Thus, ifTi = T (Jk), thenJk.C = Cr

i , andJk.D = Da
i .

• FunctionOwner( R) denotes the jobs that are currently holding
resourceR; reqRes( T ) returns the resource requested byT .
• headOf( σ) returns the first job inσ; sortByUER( σ) sorts
σ by each job’s UER.selectFreq( x) returns the lowest fre-
quencyfi ∈ {f1, f2, · · · , fm

��f1 < · · · < fm}, such thatx ≤ fi.
• Insert( T , σ, I) insertsT in the ordered listσ at the position
indicated by indexI; if there are already entries inσ with the
indexI, T is inserted before them. After insertion, the index ofT
in σ is updated toI.
• Remove(T , σ, I) removesT from ordered listσ at the posi-
tion indicated by indexI; if T is not present at the position inσ,
the function takes no action.
• lookup( T , σ) returns the index value associated with the first
occurrence ofT in the ordered listσ.
• feasible( σ) returns a boolean value indicating scheduleσ’s
feasibility. For a scheduleσ to be feasible, the predicted comple-
tion time of each job inσ, determined under the highest frequency
fm, must not exceed its termination time.
A description of ReUA at a high level of abstraction is shown in

Algorithm 1. The procedureofflineComputing() of line 3
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is shown in Algorithm 2, which calculatesDi and Ci for each
task. It also computes the optimal frequencyfo

Ti
for each task

Ti that maximizes the task LoUER. LoUER is defined asUi(t +
Ci
f

)
�

(Ci × E(f)), whereE(f) is derived using Equation 1. This
calculation is performed att = 0.

Algorithm 1: ReUA: High Level Description
1: input : T = {T1, · · · , Tn},Jr = {J1, · · · , Jn′};

2: output : selected jobJexe and frequencyfexe;
3: offlineComputing (T);
4: Initialization: t := tcur , σ := ∅;
5: switch triggering eventdo
6: casetask release(Ti) Cr

i = Ci;
7: casetaskcompletion(Ti) Cr

i = 0;
8: otherwise UpdateCr

i ;

9: for ∀Jk ∈ Jr do
10: if feasible( Jk) =false then
11: abort( Jk) ;

else
12: Jk.Dep := buildDep( Jk) ;

13: for ∀Jk ∈ Jr do
14: Jk.UER:=calculateUER( Jk, t) ;

15: σtmp :=sortByUER( Jr) ;
16: for ∀Jk ∈ σtmp from head to taildo
17: if Jk.UER > 0 then
18: σ := insertByECF( σ, Jk) ;

19: else break;

20: Jexe:=headOf( σ) ;
21: fexe:=decideFreq( T, Jexe, t) ;
22: return Jexe andfexe;

When ReUA is invoked at timetcur, the algorithm first updates
each task’s remaining cycle (theswitch starting from line 5). The
algorithm then checks the feasibility of the jobs. If the earliest pre-
dicted completion time of a job is later than its termination time, it
can be safely aborted (line 11). Otherwise, ReUA builds the depen-
dency list for the job (line 12).

Algorithm 2: offlineComputing()
1: input : Task setT; output: Di, Ci, fo

Ti
;

2: Di = U−1
i (νi × Umax

i );

3: Ci = E(Yi) +
q

ρi×V ar(Yi)
1−ρi

;

4: Decide fo
Ti

, such that Ui(
Ci
fo

Ti

)
��

Ci × E(fo
Ti

)
�

=

max( Ui(
Ci
fj

)/ (Ci × E(fj))) , ∀j ∈ {1, 2, · · · , m};

The UER of each job is computed bycalculateUER() , and
the jobs are then sorted by their UERs (line 14 and 15). In each
step of thefor loop from line 16 to 19, the job with the largest
UER and its dependencies are inserted intoσ, if it can produce a
positive UER. The output scheduleσ is then sorted by the jobs’
critical times by the procedureinsertByECF() .

Finally, ReUA analyzes the demands of the task set and applies
DVS to decide the CPU frequencyfexe (line 21). The selected job
Jexe, which is at the head ofσ, is executed atfexe (line 20–22).

3.4.2 Resource and Deadlock Handling
Before ReUA can compute job partial schedules, the dependency

chain of each job must be determined, as shown in Algorithm 3.

Algorithm 3: buildDep()
1: input : JobJk; output: Jk.Dep ;
2: Initialization : Jk.Dep := Jk ; Prev := Jk;
3: while reqRes( Prev) 6= ∅V

Owner(reqRes( Prev)) 6= ∅ do
4: Jk.Dep :=Owner( reqRes( Prev) ) ·Jk.Dep;
5: Prev := Owner( reqRes( Prev) ) ;

Algorithm 3 follows the chain of resource request/ownership.
For convenience, the input jobJk is also included in its own de-
pendency list. Each jobJl other thanJk in the dependency list
has a successor job that needs a resource which is currently held
by Jl. Algorithm 3 stops either because a predecessor job does not
need any resource or the requested resource is free. Note that “¦”
denotes an append operation. Thus, the dependency list starts with
Jk ’s farthest predecessor and ends withJk.

To handle deadlocks, we consider a deadlock detection and reso-
lution strategy, instead of a deadlock prevention or avoidance strat-
egy. Our rationale for this is that deadlock prevention or avoidance
strategies normally pose extra requirements; for example, resources
must always be requested in ascending order of their identifiers.

Further, restricted resource access operations that can prevent or
avoid deadlocks, as done in many resource access protocols, are not
appropriate for the class of embedded real-time systems that we fo-
cus on. For example, the Priority Ceiling protocol [24] assumes that
the highest priority of jobs accessing a resource is known. Like-
wise, the Stack Resource policy [5] assumes preemptive “levels”
of threadsa priori. Such assumptions are too restrictive for the
class of systems that we focus on (due to their dynamic nature).

Recall that we are assuming a single-unit resource request model.
For such a model, the presence of a cycle in the resource graph
is the necessaryand sufficient condition for a deadlock to occur.
Thus, the complexity of detecting a deadlock can be mitigated by a
straightforward cycle-detection algorithm.

Algorithm 4: Deadlock Detection and Resolution
1: input : Requesting jobJk , tcur ;

/ * deadlock detection * / ;
2: Deadlock := false;
3: Jl := Owner( reqRes( Jk) ) ;
4: while Jl 6= ∅ do
5: Jl.LoUER := UJl

(tcur +
Jl.C

fm
)
�
(Jl.C × E(fm));

6: if Jl = Jk then
7: Deadlock := true;
8: break;

else
9: Jl := Owner( reqRes( Jl) ) ;

/ * deadlock resolution if any * / ;
10: if Deadlock = true then
11: abort( The jobJm with the minimalLoUER in the cycle) ;

The deadlock detection and resolution algorithm (Algorithm 4)
is invoked by the scheduler whenever a job requests a resource.
Initially, there is no deadlock in the system. By induction, it can be
shown that a deadlock can occur if and only if the edge that arises in
the resource graph due to the new resource request lies on a cycle.
Thus, it is sufficient to check if the new edge resulting from the
job’s resource request produces a cycle in the resource graph.

To resolve the deadlock, some job needs to be aborted. If a job
Jl were to be aborted, then its timeliness utility is lost, but energy
is still consumed. To minimize such loss, we compute the LoUER
of each job attcur at the frequencyfm. ReUA aborts the job with
the minimal LoUER in the cycle to resolve a deadlock.

3.4.3 Manipulating Partial Schedules
ThecalculateUER() algorithm (Algorithm 5) accepts a job

Jk (with its dependency list) and the current timetcur. On comple-
tion, the algorithm determines UER forJk, by assuming that jobs
in Jk.Dep are executed from the current position (at timetcur) in
the schedule, while following the dependencies.

To computeJk ’s UER at timetcur, ReUA considers each job
Jl that is inJk ’s dependency chain, which needs to be completed
before executingJk. The total computation cycles that will be exe-
cuted upon completingJk is counted using the variableCc of line
4. With the known expected computation cycles of each task, we
can derive the expected completion time and expected energy con-

68



Algorithm 5: calculateUER()
1: input : Jk , tcur ; output: Jk.UER;
2: Initialization : Cc := 0, E := 0, U := 0;
3: for ∀Jl ∈ Jk.Dep, from head to taildo
4: Cc := Cc + Jl.C;
5: U := U + UJl

(tcur + Cc
fm

);

6: E := E(fm)× Cc;
7: Jk.UER := U

�
E;

8: return Jk.UER;

sumption underfm for each task, and thus get their accrued utility
to calculate UER forJk.

Thus, the total execution time (underfm) of the jobJk and its
dependents consists of two parts: (1) the time needed to execute the
jobs holding the resources that are needed to executeJk; and (2) the
remaining execution time ofJk itself. According to the process of
buildDep() , all the relative jobs are included inJk.Dep.

Note that we are calculating each job’s UER assuming that the
jobs are executed at the current position in the schedule. This would
not be true in the output scheduleσ, and thus affects the accuracy
of UERs calculated. But with the non-increasing shape of each
job’s TUF, we are calculating the highest possible UER of each job
by assuming that it is executed at the current position. Intuitively,
this would benefit the final UER, sinceinsertByECF() always
takes the job with the highest UER at each insertion onσ. Also, the
UER calculated for the scheduled job, which is at the head of the
feasible schedule, is always accurate.

The details ofinsertByECF() in line 18 of Algorithm 1 are
shown in Algorithm 6. insertByECF() updates the tentative
scheduleσ by attempting to insert each job along with all of its
dependencies toσ. The updatedσ is an ordered list of jobs, where
each job is placed according to the critical time it should meet.

Algorithm 6: insertByECF()
1: input : Jk and an ordered job listσ;
2: output : the updated listσ;

3: if Jk /∈ σ then
4: copyσ into σtent: σtent :=σ;
5: Insert( Jk, σtent, Jk.D) ;
6: CuCT = Jk.D;
7: for ∀Jl ∈ {Jk.Dep− Jk} from tail to headdo
8: if Jl ∈ σtent then
9: CT =lookup( Jl, σtent) ;

10: if CT < CuCT then continue;
11: elseRemove(Jl, σtent, CT ) ;

12: CuCT :=min( CuCT,Jl.D) ;
13: Insert( Jl, σtent, CuCT ) ;

14: if feasible( σtent) then
15: σ := σtent;

16: return σ;

Note that the time constraint that a job should meet is not neces-
sarily the job critical time. In fact, the index value of each job inσ
is the actual time constraint that the job must meet.

A job may need to meet an earlier critical time in order to enable
another job to meet its time constraint. Whenever a job is consid-
ered for insertion inσ, it is scheduled to meet its own critical time.
However, all of the jobs in its dependency list must execute before
it can execute, and therefore, must precede it in the schedule. The
index values of the dependencies can be changed withInsert()
in line 13 of Algorithm 6.

The variableCuCT is used to keep track of this information.
Initially, it is set to be the critical time of jobJk, which is tenta-
tively added to the schedule (line 6, Algorithm 6). Thereafter, any
job in Jk.Dep with a later time constraint thanCuCT is required
to meetCuCT . If, however, a job has a tighter critical time than
CuCT , then it is scheduled to meet the tighter critical time, and
CuCT is advanced to that time since all jobs left inJk.Dep must

complete by then (lines 12–13, Algorithm 6). Finally, if this inser-
tion produces a feasible schedule, then the jobs are included in the
schedule; otherwise, not (lines 14–15).

It is worth noting that the procedureinsertByECF() sorts
jobs in the non-decreasing critical time order if possible, but its
sub-procedurefeasible() checks the feasibility ofσtent based
on each job’s termination time. This is because a job’s critical time
is smaller or equal to its termination time. So even if a job cannot
complete before its critical time, it may still accrue some utility, as
long as it finishes before its termination time. Thus, we need to
prevent “over-killing” infeasible() . The effectiveness of such
prevention is further illustrated in Section 5.3.

3.4.4 Deciding the Processor Frequency
ReUA adopts a stochastic DVS technique similar to LaEDF [22],

as shown in Algorithm 7.
ReUA keeps track of the remaining computation cyclesCr

i , as
updated from line 5 to line 8 of Algorithm 1. Unlike LaEDF, ReUA
uses the aggregate CPU demandUtil during the process of DVS.
From line 2 to line 9, the algorithm considers the interval until the
next task critical time and tries to “push” as much work as possible
beyond the critical time. The algorithm considers the tasks in the
latest-critical-time-first order in line 4.

Algorithm 7: DecideFreq()
1: input : T, Jexe, tcur ; output: fexe ;
2: Util := C1/D1 + · · ·+ Cn/Dn;
3: s := 0;
4: for i = 1 to n, Ti ∈ {T1, · · · , Tn

��Da
1 ≥ · · · ≥ Da

n} do
/ * reverse EDF order of tasks * / ;

5: Util := Util− Ci/Di;
6: x :=max( 0, Cr

i − (fm − Util)× (Da
i −Da

n)) ;

7: Util :=

(
1, if Da

i −Da
n = 0

Util +
Cr

i −x

Da
i
−Da

n
, otherwise ;

8: s := s + x;

9: f :=min( fm, s/(Da
n − tcur)) ;

10: fexe:=selectFreq (f );
11: fexe:=max( fexe, fo

T (Jexe)) ;

x is the minimum number of cycles that the task must execute
before the closest critical time,Da

n, in order for it to complete by
its own critical time (line 6), assuming worst-case aggregate CPU
demandUtil by tasks with earlier critical times. The aggregate
demandUtil is adjusted to reflect the actual demand of the task
for the time afterDa

n (line 7). s is simply the sum of thex values
calculated for all of the tasks, and therefore reflects the minimum
number of cycles that must be executed byDa

n in order for all tasks
to meet their critical times (line 8). In line 9, the CPU frequency is
set just fast enough to executes cycles over this interval.

Thus,decideFreq() capitalizes on early task completion by
deferring work for future tasks in favor of scaling the current task.
In addition, in line 7, we consider the case that jobs of different
tasks have the same absolute critical times, which sometimes oc-
curs, especially during overloads. Also, it is possible that dur-
ing overloads, the required frequency may be higher thanfm and
selectFreq() would fail to return a value. In line 9, we solve
this by setting the upper limit of the required frequency to befm.

Finally, the result ofselectFreq() is compared with the op-
timal frequency ofT (Jexe) decided inofflineComputing()
(line 11). The higher frequency is selected to preserve the statistical
performance assurance and maximize system-level UER.

4. PROPERTIES OF REUA

4.1 Non-Timeliness Properties
We now discuss ReUA’s non-timeliness properties, i.e., deadlock-

freedom, correctness, and mutual exclusion.
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ReUA respects resource dependencies by ensuring that the job
selected for execution can execute immediately. Thus, no job is
ever selected for normal execution if it is resource-dependent on
some other job.

THEOREM 1. ReUA ensures deadlock-freedom.

PROOF. A cycle in the resource graph is the sufficientandnec-
essary condition for a deadlock in the single-unit resource request
model. ReUA does not allow such a cycle by deadlock detection
and resolution; so it is deadlock free.

LEMMA 1. In insertByECF() ’s output, all the dependents
of a job must execute before it can execute, and therefore, must
precede it in the schedule.

PROOF. insertByECF() seeks to maintain an output queue
ordered by jobs’ critical times, while respecting resource depen-
dencies. Consider jobJk and its dependentJl. If Jl.D is earlier
thanJk.D, thenJl will be inserted beforeJk in the schedule. If
Jl.D is later thanJk.D, Jl.D is advanced to beJk.D by the op-
eration withCuCT . According to the definition ofinsert() ,
after advancing the critical time,Jl will be inserted beforeJk.

THEOREM 2. When a jobJk that requests a resourceR is se-
lected for execution by ReUA,Jk ’s requested resourceR will be
free. We call this ReUA’s correctness property.

PROOF. From Lemma 1, the output scheduleσ is correct. Thus,
ReUA is correct.

Thus, if a resource is not available for a jobJk ’s request, jobs
holding the resource will becomeJk ’s predecessors. We present
ReUA’s mutual exclusion property by a corollary.

COROLLARY 1. ReUA satisfies mutual exclusion constraints in
resource operations.

4.2 Timeliness Properties
We consider timeliness properties under no resource dependen-

cies, where ReUA can be compared with a number of well-known
algorithms. Specifically, we consider the following two conditions:
(1) a set of independent periodic tasks, where each task has a single
computational thread with a downward step TUF (such as the one
shown in Figure 1(d)); and (2) there are sufficient processor cycles
for meeting all task termination times—i.e., there is no overload.

THEOREM 3. Under conditions (1) and (2), a schedule pro-
duced by EDF [10] is also produced by ReUA, yielding equal total
utilities. Not coincidentally, this is simply a termination time or-
dered schedule.

PROOF. We prove this by examining Algorithms 1 and 6. For
a job J without dependencies,J.Dep only containsJ itself. For
periodic tasks with step TUFs, a task’s critical time is the same
as its termination time. During non-overload situations,σ from
line 18 of Algorithm 1 is termination time ordered.

The TUF termination time that we consider is analogous to a
deadline in [10]. As proved in [10,16], a deadline-ordered schedule
is optimal (with respect to meeting all deadlines) when there are no
overloads. Thus,σ yields the same total utility as EDF.

Some important corollaries about ReUA’s timeliness behavior
during under-loads can be deduced from EDF’s optimality [10].

COROLLARY 2. Under conditions (1) and (2), ReUA always
meets all task termination times.

COROLLARY 3. Under conditions (1) and (2), ReUA yields the
minimum possible maximum lateness.

ReUA also provides statistical performance assurances under pos-
sible conditions. With condition (1), the utility requirement of a
task can only takeν = 0 or ν = 1. From Corollary 2, we can
derive the properties of ReUA on performance assurances.

THEOREM 4. Under conditions (1) and (2), ReUA meets all
statistical performance requirements.

PROOF. From Corollary 2, under conditions (1) and (2), ReUA
can meet all task termination times. This ensures thatνi = 1 can be
satisfied for each task. Based on the results of Equation 2, at least
ρi demanded processor cycles of taskTi are less than the allocated
cycles. From Corollary 2, all the allocated cycles can be completed
before their termination times. Thus, for taskTi, ReUA can meet
at leastρi termination times; i.e., ReUA accruesνi utility with a
probability at leastρi.

From Theorem 4, we can derive its counterpart for non-increasing
TUFs with the definitions of Equations 3 and 4.

THEOREM 5. For a set of independent periodic tasks, where
each task has a single computational thread with a non-increasing
TUF, Cload <= 1 is the sufficient condition for ReUA to meet all
statistical performance requirements.

PROOF. With νi andρi of taskTi, ReUA converts the perfor-
mance assurance problem to the problem of meeting critical times.
If Cload <= 1, according to Theorem 4, the assertion holds.

Note that Theorem 5 only states thatCload <= 1 is the suf-
ficient condition. Actually, it is not the necessary condition. We
illustrate this with an example in Section 5.

5. EXPERIMENTAL RESULTS

5.1 Simulation Methodology
We performed extensive simulations to experimentally evaluate

ReUA’s performance. The simulator takes as input a task setG,
which contains tasks selected from Table 1. The table also summa-
rizes these tasks’ input parameters, including the periods/minimum
inter-arrival times (or P/I.A.), means/variances of cycle demands,
and task TUFs.

Table 1: Experimental Tasks
Task Jobs P/I.A. TUF

T1 130 21 step,height = 10
T2 124 22 step,height = 80
T3 137 20 step,height = 10
T4 109 25 step,height = 80

T5 130 21

�
−0.025t2 + 10, 0 ≤ t ≤ 20

0, otherwise

T6 124 22

� −4x + 80, 0 ≤ t ≤ 20
0, otherwise

T7 137 25

�
−0.01x2 − 0.15x + 10, 0 ≤ t ≤ 25

0, otherwise

T8 124 21

� −0.5x + 10, 0 ≤ t ≤ 20
0, otherwise

T9 124 20 the same asT8 ’s
T10 124 25 the same asT8 ’s

For each demandYi, we keepV ar(Yi) ≈ E(Yi), and generate
normally-distributed cycle demands. We change the tasks’ cycle
demands to change the system load (Load defined in Equation 3).

The energy consumption per cycle at a particular frequency is
calculated using Equation 1. In practice, theS3, S2, S1, andS0

terms depend on the power management state of the system and its
subsystems. For example, if a laptop has its display on, theS0 term
will be large relative to the others. But if the display has been turned
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Figure 2: Normalized UER vs.Load with Step TUFs under Various Energy Model Settings

off, the S0 term will be much smaller. Different types of systems
will also have different relative values for theS terms. TheS3 term
is probably a much larger fraction of the total power in a PDA than
it is in a laptop [19,25].

We use experimental settings that are similar to those in Martin’s
PhD thesis [19], but de-normalize the terms. For comparison, the
experiments are carried out under three energy model settings, as
shown in Table 2. Note thatE1 is the same as the traditional energy
model, which only considers the CPU’s energy consumption.

Table 2: Energy Model Settings
Energy Model S3 S2 S1 S0

E1 1.0 0 0 0
E2 0.75 0 0 0.25f3

m

E3 0.5 0 0 0.5f3
m

We consider a processor that supports seven different frequen-
cies,{360, 550, 640, 730, 820, 910, 1000 MHz}. These frequen-
cies reflect the setting that is available on a platform incorporating
an AMD k6 processor with AMD’sPowerNow! mechanism [3].

In addition to ReUA, we implemented the following schemes
for comparison: BaseEDF, LaEDF, StaticEDF, and LaEDF-NA.
BaseEDF is the EDF scheduler without any DVS support and uses
the highest frequency. LaEDF is the Look-ahead RT-DVS for EDF
scheduler [22]. StaticEDF uses the constant speed given by the
aggregate demandUtil and a “ceiling” up to the lowest suitable
frequency in{f1, f2, · · · , fm}. StaticEDF switches to the lowest
frequency whenever there is no ready task. Combining the static
schemes in [4] and [22], StaticEDF is the static optimal solution
to the DVS problem for periodic tasks with step TUFs under avail-
able frequencies. The previous three schemes abort infeasible tasks
during overloads. Thus, LaEDF-NA is LaEDF with no abortion.

LaEDF, LaEDF-NA, and StaticEDF perform DVS on periodic
tasks with known worst-case workload, which is unavailable in our
application model. Thus, we use the minimum inter-arrival time
and cycles allocated by ReUA as their inputs.

5.2 Impact of Energy Models
In our first set of simulation experiments, we determine the ef-

fects of our new energy model. We consider the task setG1 =
{T1, T2, T3, T4}, and apply different schemes onG1 under differ-
ent energy settings. We consider downward step TUFs, since all
the other algorithms compared can only deal with deadlines. Each
taskTi has the performance requirement ofνi = 1 andρi = 0.96.

Figure 2 shows the UER for all the DVS schemes normalized
to the BaseEDF under energy model settingsE1, E2, andE3, as
Load varies from 0.2 to 1.8. We observe that under all three energy
settings, ReUA performs the best among all strategies under all
loads, especially during overloads. We also observe that LaEDF-
NA yields almost zero UER during overloads.

During overloads, the normalized UERs produced by LaEDF,
StaticEDF, and BaseEDF converge to 1. This is because, all three
algorithms select the highest frequency by DVS calculation during
overloads, and bear no difference in scheduling. As the termS0 in
the energy model increases, ReUA adjusts the selected frequency to
accrue more UER. This effect is more pronounced underE3, when
LaEDF, LaEDF-NA, and StaticEDF perform worse than BaseEDF,
while ReUA still outperforms BaseEDF during all loads.

We speculate that, the UER gap between ReUA and the other
schemes is because ReUA saves more energy during under-loads,
and accrues higher utility during overloads. Our speculation is ver-
ified in Figure 3, which shows the accrued utility and energy con-
sumption normalized to BaseEDF, under energy model settingE2.
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Figure 3: Norm. Energy/Utility vs.Load with Step TUFs andE2

From Figure 3(a), we observe that during under-loads, all schemes
accrue the same (optimal) utility because of EDF’s optimality [10]
during such situations. But during overload situations, LaEDF-NA
suffers domino effects and accrues almost no utility [17]. On the
other hand, ReUA seeks to schedule jobs with higher UERs, and
thus accrues remarkably higher utility than the others.

In Figure 3(b), during under-loads, we observe that ReUA saves
more energy than the other schemes. Further, this portion of the
curves is nearly symmetric to the corresponding portion of Fig-
ure 2(b). The energy consumption of LaEDF-NA increases linearly
with Load, because it performs no abortion and executes every job
that arrives. Since no strategies except ReUA consider the system-
level energy consumption, we only use the energy modelE1 in our
further simulation experiments.

5.3 Performance Assurance
To evaluate the statistical performance assurances provided by

ReUA, we first consider the task setG1 with the performance re-
quirement of{(νi = 1, ρi = 0.96), i = 1, · · · , 4}.

Figure 4 shows the accrued utility ratio (AUR) and critical-time
meet ratio (DMR) of each task under increasingLoad. AUR is the
ratio of accrued aggregate utility to the maximum possible utility,
and DMR is the ratio of the jobs meeting their critical times to the
total job releases of a task. For a task with a downward step TUF,
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its AUR and DMR are identical; so we show them in one plot. Note
that the system-level AUR and DMR can be different due to the mix
of different utility of tasks.
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Figure 4: AUR and DMR vs.Load of G1 underE1

As Figure 4(a) shows, with ReUA during under-loads, all tasks
accrue 100% AUR and DMR, except taskT1, whose AUR and
DMR is 99.23% atLoad = 0.3. Thus, ReUA delivers the statis-
tical performance assurance of being able to accrue 100% of task
maximum utility with a probability at least 96% for all tasks. This
also validates Theorem 4.

Comparing the results during overloads in Figure 4(a) and 4(b),
we observe that ReUA still achieves near 100% AUR/DMR of task
T2 andT4, but achieves less AUR/DMR ofT1 andT3. One the
other hand, LaEDF decreases the AUR/DMR ofT2 andT4 more
than the other two. This is because,T2 andT4 have TUFs with
higher “heights” and thus higher utility; so ReUA accrues more
system-wide utility by completing these tasks before their termina-
tion times. Schemes based on EDF cannot make such scheduling
decisions—T2 andT4 are not favored by LaEDF since they have
longer critical times thanT1 andT3. We show the comparison of
utility accrual for various schemes in Section 5.4.

BesidesG1, we also consider the task setG2 = {T3, T5, T6, T7}
that contains linear-shaped and parabolic-shaped TUFs (with non-
increasing portion) as well as step TUFs. The performance re-
quirements ofG2 are{(ν3 = 1.0, ρ3 = 0.80), (ν5 = 0.55, ρ5 =
0.80), (ν6 = 0.5, ρ6 = 0.80), (ν7 = 0.55, ρ7 = 0.80)}.

Figure 5 shows the AUR and DMR of each task inG2 with
Cload varying from 0.7 to 2.0. SystemLoad also changes with
Cload, and the corresponding values are shown in Table 3.

Table 3: Cload andLoad
Cload 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Load 0.44 0.5 0.57 0.6 0.7 0.76 0.83

Cload 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Load 0.89 0.95 1.01 1.06 1.13 1.2 1.26

We consider taskT7 as an example to illustrate how ReUA deliv-
ers statistical performance assurances. As shown in Figure 5, when
Cload ≤ 1, taskT7 is assured to accrue at leastν7 = 55% of
its maximum utility with a probability no less thanρ7 = 80%.
For example, atCload = 1, ReUA accrues AUR=86.97% and
DMR=100%, which implies that it can complete all the demanded
cycles of the task before their critical times. Furthermore, 86.97%
of the task maximum utility can be accrued at a probability 100%—
much more than the performance requirements.

But Cload ≤ 1 is not the necessary condition for delivering sta-
tistical performance assurances. For example, atCload = 1.6
and Load = 1.02, task T7 can still accrue AUR=71.21% and
DMR=89.91%. This is because, for a task with a non-step and non-
increasing TUF, even if the task misses its critical time, the task can
complete before its termination time and accrue some amount of
utility, which depends on the TUF shape. Therefore, these experi-
ments validate Theorem 5.

Another major pattern that can be observed from Figure 5 is that,
asCload andLoad increases, taskT3 with a step TUF accrues
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Figure 5: AUR and DMR vs.Cload of G2 underE1

more AUR and DMR than the other tasks with non-step TUFs. This
is because,T3’s full utility can be accrued as long as it is completed
before its termination time, while completing other tasks just before
their termination times may result in very low utility. In addition,
among tasksT5, T6, andT7 with non-step TUFs, the one with the
highest maximum utility i.e.,T6, is favored by ReUA to accrue
more system-wide utility.

5.4 Effectiveness of Utility Accrual
From experiments of the previous sections, we observe that ReUA

mimics the behavior of EDF during under-loaded situations. Dur-
ing overloads, all schemes tend to selectfm as the execution fre-
quency by DVS, and thus have the same energy consumption. Thus,
the higher UER produced by ReUA than the others is due to the fact
that ReUA seeks to accrue more utility during such situations. In
this section, we vary the TUF shape of each task to demonstrate
ReUA’s utility accrual capability.

We roughly define the ratio of the maximum and minimum heights
of TUFs in a task set aspeak height ratio (or PHR). We con-
sider two task setsG3 andG4 with step TUFs and linear TUFs,
respectively. G3 is the setG3 = {T1, T2, T3, T4}, where the
heights ofU2 and U4 are varied from 10 to 100.G4 is the set
G4 = {T6, T8, T9, T10}, where the crossing points of theutility-
axes withU6 andU10 are varied from 10 to 100. In addition, the
intersections with thet-axes of all TUFs inG4 are maintained at
t = 20. Thus, bothG3 andG4 havePHRs varying from 1 to 10.

Figure 6(a) shows the UERs for ReUA and LaEDF that are nor-
malized to LaEDF underG3 with Load = 1.5. During overloads,
LaEDF, StaticEDF, and BaseEDF yield the same performance; so
we only show LaEDF here. We observe that, atPHR = 1, ReUA
makes the same scheduling decisions as LaEDF. But asPHR in-
creases, ReUA obtains higher system-level UER than LaEDF.
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Figure 6: Normalized UER vs.PHR underE1

Figure 6(b) shows the normalized UERs for ReUA and LaEDF
underG4 with Load = 1.5 andCload = 1.85. We observe simi-
lar trends as that in Figure 6(a), but with larger performance gap as
PHR increases. The two strategies’ different scheduling criteria
result in different performance even atPHR = 1.

Since not all critical times can be satisfied during overloads,
ReUA considers the UER of each job and seeks to schedule jobs
with high UERs, while maintaining the critical time order of jobs.
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But LaEDF simply schedules according to tasks’ critical times,
and conforms to the critical time order. In addition, during over-
loads, ReUA tends to abort jobs with low UERs in the feasibility
check. This results in higher system-level utility than that obtained
by LaEDF, which always aborts jobs with the largest critical time.

5.5 Results under Resource Dependency
To construct dependent task sets, we consider task setsG1 and

G2 and have each job randomly request and release resources from
some available set of resources during the job’s life cycle. The
resource request and release times are uniformly distributed within
a job’s life cycle. We conducted experiments on the task sets, which
are scheduled by ReUA under no resources, two shared resources,
and five shared resources.

Figure 7(a) shows UERs normalized to the case ofG1 with no
resources, asLoad varies from 0.2 to 1.8. Figure 7(b) shows the
same metric forG2, asCload varies from 0.7 to 2.0. From the
figures, we observe that whenLoad or Cload increases, the per-
formance of ReUA on dependent task sets decreases. Higher the
number of shared resources, the more performance decrease can
be observed. This is because, ReUA respects resource dependen-
cies in scheduling, which in the worst-case may cause jobs to be
executed in the reverse order of UERs or critical times. So with
dependent task sets, ReUA cannot provide performance assurances
and suffers UER losses, especially during high loads.
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Figure 7: Norm. UER with Resource Dependencies underE1

However, at very highLoad or Cload and with five shared re-
sources, normalized UERs of ReUA on the independent task sets
are just better than those on dependent task sets by no more than
10%. This is because, ReUA aborts a task when its expected com-
pletion time is less than its termination time. Thus, the job queue
seen by the ReUA scheduler at any scheduling event has a length
no more than the number of tasks. With our experimental settings,
we have only limited performance loss in our simulation, but we
expect more performance drop with larger task sets.

6. CONCLUSIONS, FUTURE WORK
This paper presents the design and evaluation of ReUA, a resource-

constrained, energy-efficient, utility-accrual real-time scheduling
algorithm for mobile embedded systems. ReUA considers appli-
cation activities that are subject to TUF time constraints, resource
dependencies, and system-level energy consumption concerns.

The key underpinning of ReUA is the observation that embed-
ded real-time applications usually exhibit large variations in their
actual cycle demands. This provides opportunities for providing
statistical, timeliness performance assurances, while respecting re-
source dependencies, and for improving system-level energy effi-
ciency. To realize this, the algorithm statistically allocates cycles to
individual application tasks and executes their allocated cycles at
different speeds with DVS. ReUA makes such stochastic decisions
based on the statistical properties of the task demands. During over-
load situations, ReUA heuristically schedules tasks to maximize
collective utility so as to improve system-level energy efficiency.

We establish several timeliness and non-timeliness properties of
ReUA such as timeliness optimality during under-loads, deadlock-
freedom, correctness, and mutual exclusion. Our simulation exper-
iments illustrate that ReUA provides statistical performance assur-
ances when possible and improves system-level energy efficiency.

Several aspects of the work are directions for further research.
Example directions include considering the multi-unit resource re-
quest model [5], tasks with stochastic arrivals, and aperiodic tasks.
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