An Approach for Integrating Basic Retiming and Software
Pipelining

Noureddine Chabini

Department of Electrical and Computer Engineering
Royal Military College of Canada
P.B. 17000, Station Forces, Kingston, ON, Canada, K7K 7B4

Email: chabini-n@rmc.ca

ABSTRACT

Basic retiming is an agorithm originally developed for hardware
optimization. Software pipelining is a technique proposed to
increase instruction-level parallelism for parallel processors. In this
paper, we show that applying software pipelining alone for
minimizing timings under resource constraints can lead to sub-
optimal results, compared to the case if an unification of basic
retiming and software pipelining is used. We propose an approach to
redlize this unification. The approach allows to minimize the code
size of the optimized loop as well as minimizing the idleness of
computational elements. We extend this approach to solve the
problem of minimizing peak power consumption for time-
constrained and resource-constrained software pipelined loops.
Solving these problems is important for portable embedded systems
as well as system-on-chip design. The approaches are tested using
known benchmarks. On average, relative timing improvement is
60.19%, and relative reduction of peak power consumption is
13.17% without any trade-off in timings.

Categories and Subject Descriptors
D. Software; D.0 General.

General Terms
Algorithms; Design; Performance.

Keywords

Retiming; Software Pipelining; Instruction-Level Parallelism;
VLIW; Superscalar Processor; Peak Power; Timings, Code Size;
Embedded Systems; System-on-Chip.

1. INTRODUCTION

The processing speed of digital systems continues to increase
thanks to the combination of the improvement of the compilers
intelligence, the devel opment of new architectures, and the advance
of the semi-conductor technology that continues to alow putting
more and more transistors on the same chip. However, even if new
digital systems with improved processing speed continue to emerge,
new computational-hungry applications continue to emerge as well
while other old applications continue to intimidate even the fastest

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

EMSOFT 04, September 27-29, 2004, Pisa, Italy.

Copyright 2004 ACM 1-58113-860-1/04/0009...$5.00.

287

Wayne Wolf

Department of Electrical Engineering
Princeton University
Eng. Quadrangle, Olden Street, Princeton, NJ, USA, 08544

Email: wolf@princeton.edu

computer at this time. Applications from digital signal processing
and image processing and multimedia applications are examples of
applications that still require high processing speed. Applications
that require high processing speed are in general those that are loop-
intensive.

To increase the processing speed for loop intensive applications,
many compiler techniques are used to generate code that efficiently
exploits the component of the hardware. Software pipelining [4][8]
is one of such techniques. It overlaps the execution of consecutive
iterations of a given loop, thereby increasing the instruction-level
parallelism which is useful for paralel processors like the Very
Large Instruction Word (VLIW) and the superscalar processors.

Software pipelining is not a recent technique. It has been devised
since many years, and is used in developing the code for many very-
well-placed processors in the market. However, how to redlize this
technique under some constraints is a challenging problem. Indeed,
in software pipelining there are two important parameters. Latency
(L) which is the time required to execute al the instructions that
constitute the body of the loop, and the Initiation Interval (11) which
isthe interval of time that separates the start execution time of each
two consecutiveiterations of theloop. Asafirst challenging problem
is the problem of minimizing Il under resources constraints. That
problem is an NP-hard problem in general and many heuristic
approaches are proposed to approximately solve it. As a second
challenging problem is the problem of minimizing L for a given Il
and under resource constraints. A third challenging problem will be
presented shortly.

Increasing the processing speed of digital systemsisno-longer the
only main design objective to achieve in today and at the future. We
have been and would continue to be constrained by the need of
reducing the power consumption of digital systems. The need of
reducing power consumption is mainly motivated by: (1) the need of
reducing the cooling cost for high speed digital systems, and (2) the
need of prolonging battery lifetime for battery-powered portable
systems. The power consumed in high speed systems transforms to
heat which requires specia cooling devices in order to avoid
malfunction and damaging hardware. Designers must then develop
sophisticated cooling mechanisms under cooling-cost constraints.
For battery-powered portable systems, prolonging battery life is
required for some critical portable systems such aswearable medical
systems. In addition, battery life became a product differentiator in
the market of portable digital systems.

The peak power isthe power consumed at the most power-hungry
control-step. Peak power must be reduced since high peak power
might lead to malfunction of a digital system or to damaging its
hardware. Software pipelining allows to increase the instruction-
level parallelism. This means that the number of none-idle
computational elements (i.e., ALU, Multiplier, etc.) would increase
which would increase the peak power. However, by scheduling those
instructions in some manner, peak power can be reduced compared
to the case of using a peak-power-unaware schedule.

As a third challenging problem related to how to realize the
software pipelining technique under some constraints, we state the
following. How can one assign instructions (that constitute the body
of the loop to be optimized by software pipelining) to control steps
under resource constraints and for agiven L and |1 whileminimizing
the peak power?

In this paper, we establish aformal relationship between L and the
code size of loops that are optimized by software pipelining. When
wefix I, the code size increases when L increases. Consequently, to
reduce the code size, one needs to reduce L. Furthermore, by
decreasing L, the idleness of computational elements will decrease.
We show that applying software pipelining alone to optimize aloop,
under resource constraints and a target I, will lead to a relative
minimal vaue for L (possibly large L) compared to the case if an
unification of basic retiming [1] and software pipelining is used. We
propose an Integer Linear Program (ILP) to realize that unification.
ThisILP constitutes a flexible mathematical framework. Indeed, we
have easily extended that ILP to solve the problem of minimizing
peak power as stated above. To the best of our knowledge, thisisthe
first paper in the literature that addresses the latter problem.
Although it is not done yet, the proposed mathematical framework
can be extended to solve the problem of minimizing register
requirement for software pipelined loops.

2. LOOP REPRESENTATION

In this paper, we are interested in “for”-type loops as the one in
Figure 1 (a). We assume that the body of theloop is constituted by a
set of computational and/or assignment instructions only (i.e., no
conditional or branch instruction like for instance if-then-else is
inside the body).

Let N bethe set of non-negative integers. We model aloop by a
directed cyclic graph G = (O, E, d,w), where O is the set of
instructions (or atomic operations like addition and multiplication)
in the loop body, and E is the set of arcs that represent data
dependencies. Each vertex o; € O has a non-negative integer
execution delay d(o,) e N. Each arc €, 0, € E, from vertex
0; € O tovertex 0, € O, hasaweight w(e ’) e N, which means
thar[the result produced by o, at any loop’ S|tefat|on k isconsumed
by o a iteration (k+w(e0” OJ))

Figure 1 presents a simple loop and its directed cyclic graph
mode!. For Figure 1 (b), the execution delay of each operation o, is
specified asalabel (i.e., the number within arectangular) on the | eft
of each vertex of the graph, and the weight w(e,) of each arc
€, o, € E isin bold. For instance, the execution delay of 0, is2
timeunits and the value 0 on the arc e, .0, meansthat operation o,
at any loop’ siteration k usesthe r&ult produced by operation o, at

loop’siteration (k—0).

#defi ne U 100 Executlondelay
main () {
int AU, B{U, dU. DU; gl
for (int i=2; i<U i++) {
Ali] =10 * Di-2]; /*0y*/ 1 .
Bli] =10 + Ali]; /*o0,*/
qi] =10 + Ali]; /*og*/ /
Dli] = B[i] * qil; [/*04*/ 0
}/*Execution del ays of 0q and 04 are 2*/ @

}/*Execution del ays of 0, and 03 are 1*/

(a) A simple loop in the programming language C. (b) Cyclic graph of (a).

Figurel. A simpleloop and itsdirected cyclic graph model.

288

3. INTRODUCTION TO BASIC RETIMING

A synchronous sequential design can be modeled as a directed
cyclic graph as we did for loops in Section 2. Instructions become
computational elements of the design, arcs become wires, and
w(e, ,) 'S become the number of registers on the wire between
computétlonal element o; and computational element 0

Le G = (O,E,d,w) be a synchronous %quentlal digital
design. We denote by Z the set of natural integers. Basic retiming
(or retiming for short in this paper) r [1] is defined as a function
r: O—Z, which transforms G to a functionally equivalent
wnchronous sequential digital design G, = (O,E,d,w,) by
assigning alabel r, = r(o;) to each vertex o inG. The physcal
meaning of the asagned Iabels can be V|e/ved asfollows. If r, is
positive then we have to move r reglsters from each output WI re
of o; and to put them on each |nput wire of o;, assuming that we
have a least r, registers on each output wnre of o,. If ry is
negative, the prewousprocesmsre\/ersed Whenr |sequal to zero
no register have to be moved across o, .

The difference between G and its retimed version G, is the
weight of arcs. The weight w, (e, ,) of eecharc e, , in G,
now defined as follows: o o

wr(eoi, OJ_) = W(eop OI) + r(oj)—r(oi), Veoi, o € E. @

Sincetheweight of eacharcin G, representsthe number of registers
on that arc, then we must have:

w, (&, 01)20, ve, o €E.

0;, 0

@

Any retiming r that satisfiesinequality (2) iscalled avalid retiming.
From expressions (1) and (2) one can deduce the following
inequality:

eE. (©))

r(o)—r(oy) = _W(eol, 01)’ Ve, 0

Let P(0;, 0,) denotesapath from vertex o; in O to vertex o, in
O. Equation (f) implies that for every two vertlces 0, and o, , the
change in the register count along any path P(o,, o) depends onIy

|’
on itstwo endpoints:)

W, (P(0;, 0))) = W(P(0;, 0))) +1(0)) —r(0)), V0, 0; € O,
Q)

where:

W(P(0,0)) = 3 ()

Let d(P(oI,o)) denotes the delay of a path P(ol,o) from
vertex o; to verte)(0. . d(P(0;,0;)) isthe sum of the executlon
delays of al thevertlcesthat belong to P(o;, J)

A O-weight path is a path such that W(P(OI,O)) = 0. The
minimal clock period of a synchronous sequential dlgltal designis
the longest O-weight path. It is defined by the following equation:

w(e .
e"r"; € P(0;,0) (0j, 0,)

T = MaXyq o c 01d(P(0;,) [(W(P(0;, 0))) =0)} . (6)

One application of retiming is to minimize the clock period of
synchronous sequential digital designs. For instance, by thinking of
Figure 1 (b) as a synchronous sequential design, the clock period of
that design is IT = 5 time units, which is equal to the sum of
execution delays of vertices 0;_; ;4 (i.e.,
IT =5 = d(o;) +d(0,) +d(0,)). However, we can obtain
IT = 3 time units if we apply the following retiming vector
{0,0,0, 1} tothe vector of vertices {0;, 05, 05,04} in G, where
the value located a the it position in the retiming vector
corresponds to the value assigned by r to the vertex located at the
ith position in the vector of vertices. The retimed graph G, is
presented by Figure 2.

The new arcs weights are computed 1
using equation (1). @ :
W (€, o) =0=0+0-0 0 0
W (€, o) =0=0+0-0 @
W (&, o) =1=0+1-0

W (€, o) = 1= 0+1-0 1 1
(€, o) = 1=2+0-1 @

Figure 2. Retiming Figure 1 (b) by assigning0, 0, 0, and 1 to
vertices 0, 05, 03, and 0,4 respectively.

4. NOTATIONSAND DEFINITIONS

Thefollowing notations and definitions will be used in the rest of
the paper. Without loss of generality, we assume in this paper that
computational elements are not pipelined.

t(o,) Denotes the start executiontime of o, € O.

Xo. (o) 0-1 unknown variable associated to each o; € O. This
o variable is equal to 1 if o, starts executing at time
t(o;) , otherwiseit isequal to 0.

Known variable, which is equal to the number of
different classes of computational elementsof the same
type. For instant, if we have one set of adders and one
set of multipliersthen p = 2.

Denotesthe k™ classof computationa elements of the
same type, where k = 1,2, ..., u. For instance, we
might denote by p, theclass of adders, and by p, the
class of multipliers.

Denotes the number of resources in the kth class of
computational elements. Suppose that we have 3
adders and 2 multipliers. Using the above notation, we
then have |pg| = 3 and |u,| = 2.

Function that binds each o, € O to one of the classes
of computational elements , , k = 1,2, ..., p. If the
execution of o; requiresaresource fromtheclass p,,
then we have B(0;) = -

Known variable which is an upper bound on the
latency L to beminimized. A trivia valuefor | isthe
sum of the delays of all the instructions in the loop’s
body, which is equal to the run-time when the loop is
executed sequentially. For instance for the loop in
Figurel,wehave | = 6.

Mg

|y

5. VALID PERIODIC SCHEDULE

Let G = (O, E, d,w) be a directed cyclic graph modeling a
loop. A scheduleisafunction s: Nx O — N that, for eachiteration

289

ke N of the loop, determines the start execution time s, (o;) for
each instruction o; of the loop’s body.

Theschedule s issaid to be periodic with period P iff it satisfies
the following equation:

where s,(0;) is the start execution time of the first instance of the
instruction o; . Without loss of generality, we assume through this
paper that:

$p(0,) 21, Vo, € O. (8)

In this paper, the schedule s issaid to be valid iff it satisfies both
data dependency constraints and resource constraints (in case of
limited number of resources).

Data dependency constraints mean that a result computed by
instruction o; can be used by instruction o, only after o; has
finished computing that result. In terms of start execution ti me, this
is equivalent to the following inequality:

S(k+w(e°i'°|))(0j) 2 Sk(oi) + d(oi)’ vk e N, Veop o e E. (9)

Using equation (7), inequality (9) transformsto:
S0(0)) —So(0)) = d(0)—P - W(e,), V€, o € E.

Resource constraints mean that at any time, the number of
instructions that require execution on the class of computational
elements, say p,,, must not exceed the number, |p.m| , of available
resourcesin .

When there are no resources constraints (unlimited number of
resources), then the schedule s isvalid and periodic with period P,
iff the system of inequalities described by (10) has a solution for the
unknown s,(0;) . By making a sum of al the inequalities of this
system for any cycle, the left hand side will lead to 0. After doing
this sum, then by first passing the term that contains P to the other
side of theresulting inequality, and secondly doing thisfor any cycle
in the graph, one can prove that the system of inequalities described
by (10) has asolution iff P issuch that:

P> Max, . C((qu comde, , c cd(oi)) /(Zeo

(10)

o € CW(eon 0)))

(11)
where ¢ denotes the set of directed cycles in the directed cyclic
graph modeling the loop.

Theright hand side of inequality (11) isaMinimum Cost-to-Time
Ratio Cycle Problem [5], and can be optimally solved in polynomial
run-time using, for instance, one of the algorithms described in [5].

Inequality (11) allowsto compute alower bound on P that isdue
to datadependency constraints only. Another lower bound on P that
is due to resource constraints only can be derived as follows. For
instance, if we have only 3 instructions of type addition, and only 2
identical adders with execution delay equal to 1ns (the same as the
execution delay of any of those instructions), then the time required
to execute those 3 instructions cannot be less than 1.5 ns, where
15 = (1+1+1)/2. Suppose that there are Hm| resources in the
class of computational elements ... The time required to execute
all theinstructions of the same iteration that execute on resources of
class u, isat least

(Z(VQ e Oand B(0) = pm)d(oi))/‘“m| .

Hence, we have to wait at least the time expressed by (12) before
starting to execute the next instance of any one of those instructions.
The scheduleis periodic. Thus, we have that:

P> (Z(Vq cOand B(o) = um)d(oi))/‘“m| :

(12)

(13)

Since inequality (13) must be met for all the p available classes of
resources, we then have:

PeMaXn=12..p ((z(\m. cOand (o) = um>d(°‘))/|”m|)('14)

Using (11) and (14), alower bound on the period P of any valid
periodic schedule s isthen:

(ZVQ eOade, , € cd(oi))
Max —
ce(
w(e, o)
PZ MaX (Ze"rc’] ecC (L])
MaXpm=1 2 . d(o)))/|”m|)
(Vo; € O and B(0;) = ppy)

(15)
6. MINIMIZING LATENCY UNDER

RESOURCE CONSTRAINTS AND FOR A

TARGET INITIATION INTERVAL

As we have stated in Section 1, there are two parameters related
to the technique of software pipelining: Latency (L) which is the
time required to execute all the instructions that constitute the body
of the loop, and the Initiation Interval (1) which is the interval of
time that separates the start execution time of each two consecutive
iterations of the loop. Figure 3 illustrates the software pipelining
technique as well as L and II. For loops that execute for a large
number of times, applying that technique to a loop leads to a new
loop caled New-Loop on Figure 3. While each iteration of the
original loop requires L units of time to execute, the execution of
each iteration of New-Loop requires only |1 units of time. We have
L > 11, whichjustifieswhy the software pipelining technique allows
to reduce the total execution time of an original loop. Before New-
Loop appears, instructions from some first-iterations of the origina
loop must first be executed. Those instructions form the part called
Prologue on Figure 3. Once New-Loop terminates executing, non-
executed-yet instructions from some last-iterations of the original
loop must be executed. Those instructions congtitute the part called
Epilogue on Figure 3.

0 1 2 Iterations
V V V V
dy
[
= -fll New-Loop
Time

Figure 3. lllustration of softwar e pipelining and itsimportant
parameters.

290

With the help of Figure 3, one can deduce that the New-Loop
appears at the iteration number

(TL/117=1) (16)

of the original loop, where [x| denotes the ceiling of x. From
expression (16), it is then clear that the values of L and Il have an
impact on the size (in terms of number of instructions) of both the
Prologue and the Epilogue if one wantsto use software pipelining to
minimize the run-time of aloop. Consequently, those values have an
impact on the size of the software-pipelined code. Reducing the size
of that code is very important in the case of embedded systems as
well as of system-on-chip. Both of these two kinds of systems have
constraints on the memory size, and hence the code size must be
reduced for them. The size of the code has also an implicit impact on
both the execution time as well as the power consumption. For a
fixed I1, it is then clear that to minimize the code size, one needs to
minimize L. One of our objectivesin this paper is then to minimize
the code size by minimizing L for a certain target value of I1.

Many approaches are proposed to realize the software pipelining
technique. As it can be observed from Figure 3, realizing that
technique transforms to finding a valid periodic schedule with
period equa to Il. Regarding the relationship between that schedule
and L, with the help of Figure 3 and the definition of sy(0;) in
Section 5, we have that:

$p(0;) +d(0;) <(L +1),V0, € O. 17

The problem of realizing the software pipelining technique while
minimizing the size of the code (by minimizing L for agiven Il as
explained above) transforms to the problem of determining a valid
periodic schedule with a period Il and a latency L (as defined by
inequality (17)) such that L is minimal for a given value of Il. The
value of 11 is given by the user or computed by automaticaly trying
various values starting from alower bound, such asthe one given by
expression (15), until a minimal value for L is found. The latter
problem constitutes our target in the rest of this section. We stated it
in another manner as follows:

Problem 1. Given a directed cyclic graph G = (O, E, d, w)
modeling a loop, our objectiveisto find a valid periodic schedule s
with a target period || and a minimal latency L, under resources
constrains.

Problem 1 can be solved by solving the following optimization
problem:

Minimize (L) (18)
Subject to:
Constraint #1:

Each vertexin G = (O, E, d, w) must have an unique
start execution time.

Constraint #2:

The schedule s must satisfy data dependency
constraints.

Constraint #3:
The schedule s must satisfy resource constraints.
Constraint #4:

Each vertex in G = (O,E d,w)
executing no later than (L +1).

must finish

Figure4. Solving Problem 1 asan optimization problem.

We will start by first transforming the informal definition of the
above optimization problem to a formal one. The resulting formal
definition is an Integer Linear Program (ILP). Normally that ILP
must produce a solution to Problem 1 with an absolute minimal
vaue for L. We will show that thisis not the case. In fact, that ILP
will produce a relative minimal value for L, which is an absolute
minimal value for L relative to the directed cyclic graph that was
used. To avoid that situation, we will unify that ILP and basic
retiming to produce another IL P that will aways produce an optimal
solution to Problem 1 (the minimal value for L will not be sensitive
to the graph used). The main ideais that instead of solving Problem
1 using the given directed cyclic graph, we will solve it using a
retimed version of that graph, where the retiming function to be used
is computed during the schedul e determination.

We now focus on deriving an ILP, aformal version of Figure 4.
Let us start by trandating constraint #1 to a formal constraint. We
are looking for a schedule s as the one defined by equation (7).
Since the period is given, then what we till need to compute is
$p(0;) foreach o, € O. Since | isan upper bound onthelatency L
to be minimized, we have from equation (17) the following:

$p(0;) +d(0) < (I +1),v0, € O. (19)
From equations (8) and (19), we deduce that:
1<sy(0,) < (I +1-d(0))), Vo, € O. (20)

By definition of the schedule s, we have sy(0;) € N for each
0; € O. Hence, using binary variables X0, 1(0,) and expression (20),
we can then write each sy(0;) asfollows:

(I+1-d(0))
0= Y U0 X 10 Vo, e O, (21)
t(o)=1
(I +l_d(0|)) —
to)=1 o,t0) " 1,vo; €O, (22)
and
Xoi,t(oi) {01, VOi e O, t(oi) =12, ..,.(I+ l—d(Oi))_

Constrain #1 in Figure 4 is now formally defined by expressions
(22), (22) and (23).

We focus now on transforming Constraint #2 of Figure 4 to a
formal one. The schedule s must satisfy data dependency
constrains. Hence, inequality (10) must be met. By combining
expressions (10) and (21), the data dependency constraints are:

>

(I+1-d(0)) (I+1-d(0))
(Zt(oj) =1 : t(oj) ' Xoj,t(o,)) _(Zt(ol) =1 o) %o, t(0.))

d(o)—11-w(e, ,), Ve, , €E (24
(3] (E]

Recall that |1 isthe period of the schedule.

We focus now on devising a formal version of the resource
constraints expressed by Constraint#3 in Figure 4. The schedule s

291

must be computed in a such way that a any time
t=12 .. (I+1),thenumber of instructions that are executi ng
on the class of computational elements, ,, must not exceed ||

(the number of computational elements of that class). We derive a
mathematical formula for resource constraints as follows. Any
instruction o; € O that is executing at time t implies that o, has

started to execute somewhere in the discrete interva
{Max(1, (t-d(o;) + 1)), ..., t} , which transforms to:
t
Z Xout(0) = 1, Vo eO, t=12 ..,(1+1).
t(0;) = Max(L, (t—d(o,) + 1)) (25)

From expression (20), any instruction 0o; € O must start
executing no later than (I+1-d(o;)). Thus, equation (25)
transformsto:

Min((l +1-d(0))), t)

> Yoo

t(0;) = Max(1, (t—d(o;) + 1))

=1, VoeO, t=12 .,(1+1).

(26)

Software pipelining allows to start executing an iteration of the
original loop before the previousiteration hasfinished its execution.
Consequently, instructions that are executing at any time t can be
classified into two classes: C, ; and C, ,. Theclass C, ; contains
instructions belonging to the set of mstructlons of the f| rst iteration
of the original loop (i.e., no instance of anyone of those instructions
is executed before). The class C; , contains instructions from
|terat|ons of the origina loop that are not fromitsfirst iteration (i.e.,
the J instance of an instruction is executing, where j > 2). The
number of instructions that are executing at any time t using the
class of computational elements p, isthe sum of some instructions
from C, ; and someinstructionsfrom C, ,. Expression (26) holds
for the case of instructions befonging to class C, ; . Hence, the
number of instructions belonging to class C, , that are executing (at
any time t) using the class of computafﬂonal elements p, is given
by the following formula:

Min((I +1-d(0))), t)
0 t(o)]

2

{vo,e Oand B(0) = Hk}[t(ol) = Max(1, (t—d(o,) + 1))

k=12..,u t=12..,(+1)
(27)
We focus now on deriving the number of instructions belonging
to class Ci 2 that are executing (at any time t) using the class of
computational elements 1 - The schedule s is periodic with period
Il . Hence, theclass C, 2 isempty inthetimeinterval [1, 11]. Ct 2
is not empty starting at ‘time t> |1 . Asstated above, any instruction
0; € O that is executing at time t implies that o; has started to
execute somewhere in the di screte interval
{Max(1, (t—d(o;) + 1)), ...t} . Since o, € Ci 2 this means that
some instances of 0, are executlng and have been executed in the
discrete interval {Max(l (t—=d(op)+1-=n-11)), ., (t=n-11)},
where 1<n<([t/I1'7-1) (i.e, derived using Figure 3 and
expression (16)). Thisimplies that:

r/nl-1 t—n-1l
> [> XO.,t(O.)] =1
n=1 "t(o) =Max(1, (t—d(o)+1-n-Il))
Vo €O, t=(11+1),(11+2), .., (I+1)

(29)

Let 3, bea0-1 known variable defined as follows:
8, =Min(L, L(t-1)/11]), t=12..(+1), (29

where [x| denotes the floor of x. Notethat &, ; isOwhen t<I1,
and 1 otherwise. Hence, equation (28) can be re-written as follows:

Ft/g—l[

n=1

t—n-1l

2

t(0,) = Max(1, (t—d(o) +1—n-Il))
Vo, €0, t=1,2 ., (I+1)

3 - %o, t(O.J =1,

(30)

As we did for the case of class C, ; , the number of instructions
belonging to class C, , that are execlting (at any time t) using the
class of computational elements L is given by the following

formula:

re/i- t—n-1l

Z 6t ! Xo,, t(o,)j

l[
{Vo, e Oand B(0;) = w} n =1 (o)) = Max(L, (t—d(0;) + 1—n- 1))

k=12 .,pn t=12.,(+1
u (I+1) (31)

Expressions (27) and (31) give the number of instructionsthat are

executing at any time t using the class of computational elements

W, k=12 .., . That number must not exceed |w,|. Hence,
using (27) and (31), the resource congtraints to be met by the

schedule s are then formally defined as follows:

Min((l + 1-d(0)), t)

2

({ X0i>t(0iJ
{Vo, € O and B(0;) = p} t(0,) = Max(, (t—d(o;) + 1))

+
[t/1n]-1 t—n-Il
T 3 5o %o)|
n=1 t(o) = Max(L, (t—d(o;)) +1-n-11))
’ k: 13 25"'3 “5 t= 15 23 hh] (I+l)
(32)

A formal version for Constraint #4 of Figure 4 can be done by

< by

using expressions (19) and (21), and replacing | in the right hand
side of (21) by L . We then obtain:

[(I +1-d(0))

2

t(0;) - xO’t(o)) +d(0) < (L+1),V0,€0. (33
t(o) =1

All the constraintsin Figure 4 are now expressed mathematically.

Theresulting ILPisgivenin Figure 5.

Minimize (L) (34

Subject to:

Constraint #1: (21), (22) and (23).

(Expression (21) can be omitted since it isjust a definition that
is already replaced in the other constraints).

Constraint #2: (24)
Constraint #3: (32
Constraint #4: (33

Figure5. AnILP derived from Figure 4.

292

The ILP of Figure 5 dependson |1 . To solveit, we then need to
fix 11. If the value of Il is not provided by the user, then the
following algorithm can be used to determine asuch value, and solve
thisILP.

Algorithm: Solve_the ILP

Begin

1. A tight vaue for | could help in reducing the run-time for
solving the ILP. Compute atight value for | by, for instance,
using one of some known heuristics for the resource-

constrained software pipelining problem. Else, use | defined
in Section 4.

Fix 11 to its lower bound using (15). Without loss of
generality, we assume that Il has an integer vaue. If
Il = (a/b), then one can unrall the loop b times, or fix 11
to the ceiling of (a/b).

3. SolvethelLPusing the current valueof | and Il .

3.1 If no solution is possible, then increment 11 by 1 and

goto step 3. Instead of incrementing |1 by 1, abinary
searchin theinterval [value foundin step 2, 1] could be
used to speed up the a gorithm.

3.2 Elsereport the solution and exit.
End.

Lemmal: ThelLP of Figure5 producesarelative optimal solution
to Problem 1.

Proof: Assumethat we have 2 addersand 2 multipliers. Using the
graph of Figure 1 (b), the ILP in Figure 5 produces the schedule
depicted on Figure 6 (a), whichhas L = 5. However, it is possible
to get a schedule like the one of Figure 6 (b) with L = 3, by first
pre-processing the graph before passing it to the ILP.

g
1 1
2 2
GE) [N I _ [l
Fl 2 () (9 3 (% (9
4 (b) Schedule using a pre-processed
functionally equivalent version of
T 7 Figure1l (b). The pre-processed graph in
5 this case is the one in Figure 2. Vertices

0, and o4 execute in parallel because
their data dependency is now not of the

same iteration since w(e) =1.
04,04

(a) Schedule using Figure 1 (b).

Figure 6. Schedulefor two functionally equivalent graphs.

One might want to know why the input graph leads the ILP in
missing the absolute minimal value for L ? The answer is that the
input graph imposes aready a partial sequencing of the vertices
(instructions of theloop’ sbody). As one can deduce from expression
(24), any two vertices of the graph that are connected by an arc
having a weight equal to zero can never execute in the same time
even if we have unlimited number of resources (this because the
destination of that arc can start executing only after the source of the
arc finishes executing). To avoid that situation, one then needs to
reduce the number of arcs having a weight equal to zero. More
precisely, one needs to reduce the length (in terms of time units) of

paths composed by arcs of weight equal to zero (0-weight paths);
this task is nothing else than the pre-processing we have mentioned
above. The question now is how can that pre-processing be done?
Wefocusin the rest of this section on answering that question.

As we have introduced in Section 3, there is a close relationship
between a directed cyclic graph modeling a loop and a directed
cyclic graph modeling a synchronous sequential digital circuit. By
thinking of the former graph as a directed cyclic graph modeling a
synchronous sequential digital circuit, the weight of each arc can
then be viewed as the number of registers on that arc. In this case,
basic retiming can be used to move registers, thereby defining one
possible pre-processing we are looking for. The pre-processing we
did to obtain Figure 6 (b) isin fact aretiming, and the pre-processed
graph passed to the ILP in this case is the one of Figure 2.

In the case of limited resources, the pre-processing must be done
during the schedule determination. Indeed, let us assume that we
have now 1 adder and 2 multipliers instead of 2 adders and 2
multipliers assumed in proof of Lemma 1. Graphs in Figure 2 and
Figure 7 (a) are two possible retimed graphs of Figure 1 (b). The
graph in Figure 2 is used to produce Figure 6 (b). If we again use
graph in Figure 2 for the new resource constraints, we obtain a
schedulewith L = 4. Vertices 0,, 0,, 05 and 0, will be assigned
to time steps 1, 3, 4, and 3, respectively. Vertices 0, and o5 are
seriaized since we have only 1 adder. However, if we use Figure 7
(b) we obtain the schedulein Figure 7 (b) withonly L = 3. Hence,
it isthen clear that retiming cannot be de-coupled from the schedule
determination step.

We now agree that the pre-processing must be done during the
schedul e determination. The question is how can this be done? The
pre-processing in our case is computing a retiming to be applied to
the vertices of the graph. The retiming must be valid which meansiit
must satisfy expression (3). The weight of each arc after any
retiming is defined by equation (1). Since the retiming will be
computed during the schedule determination, this implies that the
weight of each arc is now an unknown variable but that variable is
equal to:

w(eop Ol) +1(0) =1(0), ve,, o € E. (35)

Mot e o
01 - —\= -
2
£C BCh
1 0 5)) &edule o@) 1;19 ?wd;
and 2 multipliers.

()

(a) Retiming Figure 1(b) by applying the retiming vector
{0,0,1,1} tothe vector of vertices {01, 05, 03, 04} .

Figure7. Theright retiming for the pre-processing can always
be obtained only if retiming and scheduling wer e unified.

In the ILP of Figure 5, the only constraints that depend on the
weight of arcs are the data dependency constraints which are
expressed by (24). By using (24) and (35), we obtain

J

(1-d(0)) (1-d(0))

[2. o %o, t(O,)J _(D 10) X, 1o
t(o) =1 t(o)=1

> (d(o) —11 - (w(e, OJ)+ r(0) —r(0))), Ve, o € E

(36)

293

where (i.e., (37) expresses the fact that retiming must be valid)

eE, (37

r(0) =1(0) 2 -W(e, o). Ve, o

and
ro € Z, Vo, 0. (38)

By putting together all the development above, an ILP that
combines both the scheduling and the pre-processing (i.e., applying
basic retiming) is given by Figure 8.

Minimize (L) (39
Subject to:
Constraint #1: (22) and (23).
Constraint #2: (36)
Constraint #3: (32
Constraint #4: (33
Valid retiming: 37

Retiming takes values on Z: (38)

Figure 8. Unifying scheduling and retiming to optimally solve
Problem1.

The ILP of Figure 8 dependson |1 . To solveit, we then need to
fix 11 . Again, if thevaueof Il isnot provided by the user, then the
agorithm Solve_the |LP can be used to determine a such value, and
solvethisILP.

7. MINIMIZING PEAK POWER UNDER
RESOURCES, LATENCY, AND INITIATION

INTERVAL CONSTRAINTS

Suppose that we want to accelerate the loop in Figure 1 (a) to
achieve alatency L = 4 and initiation interval Il = 4, using two
adders and two multipliers. And assume that each adder (multiplier)
has execution delay equal to 1ns (2ns) and power consumption equal
to 20 mW (100mW). We previously showed that without retiming,
applying software pipelining on that loop will leadto L = 5. A
possible retiming that allows to obtain L = 4 isthe one that leads
to the graph in Figure 2. Using the graph in Figure 2, we obtain two
possible schedules given by Figure 9. These schedul es satisfy timing
congtraints (i.e.,, L = Il = 4), but differ in terms of peak power.
The power consumed at each time step is given on the right hand
side of each schedule. The peak power for Figure 9 (a) is 100mwW
while it is only 70mW for Figure 9 (b). Our objective is then to
propose an approach that allows to compute periodic schedules (i.e.,
to redlize software pipelining) that meet timing and resource
constraints but require the minimum peak power consumption. More
precisely, our objectiveis to solve the following problem:

Problem 2: Given a directed cyclic graph G = (O, E, d, w)
modeling a loop, our objectiveisto find a valid periodic schedule s
with atarget period |1 andalatency L , under resourcesconstrains,
but with a minimal peak power consumption.

The left hand side of expression (32) gives the number of
instructions that are executing a any time t = 1,2, ..., (I +1)
using the classof computational elements p , k = 1,2, ..., n.Ifwe
do not take care about which class of computational elementsis used
a time t, then from (32) the number of instructions that are
executingattime t is:

Min((I + 1—d(o;)), t)

2

t(0;) = Max(L, (t—d(o;,) + 1))

[Xo,. t(o,)]

+
[t/117-1 t=n-1l
(Z [Z 6t ’ Xo,, t(o,))]
n=1 t(o;) = Max(1, (t—d(o) +1-n-11))

V0, €O, t=12..,(1+1) (40)

Let p, ; bethepower consumed by the operation o; at any time
step t =12 ..,(I+1). The totd power p, consumed by
operations that are executing at any time t is the sum of their
Po, t ‘s. Hence, using (40), p, isformally defined as:

: Xo,, t(ol)]

Min((l + 1-d(0))), t)

Z Po,,t

t(0,) = Max(1, (t—d(o;) +1))

Pt = +
re/n-1 t-n-11
> S reetiue |
n=1 t(o)=Max(l (t—d(o)+1-n-11))
Voi € O, t= 1, 2, ey (l + 1) (41)
The peak power is defined as.
PeakPower = Max; -1 5 __(1+1)(Py) - Thisimplies that:
PeakPower >p,, t=12.,(1+1). (42)

When the latency L is fixed to a target value, then expression
(39) can be omitted, and the resulting ILP allowsto compute avalid
periodic schedule with period 11 (which is the initiation interval),
and latency L. That resulting ILP can then be extended to solve
Problem 2. Indeed, what we have to do is to add expressions (41)
and (42) to the constraints of that resulting IL P and then replace (39)
by the following expression:

Minimize(PeakPower) . 43)

1 100mw 1 50mw
2\ 100mw 2 50mW
U @* 20mwW 3 '@ 70mw
4 .@ 20mw e @ o 70mw

(a) peak power = 100mW. (b) peak power = 70mW.

Figure 9. Schedules may differ in terms of peak power.

8. DISCUSSIONS AND RELATED WORK

Software pipelining is not a new technique. It has been proposed
since many years to optimize timing for parallel processors like
VLIW and superscalar ones. Many approaches has been proposed to
the problem of realizing that technique in the case of unlimited as
well aslimited number of resources. In the case of unlimited number

294

of resources, that problem is optimally solvable in polynomial run-
time. The problem is NP-hard in genera in the case of limited
resources. Due to space limitation, the reader can consult [4][8] for
a literature review of many proposed approaches to that problem.
We restrict ourself to approaches that are close to the problem we
address in this paper.

Rotation scheduling [7] is a heuristic that realizes software
pipelining under resource constraints with a shorter initiation
interval 1. While the approach in [6] starts with a tight 11 an
iteratively increases it when a schedule cannot be found, rotation
scheduling finds an approximate solution to the problem and then
iteratively improve it. The value of 11 is iteratively shortened by
rotating some vertices of the graph and then re-scheduling them.
Each rotation isin fact aretiming. The heuristic does not control the
latency L of the schedule, which might lead to alarge value of L.
Recall that having alarge value for L implies that the code size of
the Prologue and the Epilogue after applying software pipelining
will be large. An approach to reduce the code size of the Prologue
and Epilogueis proposed in [3].

To the best of our knowledge, thisisthe first paper that addresses
the problem of minimizing peak power consumption for a target
latency and initiation interval, and under resource constraints.

9. EXPERIMENTAL RESULTS

The objective of this experimentation is to test the effectiveness,
in terms of relative timing improvement (which has a relationship
with code size of the Prologue and the Epilogue of the optimized
loop), relative peak power reduction, and execution time of the
proposed approach. To this end, we think of cyclic graphs modeling
some real-lifefilters as cyclic graphs modeling loops. The names of
thesefilters are given in the first column of Tables 1 and 2.

We assume that we have an hypothetical processor with 3 adders
and 2 multipliers. Each adder has execution delay equal to 1ns and
power consumption equal to 20mwW. Each multiplier has execution
delay egual to 2ns and power consumption equal to 100mWw.

All the experiments were done using an UltraSparc 10 with 1GB
RAM. For results in Table 1 and 2, we developed a C++ tool and
implemented the algorithm Solve ILP to solve ILPsin Figures’5 and
8 aswell asthe one described in Section 7. Theinput of thetool isa
graph modeling each filter, as well as resource constraints and their
related features. For step 3 of the algorithm Solve_|LP, we used the
Ip_solve tool available at [2].

For the case of Table 1, the C++ tool reports alower and an upper
bounds on the latency L (the second and third columns,
respectively), a lower bound on Il using the right hand side of
expression (15) (seefourth column), thevaueof |1 used to compute
the schedule (fifth column; it contains the value of Il used to solve
the ILP in Figures 5 and 8). Columns 6 and 7 of Table 1 report the
value of L and the run-time when the ILP in Figure 5 is solved.
Columns 8 and 9 report the value of L and the run-time when the
ILPin Figure8issolved. Column 10 reports rel ative reduction of the
latency defined as
(L(column 6) — L(column 8))/(L(column 8)) x 100 . Asit can be
observed, relative reduction of the latency is 60.19% on average, and
the run-time for solving the two ILPsis less than 30s on average.

The C++ tool is also used to assess the approach proposed in
Section 7 to minimize peak power consumption. We use the same
circuitsasthose used in Table 1. Wefixed Il and L to the minimal
values found in Tablel (see column 2 and 3 of Table 2). Obtained
results are summarized by Table 2. For column 4, we first solve

Figure 8 without (39) and then we compute the peak power. The run-
timefor thistask isreported in column 5. For column 6, we solvethe
ILP proposed in Section 7 to minimize peak power consumption,
and then we compute the peak power of the resulting schedule. The
run-time for this task is reported in column 7. Column 8 reports
relative reduction of peak power, which is defined here as:

(PeakPower (column 4) — PeakPower (column 6)) < 100
PeakPower (column 6) '

As we can observe from Table 2, the proposed approach is able to
reduce peak power consumption by 13.17% on average even
thought L and Il aresettotheir minimal values. If L and Il areset
to valuesgreater than the used ones, then more peak power reduction
could be obtained. Indeed, for the circuit named Examplein Table 2,
this table shows that peak power was not reduced. However, in
Section 7 we showed that peak power for that circuit can be reduced
from 100mW to 70mW when L = Il = 4.

Table 1. Case of Minimizing L atency.

Lower Latency
Lower Upper | Bound On M1: M2: Improvement
Bound | Bound | Initiation Latency | Run-Time| Latency | Run-Time (Relative-
Oon Oon Interval 1 Without For M1 With For M2 Improvement In
Circuit Name Latency | Latency arn Used| Retiming (Sec.) Retiming (Sec.) %)
Example 3 6 3 3 5 0.01 3 0.01 66.67
Correlator_Order_3 3 7 3 3 5 0.02 3 0.06 66.67
Correlator_Order_4 4 10 3 3 7 0.08 4 0.36 75.00
Correlator_Order_5 4 13 4 4 9 0.34 4 1.82 125.00
BiquadratigFiltr 4 12 4 4 6 0.56 4 135 50.00
PolynombDivider 4 13 4 4 7 0.24 4 5.55 75.00
TransFIR 3 8 3 3 5 0.1 4 0.63 25.00
ThreTapNonRecDigiFiltr 4 8 4 4 5 0.09 4 0.03 25.00
DES 6 17 6 6 8 38.27 6 80.3 33.33
Average 4.41 24.86 60.19
Table 2. Case of Minimizing Peak Power.
M4: PeakPower
Initiation M3: PeakPower Not | Run-Time Minimized (In Run-Time Relative
Interval | Latency | Minimized (In mW) For M3 | mW) (Retiming Is| For M4 PeakPower
Circuit Name Used Used (Retiming Is Used) (Sec.) Used) (Sec.) |Reduction (%6)
Example 3 100 0.02 100 0.01 0.00
Correlator_Order_3 3 3 120 0.02 100 0.03 20.00
Correlator_Order_4 3 4 140 0.15 140 0.74 0.00
Correlator_Order_5 4 4 160 0.1 140 6.59 14.29
BiquadratigFiltr 4 4 160 0.21 120 0.13 33.33
PolynombDivider 4 4 160 0.1 140 6.41 14.29
TransFIR 3 4 120 0.14 120 0.48 0.00
ThreTapNonRecDigiFiltr 4 4 120 0.06 100 0.2 20.00
DES 6 6 140 5.24 120 8.19 16.67
Average 0.67 2.53 13.17

10. CONCLUSIONS

For |oops optimized by software pipelining, we have showed that
there is a relationship between the latency and the code size. An
increase of latency implies an increase of the code size. Also,
decreasing latency implies reducing the idleness of computational
elements. We have showed that optimizing loops by only applying
software pipelining can lead to sub-optimal value of the latency
compared to the case of unifying basic retiming and software
pipelining. We have proposed an ILP to realize that unification.

For software pipelined loops, concurrency between instructions
increases, which implies that more computational elements are

operating at the same time. Thus, peak power would increase.
However, by choosing agood schedule, it is possible to reduce peak
power consumption while still having the same target timings.
Indeed, peak power can be reduced by using the ILP that we have
proposed in this paper. To the best of our knowledge, this proposed
approach isthe first one in the literature that deals with peak power
consumption in the context of software pipelining.

The proposed ILPs are flexible and could be extended to address
other problemsrelated to software pipelining. Indeed, as an example
of such problemsisthe problem of reducing the number of registers.
That problem can be solved with the proposed ILPs by adding
congtraints into the constraints of these ILPs.

295

ACKNOWLEDGEMENT

The authors would like to thank the three anonymous reviewers for
their valuable comments from which this paper has benefited.

REFERENCES

[1] CE. Leiserson and JB. Saxe, “Retiming Synchronous
Circuitry,” Algorithmica, pp. 5-35, Jan., 1991.

[2] The LP_Solve Tool: ftp://ftp.ics.ee.tue.nl/pub/lp_solve/

[3] Q.Zhuge, B.Xiao, E.H.MSha, “Code size reduction technique
and implementation for software-pipelined DSP applications,”
ACM Trans. on Embedded Computing Systems, V.2, N.4,
November 2003, pp. 590-613.

[4] V.Allan, R.B.Jones, R.M.Lee, S.JAllan, “Software Pipelining,”
ACM Computing Surveys, Vol. 27, No. 3, September 1995, pp.
367-432.

296

[5] A.Dasdan, R.K.Gupta, “Faster Maximum and Minimum Mean
Cycle Algorithms for System Performance Analysis,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, V.17, N.10, Oct. 1998.

[6] B.R.Rau, “Iterative Modulo Scheduling,” International Journal
of Parallel Programming, 24 (1), pp. 3-64, 1996.

[7] L.F.Chao, A.S.LaPaugh, E.H.M.Sha, “Rotation scheduling: A
loop pipelining algorithm,” |EEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, V.16, N.3,
March 1997, pp. 229-239.

[8] B.R.Rau, JA.Fisher, “Instruction-level parallel processing:
history, overview, and perspective,” The Journal of
Supercomputing, V.7, N.1, 1993, pp. 9-50.

