
Model Based Estimation and Verification of Mobile Device
Performance

Gopal Raghavan
Nokia Research Center

5 Wayside Road
Burlington, MA 01803, USA

Gopal.Raghavan@nokia.com

Ari Salomaki
Nokia Technology Platforms

Visiokatu 3
Tampere, Finland

Ari.Salomaki@nokia.com

Raimondas Lencevicius
Nokia Research Center

5 Wayside Road
Burlington, MA 01803, USA

Raimondas.Lencevicius@nokia.com

ABSTRACT
Performance is an important quality attribute that needs to be
planned and managed proactively. Abstract models of the system
are not very useful if they do not produce reasonably accurate
metrics. Detailed models are time consuming and expensive to
build as well as to simulate. In order to strike a right balance, a
framework is proposed in this paper that takes advantage of the
flexibility of abstract modeling and intricacies of detailed
modeling. Performance is modeled and verified per use case using
a hierarchical queuing model of the system. Each component job
is represented through characterization functions and service
requests. Characterization functions may be parametric regression
models derived from job measurements on system level model. A
co-design framework is used to simulate and measure the
performance of software components. The use case simulator
analyzes the performance and verifies the use case requirements.

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements, modeling and prediction,
queuing theory, simulation

I.6.4 [Simulation and Modeling]: Model validation and analysis,
model development, simulation output analysis

General Terms
Measurement, performance and verification.

Keywords
Performance analysis, system level modeling, use case
verification.

1. INTRODUCTION
The overall performance of a system is dependent on both the
hardware and the software architecture. The processor speed, bus

speed, cache configuration, number of processors, type of
processors etc., determine the hardware configuration and in turn
contribute to the system performance. The software component is
like a workload generator to the hardware elements. Algorithmic
complexity of the software component, interdependencies
between components, task structure, inter-task communication,
event handling etc, contribute to the performance of software.
Software tasks that need faster processing can probably meet their
performance needs when they are embedded in hardware. For
example, some complex video/audio encoding and decoding
algorithms are processed in hardware in order to enhance
performance. To accommodate changes in hardware
configurations, the software is built in layers. Therefore, higher-
level applications layers are unaffected by minor hardware
changes. This makes the software more portable across platforms.
For example, on a mobile phone the core software for handling
call origination and terminations are not frequently modified
since the protocol requirements are seldom changed. Whereas the
hardware platform changes significantly over a period of time to
provide improved performance and to accommodate advanced
features such as support for color display, image processing for
camera phones, video streaming and voice recording.
It is a challenge for system designers to decide the architectural
enhancements that are required to support a future application.
For example: how to plan the system architecture of a mobile
device that support about 10 times higher data rate in the next
four years. This kind of decision-making involves in-depth
analysis of various system level elements arranged in different
configuration. There are several interesting situations. First, the
software that is running on existing platform should run at least as
well on the new platform. Second, the hardware platform should
support the requirements of future applications. For example, the
3GPP quality of service requirement for audio streaming
downlink needs at least a guaranteed downlink bit rate of 72
Kbps. The maximum bit rate is product specific and can range
from 128 Kbps to 384 Kbps. If a product needs to support such
high bit rates in the future, then its hardware should be capable of
handling these requirements. And finally, the application
demands might become higher due to which there might be
changes in software as well as hardware. Performance of a system
needs to be planned ahead of time based on several uncertainties
and yet the estimates should be as close to reality as possible.
This paper proposes a model based performance estimation
approach that uses modular, composable, and reusable component
job models. Model characterizations are derived based on
measurements obtained from hardware system models.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’04, September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009...$5.00.

34

Section 2 presents a brief description of performance use cases.
The modeling framework is explained in section 3. Use case
model is outlined in section 4 with components and jobs further
discussed in section 5. Section 6 describes job characterization
and its dependencies on the execution paths, which is elaborated
in sections 7 and 8. Section 9 shows how information for
modeling is gathered and section 10 touches upon specifics of
component context setup. Section 11 describes how
characterizations are built from measurements. All these pieces
are used in section 12 to analyze and verify the use cases.

2. PERFORMANCE CRITICAL USE
CASES

Mobile Phone
 Speech

Call

Play
Music

File
Transfer

Figure 1. A sample mobile phone performance use case

There are several use cases in a system, a subset of which is
performance critical [1]. Performance critical use cases are those
that produce heavy demand for system resources and have tight
timing constraints. Such use cases may partially be supported by
existing systems or may be in the road map for future systems.
These use cases are driven by user requirements and contribute to
the success of the product. In order to satisfy these requirements,
performance of the system needs to be improved both in terms of
software and hardware. Often performance solutions are not very
generic but are tied to specific use cases. Choosing the right use
case and concentrating on the requirement will facilitate an
efficient problem analysis.
A simple use case on a mobile phone is illustrated in Figure 1.
The user may invoke several system operations individually or
simultaneously as shown in Figure 2. For example, while the user
has an active speech call he may also be trying to backup some
pictures that were captured using a mobile phone during a recent
trip. We have at least two simultaneous scenarios: the speech call
and the file transfer. While the file transfer is considered a
background process, the speech call is an active foreground
process that usually has a higher priority. The speech call will
have load on both the application processor and the DSP. On the
other hand, the file transfer scenario will have activity only on the
application processor. In order to have good end user
performance the system should support both scenarios without
any distortion in voice or any delay in file transfers. Also, the file
can be transferred through different physical medium, like IR,
Bluetooth, serial cable, USB, etc. Depending on the medium,
different performance constraints may be attached to the scenario.
The goal of use case verification is to ensure that the model of

system satisfies the use case requirements and any associated
constraints.

MMC External DeviceMobile Phone

connect_via_USB()

transfer_data()

check_mmc_status()

mmc_full()

data_upload()

transfer_complete()

{ < 5 min}

User

speech_call()

check_mmc()

transfer_content_via_USB()

play_music()

 Figure 2. A scenario illustrating file transfer

3. MODELING FRAMEWORK
Product visionaries foresee the features supported by future
products and outline certain product requirements. System
designers use these requirements to plan the platform architecture.
Such architectural planning could happen at least three to four
years before the product program starts developing the software
and proceeds to manufacture the final product. There is usually a
big gap between the time an idea is born and the time when the
product hits the market. Any performance defects found on the
target are very expensive to fix. The model based performance
estimation provides a co-design framework through which
performance of the system can be estimated earlier on in the life
cycle [2]. Design alternatives may be analyzed and fixed to evade
any costly mistakes. Models may be verified based on the use
case with reasonable accuracy to ascertain that important
performance requirements are met. The level of abstraction is
very important in order to obtain practical results. If we use very
abstract models then the estimates may not be very realistic. On
the other hand, if we try to perform detailed simulation it might
be overwhelming and expensive. The proposed approach is an
intermediate solution that uses an abstract modeling framework,
like LQN [3], but obtains parametric service time metrics through
measurements on system models. The traditional co-design
approach of executing the software on top of system model
involves time-consuming simulation.
Our goal is to analyze performance characteristics, such as
throughput and response latencies, for various use cases on the
platforms that currently do not exist in hardware. However, we
assume that software for these platforms exists and is executable
on the hardware simulators. In such a situation, the
straightforward solution would be to execute the software on the
simulator and get the performance results from the execution.
There are several issues with this approach. The most important
one is that the hardware simulators are slow. For example,
ARM926 processor with 211.2 MHz clock frequency and
effective CPI of 3.94 (with caches) provides an effective MIPS of
53.63. The system level simulated MIPS on commercial tools that
run cycle-accurate simulation ranges between 0.05 to 0.2 based
on the level of detail, number of modules in the system and the
processing capacity of the host system. For a reasonably small
system model that includes an ARM9 CPU, memory system and
AMBA bus the simulation running on a Pentium III 1 GHz
machine has approximate slowdown factor in the range of 250 to

35

1000 compared to the actual target. This means that in the worst
case the simulator can take approximately 24 hours to complete a
use case that only takes about 86.4 s (1.44 min) on real hardware.
This is unacceptable for mobile device systems, since the
initialization process itself could take between 40-80 s and the
actual use case may be even longer. Extended simulation lengths
will delay the system validation process and may hinder the
capabilities to experiment variations within reasonable time [4,5].

A related issue is that we need to collect and analyze performance
metrics (throughput and latencies) not just for a single execution
but also for a large number of diverse executions that may differ
in input parameters, concurrently executing use cases, scheduling
mechanisms, hardware characteristics and so on. It is a laborious
and time-consuming task to gather all this information. Finally,
without a model it is impossible to understand the performance
metrics of software components and hardware resources that are
parts of the use case.

Therefore, we were looking for approaches to lower the execution
time requirements and yet to gather large amounts of reliable
information. For this we decided to apply a well-known principle
of “divide and conquer”, modularity and reuse. First of all, we
decided to execute only single use cases on a system level
simulator and analyze multiple parallel use cases on LQN-like
use-case simulator. Such simulator would take as an input use
case models and provide capability to schedule single or parallel
use case execution generating performance metrics (throughput
and latencies) as an output.

Furthermore, we decided to modularize the use cases themselves.
While the whole use case sometimes can be parameterized and
reused, it is usually composed from various software components.
Executions of these software components – these executions we
call jobs - can be parameterized and reused more naturally. For
example, the use case of file transfer via Bluetooth could be
parameterized by the file size. However, a more precise approach
would be to split it into the file reading component, whose jobs
can be parameterized by the file size and the drive properties.
Similarly, the Bluetooth transfer component is parameterized by
the file size and transfer speed. It is possible to look at even finer
grain at initialization of Bluetooth, initialization of file server, file
read, file transfer and the connection teardown jobs. These jobs
would be likely to be reused in other use cases, such as file
transfer over USB or audio listening over Bluetooth. Also, from
software engineering point of view file server and Bluetooth
components are independently reusable and changeable.
Separating use case into components requires minimal software
reexecution on hardware simulator if certain component behavior
changes.

4. USE CASE MODEL
As mentioned in Section 3, use case is composed from reusable
component jobs. Here we provide some more details about this
composition.
Component job is an execution of a software component. A
concrete job can be characterized by its input, output, new system
state, service requests to other components and resource
consumption. However, we are interested not in a single job of a
component, but in a collection of same component jobs with
different inputs, initial and final states. Such job collection can be

represented as a parameterized job that is characterized by a state
transfer function. This function produces a new global state based
on a job’s input and global state, resource usage function that
produces the resource usage of the job, and service request
function that produces service requests to other jobs (Figure 3).

Component 1
input

resource_useC1 (input, state)
statenew = state_transferC1 (input, state)

service_requestsC1 (input, state)

Figure 3: Component job and its functions

This is a rather abstract representation, since, for example,
resource usage function can be a multi-function that produces
execution time, memory consumption, energy consumption, and
so on. The functions themselves could be described in various
ways. A function could be represented as a table, where each row
corresponds to specific input and shows what is the output of the
function. A function could be a regression model – a linear or
non-linear dependency of the output on the input parameters.
Finally, a function could be a simple program mapping input to
the output. Software components may differ a lot in their transfer
functions. Some software, such as simple filters, protocols and
codecs may have simple linear transfer functions. Other software
such as complex graphical converter may have only complex
transfer functions that are impossible to simplify without
unacceptable loss of precision and may be difficult to extract
during reverse engineering.
Service request multi-function produces the service requests to
other jobs including the timing of such requests, input parameters,
synchronous or asynchronous nature and so on. If we look at the
jobs as nodes and service requests as arcs, we obtain job
dependency graph that represents causal and temporal
dependencies of jobs in a use case (Figure 4 shows jobs of two
components C1 and C2).

Time

C1

C2

C1

Job J1

Job J2

Figure 4. Job dependency graph

In reality, job multi functions are probably best represented as an
abstract algorithm in pseudocode program indicating resource
consumption and service requests to other jobs. However, other
forms of representation and visualization of multi functions are
possible and useful.

36

5. COMPONENTS AND JOBS
As discussed in section 4, use case is composed from component
jobs. However, component identification is a complex problem.
We consciously delay our definition of a component, since
components can be defined and identified in various ways. Each
such way would lead to different components and their models. If
components are not identified at a correct granularity, it may be
difficult to discover the job transfer functions or there may not be
a good transfer function at all.
Job transfer functions depend on the modeling approximation.
Totally exact representation of any job for given input and state is
the component execution itself, i.e. transfer function of a job is
the execution of the component. If we want to obtain a simpler
transfer function, we have to abstract and lose the precision. This
loss of precision – and attempts to achieve the highest precision
with the “simplest” representation – is intertwined with the
identification of components leading to complex
multidimensional optimization problem that could be informally
expressed as follows:

Problem 1. Given a software system, find decomposition into
components C1… Cn such that the approximation of component
job transfer function is minimized using some measure (min
totali=1…n (ApproximationMeasure(Ci, transferCi()))) and total
transfer function complexity is minimized using some measure
(min totali=1,…n Complexity (transferCi())).
This problem is practically unsolvable, since the exploration
space for decompositions and transfer functions are enormous.
As we mentioned, the components should be software
components from the software engineering point of view, i.e. they
should be separable, reusable software entities with clear
semantics. Finer granularity components can improve the job
approximation precision, however, they can lead to high
complexity and very low reusability of components. Therefore
decisions on component identification have to be balanced.
Component identification is easier for the software designers,
since they usually know the “componentization” of their software
and even possibly relevant job transfer functions. On the other
hand, component view of performance engineers may not be the
same as the component view of software designers. Component
identification after system creation by someone performing
system analysis is related to software reverse engineering, since
components need to be created without having the knowledge of
the original designer and architect. This can be achieved through
the software reverse engineering techniques including static and
dynamic system analysis, static call tree analysis, dynamic tracing
and trace analysis [6,7,8].
To achieve simple and yet useful division into components, we
propose to use as components the smallest schedulable entities. In
our case, these entities correspond to RunL() method executions
in active objects in Symbian operating system [9].
Most embedded operating systems support execution of multiple
tasks and also provide mechanisms to switch between tasks. Such
kernels usually operate in pre-emptive multitasking mode. Which
means higher priority tasks can preempt lower priority tasks and
switch the context. Symbian OS, one of the most popular
operating systems on mobile devices, supports co-operative
multitasking in addition to the conventional pre-emptive
multitasking. This is implemented at the object level. Multiple

objects can remain active and be scheduled to execute based on
some event occurrence. This mechanism facilitates scheduling
multiple objects and asynchronous event communication without
the context-switching overhead. Cooperative multitasking
between active objects a1, a2, a3 etc., is shown in Figure 5. In this
illustration t1, t2 and t3 are three different tasks. All the active
objects except a5 run to completion. Active object a5 is
preempted due to task switch from t2 to t3. The active object a5
resumes operation after completion of active object a6 in task t3.

a1 a2

a3 a4

a6

 a7

t1

t2

t3

a5

Figure 5. Active object and task scheduling

When an event is dispatched to an active object, a special
Symbian active object method called RunL() is executed. This
method executes to completion without being rescheduled by the
active object scheduler. This method may, however, be
interrupted during task switching. We define component job as a
RunL() method execution. The RunL() method may contain other
function calls. These calls belong to the same job as the RunL()
itself.
Active object in one task may communicate with active object in
another task using a SendReceive() method.

 void CMyAO::RunL()
{
 foo1();
 foo2();
 foo3();
}

void foo2()
{
 bar1();
 SendReceive();
 bar2();
}

SendReceive() is a Symbian API defined in RSessionBase class
and it may be used to send asynchronous or synchronous
messages. When this function is invoked using the
TRequestStatus parameter, it sends a message to the server and
waits asynchronously for a reply. If this parameter is not used, the
message is passed synchronously. When a SendReceive() happens
synchronously and the message is sent to another thread, the
originating thread is put to a wait state until the operation is
completed. The function resumes when the called thread
completes the function and releases control. Message passing
happens through a pointer to the message array, which has four
32-bit parameters on the client address space into which the
server can read or write data. The execution path in the client
function after the SendReceive() call may depend on the data
received from the server. SendReceive() calls correspond to

37

service requests in our job description. The called entities are
themselves component jobs.
Currently we use active object execution within thread context as
a boundary condition for a component job. In general, there can
be several other conditions that mark the boundary, such as
invocation or loading of methods from dynamically linked
library, switch to processing in hardware or peripherals,
input/output, and interrupts.

6. JOB CHARACTERIZATION
Although the proposed correspondence between RunL() methods
and jobs seems to be straightforward and intuitive, it is not as
simple as it appears.

void CSimpleAO::RunL()
{
 x = obj->simpleCall();
 iStatus = x;
}

In simple RunL() methods the execution is linear and the job
characterization in terms of resources is trivial. In general though,
there may be many execution paths through the RunL():

void CStateMachineAO::RunL()
{
 switch(event)
 {
 case 1: callFoo1();break;
 case 2: callFoo2();break;
 default: callInvalid();
 }
}

An active object may implement a state machine within RunL()
that maintains various states of the object and uses the events as
triggers to transition from one state to another. A switch statement
on the event is sufficient to structure the states. Because of the
conditional constructs, state machines have multiple execution
paths. In this case, the job characterization may be quite complex
and should represent the whole state machine.
When RunL() calls SendReceive() methods, these methods may
return information affecting further control flow in RunL(). Such
dependencies have to be reflected in the job transfer functions.
In general, the characterization of jobs depends on the number of
execution paths in a component.

7. EXECUTION PATHS
The execution path is defined as a sequence or control path
encountered during a component execution. Component may
contain assignment operations, control operations and function
calls. Component may have numerous execution paths each
uniquely distinguished by system state or input parameters.
Some components may have very few and very simple execution
paths; others may have very many and complicated paths. The
complexity of a RunL() method varies from one active object to
another. For example, a simple RunL() may be as illustrated
below:

void CHelloWorld::RunL()
{
 iEnv->InfoMsg(

R_ACTIVEHELLO_HELLO_WORLD);
}

On the other hand, the server that handles all window
management events involves sophisticated processing that
invokes many functions as shown in the call stack below:

CCoeEnv::RunL()
CQikAppUi::HandleWsEventL(

const TWsEvent &, CCoeControl *)
CEikAppUi::HandleWsEventL(

const TWsEvent &, CCoeControl *)
CCoAppUi::HandleWsEventL(

const TWsEvent &, CCoeControl *)
CCoeControl::ProcessPointerEventL(

const TpointerEvent &)
CEikMenuPane::HandlePointerEventL(

const TpointerEvent &)
CEikMenuPane::ReportSelectionMadeL()
CEikMenuPane::ProcessCommandToAllObserversL

(int)
CQikAppUi::ProcessCommandL(int)
CQHelloGuiAppUi::HandleCommand(int)

7.1 Simple Components
For simple components it is easy to find all execution paths. If a
function does not call other functions and if the number of
alternative paths in the function is easily determinable using the
conditional statements in the function, then it is simple to count
the number of the execution paths.

void setX(int y)

{

 class_attribute_x = y;

}

The above function for example, is a basic helper function with
some assignment statements. It may also include some basic
arithmetic calculations. These patterns are commonly encountered
in getter/setter functions of a class or some conversion functions.
There is only one execution path in this function and it is pretty
straightforward to capture this. These functions are considered to
be end nodes as they do not invoke other functions and the data
flow ends here. Transfer function of such component jobs is also
simple, since they usually do not depend on external parameters.

 1=d
where

 d is the number of execution paths

Components with conditional statements have multiple alternative
paths. One or more parameters may be responsible for separate
paths during program execution.

void setMenu(int selection)
{

 switch(selection)

 {

 case 1: choice = voiceCall; break;

 case 2: choice = sms; break;

 case 3: choice = calendar; break;

 default: choice = browser;

 }

}

38

Based on the function parameter there are four possible paths in
the above function. Each path does some operation and
terminates. In general, the number of execution paths is equal to
the number of conditional branches that exists in the function.
Conditional branches are due to language constructs like for,
while, if, switch, #ifdef etc.

 cbd =

where

 cb is the number of conditional branches

Loop structures with fixed iterations to perform some operation
are deterministic. Even if the loop has variable iterations, it is still
executed in a single execution path. However, if the iterator is not
initialized within the loop statement there can be at least two
distinct execution paths based on the value of the iterator.

int multiPathLoop(int iterator)

{

 int i = iterator;

 for(;i< 1000; i++)

 {

 x = x*i;

 }

 return x;

}

Clearly there are two paths, in the above function, based on the
value of the iterator. One path is covered within the loop if the
iterator is less than 1000 and the loop is skipped if the iterator is
greater than or equal to 1000. Nested loops are also similar. If the
iterators are initialized then we will have only one execution path,
otherwise each nesting level will result in branches and hence we
will have multiple execution paths. In general, a loop structure
will result in one execution path and may occasionally be two if
the iterators are not initialized.

∑
=

+=
ni

uild
..0

)1(

where

 1=uil if the ith loop has un-initialized iterator

 0=uil otherwise

 n is the number of loops

7.2 Complex Components
Some components are more complex than the components above.
The number of execution paths can get really large and difficult
to determine as the dependency of a component on the program
state and parameters increase. In general, the execution path is
complex if the number of branch choices is not deterministic.

int loopWithConditions()

{

 int x = 1;

 for(int i = 1 ;i< 1000; i++)

 {

 y = generateNewValue();

 if(y< 50)

{

 x = x+i;

 }

 else

 {

 x = x – i;

 }

 }

 return x;

}

The function above has both loop structure and conditional
statements. Execution of the section of code inside the loop
during each iteration is dependent on the value returned by the
function generateNewValue(). Therefore, during each iteration

one of the possible cib
 paths within the loop will be covered.

∑
=

+=
ni

iui yld
..0

)(

ix
cii by)(=

when cib
> 0

1=iy
 when cib

= 0
where

1=uil if the ith loop has un-initialized iterator

 0=uil otherwise

ix
is the number of iterations in ith loop

cib
is the number of conditional branches within ith

loop
 n is the number of loops

This is a polynomial equation and the number of the execution

paths could get very large with larger values of ix
. It is therefore

not practical to find all execution paths for this component. This
situation may happen under the following conditions:

• the variables used in the conditional statement is
modified due to function returns and have the possibility
of varying during each iteration.

39

• the variables used in the conditional statement are shared
variable that can be modified by other concurrent
threads.

int loopWithBreaks()

{

 int x = 1;

 for(int i = 1 ;i< 1000; i++)

 {

 y = generateNewValue();

 if(y< 50)

{

 x = x+i;

 }

 else if(y == 75)

 {

 break;

 }

 }

 return x;

}

Break within a loop can increase the complexity of the execution
path. As illustrated in the function above, during each iteration of
the loop one out of all the possible conditional branches is
executed. A break statement may occur in one or more of the
conditional branches, which causes an exit from the loop. If there

are cib
conditional branches and bib

branches with breaks in the
ith loop then:

 cibibi bbp /=

 where bip
is the probability of traversing the branches

with breaks in ith loop
If the variables on conditional statements are changing during

each iteration, then the situation becomes complex and can only
be dealt per use case.

8. JOB CHARACTERIZATION
REVISITED
As shown in Section 7, component jobs may be very complicated
and the number of component execution paths could be unknown
beforehand. How can we then characterize component jobs?

First of all, we can look only at a subset dd p ⊂

 where pd is the performance execution paths

The performance execution paths are a subset of all the execution
paths that are interesting from performance point of view. Certain
execution paths are not very interesting from performance
perspective since they only perform few basic operations and
their resource consumption is not very significant. On the other
hand, some execution paths that are parts of the performance use
case involve intense processing. Only the sections of the
component code that generate significant resource load during the
use case are important to consider in performance modeling with

reasonable approximation. The relevant code sections could be
extracted from code coverage information during execution.
Also if the number of component execution paths is large and
difficult to calculate, an approximate characterization functions
could be used. Models are not intended to capture all the
implementation details. Instead we attempt to capture only the
characteristics of the component. The characteristics may be
represented as a simple linear regression equation or may be
derived from a complex vector table indexed by some input
parameter. This method of associating a characteristic function
that generates workload to resources and input to other
components is more refined than specifying numeric values to
service time parameter, as in LQN models.

9. INFORMATION GATHERING
A large amount of information can be gathered for component job
characterization from software executions on a system level
simulator. Component execution paths, their service requests and
resource requirements can be gathered by executing varied use
cases.
Measurement is done by loading the executable component image
on system level environment that comprises of various system
elements like ARM, AMBA, memory, peripherals etc., assembled
to form the target platform [10,11].

M C U

D SP

P er ip h er a l B u s

 B u s

M 1 M 2 M 3 M 4

P 1 P 2 P 3 P 4

Figure 6. Platform model of mobile device

The software build is prepared for execution on a simulated
environment. During the porting process software changes are
done to adapt the implementation to system level environment
and to ensure successful execution of software on the system
level platform model. Software compiled for a specific processor
may then be loaded on the processor model. The system level
model is composed of various SystemC modules representing
hardware elements. The model is a hierarchical composition of
various basic system elements. As shown in Figure 6, a typical
mobile device platform has an MCU for application processing
and a DSP for signal processing. There are interfaces to RAM,
ROM, Flash memory etc., through high-speed bus. Peripherals
are attached to peripheral bus. Using SystemC, a library of
various system elements is created with reasonable behavioral
accuracy. However, for complex elements, like the processor, IP
models may be purchased and integrated into the design. For
example, ARM provides cycle-accurate SystemC models of
ARM9 processor family that are very close approximations to
actual device behavior. Transaction level models are high-level
SystemC simulation models that are used to describe hardware.

40

At this level, data transfers are modeled as transactions. System
level modeling activity includes architecture modeling, workload
generation, execution of software on process models, and flow of
data to other system elements. Appropriate monitors are inserted
to collect performance data during simulation.
System level models are developed in order to facilitate execution
of the software on a platform that may not be yet available as
hardware implementation. The system simulation environment
aids in monitoring the service request and resource usage. By
executing the components on such models the actual resource
usage may be captured by logging the simulation cycles.
Monitoring the input and output parameters of a component
during execution assists in characterizing the component. The
process of using measured performance data from simulated
target environment to characterize component offers realistic and
practical parameter values for components.
Information gathering can be done by executing the whole use
case. Such approach may take a lot of simulation time on
SystemC simulator. We have also considered an approach that
would extract components out of the software system and execute
them in separation.
Components are extracted by monitoring their communication
with other components, via traces collected during use case
execution, determining component boundaries and then compiling
the extracted components separately to execute on the system
model.
The process of component extraction is currently manual. We are
developing techniques to automate this process.

10. CONTEXT OF COMPONENT
For a software component to execute in isolation, certain pre-
conditions need to be met. These pre-conditions are referred to as
context of the component. It can also be viewed as the state of the
hardware and software required for execution of the software
component. It is required to capture the context in order to
facilitate execution of single component or a set of related
components in isolation.
The context of the component can be captured by using the trace
information obtained during scenario execution and by
checkpointing techniques.

void NewObject::myContext()

{

 StateType x;

 x = iMyObj->GetState();

 switch(x)

 {

 case 1: anotherFunction(); break;

 case 2: …

 default:

 }

}

While executing a software component, the section of code may
assume that some of the objects that are involved are already
created and initialized. For example, the function above assumes

that attribute iMyObj is already created and initialized. In order to
execute this function an object of type NewObject needs to be
created and the attribute should be initialized properly. Also,
functions that are called from this component could expect certain
variable initializations that need to be satisfied in order to
successfully execute. When isolating the component, the object
initializations need to be programmed in order to obtain an
executable component.
In addition to the data and control logic of the function, the value
returned by a function depends on the parameters that are
supplied to the function, the attribute initialization, values
returned from other functions etc. During a use case execution
these values are captured via instrumentation and provided as
input during component execution. If it is not possible to extract
these values then estimated values are used during simulation.
The event scheduler queues all the events and processes them one
at a time. In Symbian, the active scheduler processes one event at
a time based on its priority. If the component under consideration
is part of a state machine, then based on the events that occurred
in the past the system will advance to a specific state. In the
source code, the state information is maintained in a state
variable. To recreate the context, the component should be
brought to appropriate state by initializing the respective state
variables.
If a software segment is communicating with other threads then
there will be context switches between threads and some
information may be exchanged between threads. There can be
message exchanges of type Send() or SendReceive() that may be
synchronous or asynchronous. However, if a component is
executing in isolation, the delays due to inter-thread
communication will not be accounted for. This is addressed by
the scheduling mechanism in the use case simulator.
Every software component has some dependency on certain
hardware elements. The state of the bus, memory and other
peripherals during the execution of the component is initialized as
per the bootstrap and hardware abstraction layer specifications.
Cache initializations are not trivial and can only be done with
approximation by capturing average behavior over several
simulation replications.
Capturing component context and execution of component in
isolation is a complex task that we have not solved yet. Some
work on this has been done for Java in testing community [12,13].
Context is specific to a use case and a components execution
state. It is therefore not reusable across multiple use cases.

11. FROM MEASUREMENTS TO
CHARACTERIZATIONS
The measurements of various use case scenarios on the system
level model provide information for constructing or validating the
characterizations of component jobs. One such characterization
could be a parameterized regression model [4,14]. For example:
the processor load due to window management thread during an
image loading process was instrumented by inserting appropriate
monitor points and the experiment was replicated multiple times.
Table 1, illustrates the data that was captured during the
experiment. In table 1, X represents image size in kilobytes and Y
represents service time in seconds.

41

Table 1. Measured service time for image loading
X Y SQR(X) X*Y

1.413 0.074485 1.996569 0.105247

4.079 0.074396 16.63824 0.303461

28.411 0.075843 807.1849 2.154775

113.385 0.076501 12856.16 8.674066

480.058 0.07887 230455.7 37.86217

627.346 0.380 244137.7 49.09972

The regression parameters are estimated as follows:

∑
=

=′
ni

i nxX
..1

/)(= 125.47

∑
=

=′
ni

i nyY
..1

/)(= 0.076

∑ ∑
= =

−=
ni ni

iixx nxxSS
..1

2

..1

2 /)()(= 165425.1

nyxyxSS
ni ni ni

iiiixy /))((
..1 ..1 ..1

∑ ∑ ∑
= = =

−= = 1.409

m = 8.52E-06, c = 0.0749

The derived regression equation is:

0749.000000852.0ˆ += xy

0.074

0.075

0.076

0.077

0.078

0.079

0.08

0 200 400 600

Image Size (KB)

Se
rv

ic
e

Ti
m

e(
s)

Estimate
Measured

Figure 7. Service time estimates for image loading

The above Figure 7 shows the measured service time of a window
management component job and its corresponding regression
estimate. The measured values show linear characteristics and the
estimated curve is a very close approximation of realistic values.

12. MODEL ANALYSIS
Once we have models for all jobs in a use case, it is possible to
analyze the system performance by executing the use case model
on the use case simulator. In the use case simulator, the
performance use case is initiated by invoking a specific
component job with certain parameters. The simulator executes
the rest of the use case, since the service requests to other
components are embedded in the job characterization. The
simulator also contains the operating system scheduling policy to
make the appropriate scheduling decisions.

The use case simulator is used to interpret the component
dependency graph and characterization in order to simulate the
use case execution. In addition to the corner cases that most
formal verification methods use to do schedulability analysis [15],
we analyze general cases based on the underlying OS scheduling
paradigm and our model of component jobs. The use case
simulator executes the queuing model of the system.

1

2

3

5

6

4

mX2+c

X2

X3

Y5 = pX6+q

Y3= aX3+b
X4

Y4= jX4+k

Y1= dX1+e

X5

X6

Y6 = iX6+j

Figure 8. Queuing model in use case simulator

The use case simulator is an interpreter of a hierarchical queuing
model of the system [3,4]. In Figure 8, each node of the model
represents a component job and the links between nodes
represents dependencies and flow of workload from one node to
another. Each node’s characterization function produces
appropriate workload to resources based on input parameters and
state. Additional characterization functions produce service
requests – workload - to appropriate components in the
dependency graph. The use case simulator supports underlying
operating system scheduling discipline to schedule the operating
system tasks in the model. Tasks are schedulable entities that
perform the work associated with the use case. Each task
maintains a queue of events and traverses through various
component jobs in the system as the events are processed.
Multiple tasks may be scheduled in the system. For example: task
1 follows the route 1,2,3 and 4. Similarly, task 2 follows the route
1,2, 5 and 6. Tasks are scheduled using algorithms similar to the
operating systems task scheduling mechanism [16,17,18]. This
model captures the resources consumed by each component job.
Performance metrics of the use case are determined by executing
the simulation on the system.
The end user of this model is an architect or developer who need
not have performance expertise. The user provides use case as an
input to the simulator and obtains the performance characteristics
of the entire use case. From the user perspective the initiation of a
use case is as simple as feeding an input parameter to the first
component in the use case. The simulator handles traversal of the
rest of the use case. Since the simulator captures the system
behavior, it facilitates the execution of the use case, performance
metrics collection and verification against its requirements. The
simulator estimates resource consumption for a single or parallel
use cases.
We currently have an initial implementation of the use case
simulator and are working on the full implementation.

13. CONCLUSIONS
Formal verification is an activity that ensures that the
specification satisfies system properties. In the simplest form,
verification can be conducted by design walkthrough and code

42

inspections. In a more elaborate form it involves rigorous testing
and simulation. At the highest level, formal verification involves
application of mathematical deduction for proving system
properties. We have used simulation, state exploration techniques
and scheduling analysis to verify that the requirements specified
in the use case are satisfied by the system. We take advantage of
the cycle-accurate models of the processor available at the
system-level to obtain measurements that support characterization
of software components and their jobs. The component job
models along with the dependency graph serve as a basis for use
case analysis of the system. This approach facilitates system
performance analysis. An important distinction between our
approach and other queuing techniques, like LQN, is that we
associate a characteristic function with a component to generate
service request and model resource usage. Another unique feature
of our approach is the integration of characterization with system
level measurement. As a result of these modeling framework
enhancements, the estimated values may be more realistic and
may be practically used during component planning and early
stage system analysis.
The challenging aspect of this approach is the execution path
identification and context capture. For a given scenario we can
manually extract this information by studying the code. However,
to make it more efficient we are developing process and tool
support based on source parsers like Source Navigator [19] to
automatically capture this information.
Accuracy of results is directly proportional to detailed modeling.
However, simulation speed is inversely proportional to detailed
modeling. For early stage performance estimation, it is advisable
to work with abstract models that provide reasonable accuracy
without delving into intricacies.
Performance analysis approach proposed in this paper is still in
the initial stages of development, however, we expect it to be
useful for performance researchers working on improving
performance analysis tools and methods. Challenges presented in
the paper could provide a foundation for new exciting results in
the model creation and analysis.

14. ACKNOWLEDGEMENTS
We sincerely thank all the reviewers for providing very useful
comments and suggestions. We greatly appreciate the invaluable
contributions and constructive remarks from our colleagues
Alexander Ran and Soracha Nananukul.

15. REFERENCES
[1] C. U. Smith and L. G. Williams, Performance Solutions: A

Practical Guide to Creating Responsive, Scalable Software,
Addison-Wesley, 2002.

[2] K. Richter, M. Jarsak, Rolf Ernst, A Formal Approach to
MpSoC Performance Verification, Computer, Vol 38, no 4,
April 2003

[3] M. Woodside, Tutorial Introduction to Layered Modeling of
Software Performance, Edition 3.0, Carleton University,
http://sce.carlton.ca/rads

[4] K. Kant, Introduction to Computer System Performance
Evaluation, McGraw-Hill, Inc., 1992.

[5] R. Jain, The Art of Computer Systems Performance
Analysis, John Wiley & Sons, Inc., 1991.

[6] D. Jerding, S. Rugaber, "Using Visualization for
Architectural Localization and Extraction", Proceedings of
the Fourth Working Conference on Reverse Engineering,
IEEE Computer Society Press, 1997.

[7] N. C. Mendonça, J. Kramer, "Developing an Approach for
the Recovery of Distributed Software Architectures",
Proceedings of the 6th IEEE International Workshop on
Program Comprehension, IEEE Society Press, 1998.

[8] E. Stroulia, T. Systa, “Dynamic Analysis for Reverse
Engineering and Program Understanding”, Applied
Computing Review, ACM, vol 10, No. 1, 2002.

[9] R. Harrison, Symbian OS C++ for Mobile Phones, John
Wiley and Sons Ltd, England, 2003.

[10] T. Grotker, S. Liao, G. Martin, S. Swan, System Design with
SystemC, Kluwer Academic Publishers, May 2002.

[11] ARM technical reference manuals, http://www.arm.com

[12] A. Orso, Improving Dynamic Analysis through Partial
Replay of User’s Executions, Dagstuhl Seminar N0 03491,
30.11.-05.12.2003. http://www.dagstuhl.de/03491/Talks/

[13] D. Saff and M. D. Ernst, Automatic mock object creation for
test factoring, In proceedings of Workshop on Program
Analysis for Software Tools and Engineering (PASTE’04),
Washington, DC, USA, June 2004.

[14] D.J. Lilja, Measuring computer performance: A
practitioner’s guide, Cambridge University Press, 2000.

[15] W. Wolf, A Decade of Hardware/Software Codesign,
Computer, Vol 38, no 4, April 2003

[16] N. C. Audsley, A. Burns, M. F. Richardson and A. J.
Wellings, Hard Real-Time Scheduling: The Deadline-
Monotonic Approach, In Proceedings, Eighth IEEE
Workshop on Real-Time Operating Systems and Software,
pp. 133-137, 1991.

[17] C. L. Liu, J. W. Layland, Scheduling algorithms for
multiprogramming in a hard real time environment, Journal
of the ACM, vol. 20, no 1, pp. 46-61, 1973.

[18] RapidRMA tool, Tri Pacific Software, Inc.
http://www.tripac.com/

[19] Source Navigator, http://sourcenav.sourceforge.net/

43

