
An Approach for Integrating Basic Retiming and Software
Pipelining

Noureddine Chabini
Department of Electrical and Computer Engineering

Royal Military College of Canada
P.B. 17000, Station Forces, Kingston, ON, Canada, K7K 7B4

Email: chabini-n@rmc.ca

Wayne Wolf
Department of Electrical Engineering

Princeton University
Eng. Quadrangle, Olden Street, Princeton, NJ, USA, 08544

Email: wolf@princeton.edu
ABSTRACT
Basic retiming is an algorithm originally developed for hardware
optimization. Software pipelining is a technique proposed to
increase instruction-level parallelism for parallel processors. In this
paper, we show that applying software pipelining alone for
minimizing timings under resource constraints can lead to sub-
optimal results, compared to the case if an unification of basic
retiming and software pipelining is used. We propose an approach to
realize this unification. The approach allows to minimize the code
size of the optimized loop as well as minimizing the idleness of
computational elements. We extend this approach to solve the
problem of minimizing peak power consumption for time-
constrained and resource-constrained software pipelined loops.
Solving these problems is important for portable embedded systems
as well as system-on-chip design. The approaches are tested using
known benchmarks. On average, relative timing improvement is
60.19%, and relative reduction of peak power consumption is
13.17% without any trade-off in timings.

Categories and Subject Descriptors
D. Software; D.0 General.

General Terms
Algorithms; Design; Performance.

Keywords
Retiming; Software Pipelining; Instruction-Level Parallelism;
VLIW; Superscalar Processor; Peak Power; Timings; Code Size;
Embedded Systems; System-on-Chip.

1. INTRODUCTION
The processing speed of digital systems continues to increase

thanks to the combination of the improvement of the compilers’
intelligence, the development of new architectures, and the advance
of the semi-conductor technology that continues to allow putting
more and more transistors on the same chip. However, even if new
digital systems with improved processing speed continue to emerge,
new computational-hungry applications continue to emerge as well
while other old applications continue to intimidate even the fastest

computer at this time. Applications from digital signal processing
and image processing and multimedia applications are examples of
applications that still require high processing speed. Applications
that require high processing speed are in general those that are loop-
intensive.

To increase the processing speed for loop intensive applications,
many compiler techniques are used to generate code that efficiently
exploits the component of the hardware. Software pipelining [4][8]
is one of such techniques. It overlaps the execution of consecutive
iterations of a given loop, thereby increasing the instruction-level
parallelism which is useful for parallel processors like the Very
Large Instruction Word (VLIW) and the superscalar processors.

Software pipelining is not a recent technique. It has been devised
since many years, and is used in developing the code for many very-
well-placed processors in the market. However, how to realize this
technique under some constraints is a challenging problem. Indeed,
in software pipelining there are two important parameters: Latency
(L) which is the time required to execute all the instructions that
constitute the body of the loop, and the Initiation Interval (II) which
is the interval of time that separates the start execution time of each
two consecutive iterations of the loop. As a first challenging problem
is the problem of minimizing II under resources constraints. That
problem is an NP-hard problem in general and many heuristic
approaches are proposed to approximately solve it. As a second
challenging problem is the problem of minimizing L for a given II
and under resource constraints. A third challenging problem will be
presented shortly.

Increasing the processing speed of digital systems is no-longer the
only main design objective to achieve in today and at the future. We
have been and would continue to be constrained by the need of
reducing the power consumption of digital systems. The need of
reducing power consumption is mainly motivated by: (1) the need of
reducing the cooling cost for high speed digital systems, and (2) the
need of prolonging battery lifetime for battery-powered portable
systems. The power consumed in high speed systems transforms to
heat which requires special cooling devices in order to avoid
malfunction and damaging hardware. Designers must then develop
sophisticated cooling mechanisms under cooling-cost constraints.
For battery-powered portable systems, prolonging battery life is
required for some critical portable systems such as wearable medical
systems. In addition, battery life became a product differentiator in
the market of portable digital systems.

The peak power is the power consumed at the most power-hungry
control-step. Peak power must be reduced since high peak power
might lead to malfunction of a digital system or to damaging its
hardware. Software pipelining allows to increase the instruction-
level parallelism. This means that the number of none-idle
computational elements (i.e., ALU, Multiplier, etc.) would increase
which would increase the peak power. However, by scheduling those
instructions in some manner, peak power can be reduced compared
to the case of using a peak-power-unaware schedule.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04, September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009...$5.00.
287

As a third challenging problem related to how to realize the
software pipelining technique under some constraints, we state the
following. How can one assign instructions (that constitute the body
of the loop to be optimized by software pipelining) to control steps
under resource constraints and for a given L and II while minimizing
the peak power?

In this paper, we establish a formal relationship between L and the
code size of loops that are optimized by software pipelining. When
we fix II, the code size increases when L increases. Consequently, to
reduce the code size, one needs to reduce L. Furthermore, by
decreasing L, the idleness of computational elements will decrease.
We show that applying software pipelining alone to optimize a loop,
under resource constraints and a target II, will lead to a relative
minimal value for L (possibly large L) compared to the case if an
unification of basic retiming [1] and software pipelining is used. We
propose an Integer Linear Program (ILP) to realize that unification.
This ILP constitutes a flexible mathematical framework. Indeed, we
have easily extended that ILP to solve the problem of minimizing
peak power as stated above. To the best of our knowledge, this is the
first paper in the literature that addresses the latter problem.
Although it is not done yet, the proposed mathematical framework
can be extended to solve the problem of minimizing register
requirement for software pipelined loops.

2. LOOP REPRESENTATION
In this paper, we are interested in “for”-type loops as the one in

Figure 1 (a). We assume that the body of the loop is constituted by a
set of computational and/or assignment instructions only (i.e., no
conditional or branch instruction like for instance if-then-else is
inside the body).

Let be the set of non-negative integers. We model a loop by a
directed cyclic graph , where is the set of
instructions (or atomic operations like addition and multiplication)
in the loop body, and is the set of arcs that represent data
dependencies. Each vertex has a non-negative integer
execution delay . Each arc , from vertex

 to vertex , has a weight , which means
that the result produced by at any loop’s iteration is consumed
by at iteration .

Figure 1 presents a simple loop and its directed cyclic graph
model. For Figure 1 (b), the execution delay of each operation is
specified as a label (i.e., the number within a rectangular) on the left
of each vertex of the graph, and the weight of each arc

 is in bold. For instance, the execution delay of is 2
time units and the value 0 on the arc means that operation
at any loop’s iteration uses the result produced by operation at
loop’s iteration .

Figure 1. A simple loop and its directed cyclic graph model.

3. INTRODUCTION TO BASIC RETIMING
A synchronous sequential design can be modeled as a directed

cyclic graph as we did for loops in Section 2. Instructions become
computational elements of the design, arcs become wires, and

‘s become the number of registers on the wire between
computational element and computational element .

Let be a synchronous sequential digital
design. We denote by the set of natural integers. Basic retiming
(or retiming for short in this paper) [1] is defined as a function

, which transforms to a functionally equivalent
synchronous sequential digital design by
assigning a label to each vertex in . The physical
meaning of the assigned labels can be viewed as follows. If is
positive then we have to move registers from each output wire
of and to put them on each input wire of , assuming that we
have at least registers on each output wire of . If is
negative, the previous process is reversed. When is equal to zero,
no register have to be moved across .

The difference between and its retimed version is the
weight of arcs. The weight of each arc in is
now defined as follows:

. (1)

Since the weight of each arc in represents the number of registers
on that arc, then we must have:

. (2)

Any retiming that satisfies inequality (2) is called a valid retiming.
From expressions (1) and (2) one can deduce the following
inequality:

. (3)

Let denotes a path from vertex in O to vertex in
O. Equation (1) implies that for every two vertices and , the
change in the register count along any path depends only
on its two endpoints:

,
 (4)

where:

. (5)

Let denotes the delay of a path from
vertex to vertex . is the sum of the execution
delays of all the vertices that belong to .

A 0-weight path is a path such that . The
minimal clock period of a synchronous sequential digital design is
the longest 0-weight path. It is defined by the following equation:

. (6)

N
G O E d w, , ,()= O

E
oi O∈

d oi() N∈ eoi oj, E∈
oi O∈ oj O∈ w eoi oj,() N∈

oi k
oj k w eoi oj,()+()

oi

w eoi oj,()
eoi oj, E∈ o1

eo1 o2, o2
k o1

k 0–()

#define U 100
main () {
int A[U], B[U], C[U], D[U];

for (int i=2; i<U; i++) {
 A[i] = 10 * D[i-2]; /*o1*/
 B[i] = 10 + A[i]; /*o2*/
 C[i] = 10 + A[i]; /*o3*/
 D[i] = B[i] * C[i]; /*o4*/
}/*Execution delays of o1 and o4 are 2*/
}/*Execution delays of o2 and o3 are 1*/

o1

o2 o3

o4

0 0

0 0

2

11

2

2

Execution delay

(a) A simple loop in the programming language C. (b) Cyclic graph of (a).

w eoi oj,()
oi oj

G O E d w, , ,()=
Z

r
r : O Z→ G

Gr O E d wr, , ,()=
roi

r oi()= oi G
roi

roi
oi oi

roi
oi roi

roi
oi

G Gr
wr eoi oj,() eoi oj, Gr

wr eoi oj,() w eoi oj,() r oj() r oi(), eoi oj, E∈∀–+=

Gr

 wr eoi oj,() 0, eoi oj, E∈∀≥

r

 r oj() r oi()– w eoi oj,()– , eoi oj, E∈∀≥

P oi oj,() oi oj
oi oj

P oi oj,()

 wr P oi oj,()() w P oi oj,()() r oj() r oi(), oi oj, O∈∀–+=

w P oi oj,()() w eoi oj,()
eoi oj, P oi oj,()∈∑=

d P oi oj,()() P oi oj,()
oi oj d P oi oj,()()

P oi oj,()

w P oi oj,()() 0=

Π Max oi oj, O∈∀ d P oi oj,()() | w P oi oj,()() 0=(){ }=
288

One application of retiming is to minimize the clock period of
synchronous sequential digital designs. For instance, by thinking of
Figure 1 (b) as a synchronous sequential design, the clock period of
that design is time units, which is equal to the sum of
execution delays of vertices (i.e.,

). However, we can obtain
 time units if we apply the following retiming vector

 to the vector of vertices in , where
the value located at the ith position in the retiming vector
corresponds to the value assigned by to the vertex located at the
ith position in the vector of vertices. The retimed graph is
presented by Figure 2.

Figure 2. Retiming Figure 1 (b) by assigning 0, 0, 0, and 1 to
vertices o1, o2, o3, and o4 respectively.

4. NOTATIONS AND DEFINITIONS
The following notations and definitions will be used in the rest of

the paper. Without loss of generality, we assume in this paper that
computational elements are not pipelined.

Denotes the start execution time of .

0-1 unknown variable associated to each . This
variable is equal to 1 if starts executing at time

, otherwise it is equal to 0.

Known variable, which is equal to the number of
different classes of computational elements of the same
type. For instant, if we have one set of adders and one
set of multipliers then .

Denotes the class of computational elements of the
same type, where . For instance, we
might denote by the class of adders, and by the
class of multipliers.

Denotes the number of resources in the class of
computational elements. Suppose that we have 3
adders and 2 multipliers. Using the above notation, we
then have and .

 Function that binds each to one of the classes
of computational elements , . If the
execution of requires a resource from the class ,
then we have .

Known variable which is an upper bound on the
latency to be minimized. A trivial value for is the
sum of the delays of all the instructions in the loop’s
body, which is equal to the run-time when the loop is
executed sequentially. For instance for the loop in
Figure 1, we have .

5. VALID PERIODIC SCHEDULE
Let be a directed cyclic graph modeling a

loop. A schedule is a function that, for each iteration

 of the loop, determines the start execution time for
each instruction of the loop’s body.

The schedule is said to be periodic with period iff it satisfies
the following equation:

, (7)

where is the start execution time of the first instance of the
instruction . Without loss of generality, we assume through this
paper that:

. (8)

In this paper, the schedule is said to be valid iff it satisfies both
data dependency constraints and resource constraints (in case of
limited number of resources).

Data dependency constraints mean that a result computed by
instruction can be used by instruction only after has
finished computing that result. In terms of start execution time, this
is equivalent to the following inequality:

. (9)

Using equation (7), inequality (9) transforms to:

. (10)

Resource constraints mean that at any time, the number of
instructions that require execution on the class of computational
elements, say , must not exceed the number, , of available
resources in .

When there are no resources constraints (unlimited number of
resources), then the schedule is valid and periodic with period ,
iff the system of inequalities described by (10) has a solution for the
unknown . By making a sum of all the inequalities of this
system for any cycle, the left hand side will lead to 0. After doing
this sum, then by first passing the term that contains to the other
side of the resulting inequality, and secondly doing this for any cycle
in the graph, one can prove that the system of inequalities described
by (10) has a solution iff is such that:

 (11)
where denotes the set of directed cycles in the directed cyclic
graph modeling the loop.

The right hand side of inequality (11) is a Minimum Cost-to-Time
Ratio Cycle Problem [5], and can be optimally solved in polynomial
run-time using, for instance, one of the algorithms described in [5].

Inequality (11) allows to compute a lower bound on that is due
to data dependency constraints only. Another lower bound on that
is due to resource constraints only can be derived as follows. For
instance, if we have only 3 instructions of type addition, and only 2
identical adders with execution delay equal to 1ns (the same as the
execution delay of any of those instructions), then the time required
to execute those 3 instructions cannot be less than 1.5 ns, where

. Suppose that there are resources in the
class of computational elements . The time required to execute
all the instructions of the same iteration that execute on resources of
class is at least

. (12)

Hence, we have to wait at least the time expressed by (12) before
starting to execute the next instance of any one of those instructions.
The schedule is periodic. Thus, we have that:

. (13)

Π 5 =
oi 1 2 4, ,=

Π 5 d o1() d o2() d o4()+ += =
Π 3=

0 0 0 1, , ,{ } o1 o2 o3 o4, , ,{ } G

r
Gr

o1

o2 o3

o4

0 0

1 1

1

11

2

2

The new arcs’ weights are computed
using equation (1).
wr eo1 o2,() 0 0 0 0–+= =

wr eo1 o3,() 0 0 0 0–+= =

wr eo2 o4,() 1 0 1 0–+= =

wr eo3 o4,() 1 0 1 0–+= =

wr eo4 o1,() 1 2 0 1–+= =

t oi() oi O∈

xoi t oi(), oi O∈
oi

t oi()

µ

µ 2=

µk k
th

k 1 2 ... µ, , ,=
µ1 µ2

µk k
th

µ1 3= µ2 2=

β oi O∈
µk k 1 2 ... µ, , ,=

oi µm
β oi() µm=

l
L l

l 6=

G O E d w, , ,()=
s : N O× N→

k N∈ sk oi()
oi
s P

sk oi() s0 oi() P k⋅ , k N∈∀ , oi O∈∀+=

s0 oi()
oi

s0 oi() 1≥ , oi O∈∀

s

oi oj oi

s k w eoi oj,()+() oj() sk oi() d oi()+≥ k N∈∀ eoi oj, E∈∀, ,

s0 oj() s0 oi()– d oi() P w eoi oj,()⋅–≥ eoi oj, E∈∀,

µm µm
µm

s P

s0 oi()

P

P

P Maxc ζ∈ d oi()
oi O∈∀ and eoi oj, c∈∑ 

  w eoi oj,()
eoi oj, c∈∑ 

 ⁄ 
 ≥

ζ

P
P

1.5 1 1 1+ +() 2⁄= µm
µm

µm

d oi()
o∀ i O∈ and β oi() µm=()∑() µm⁄

P d oi()
o∀ i O∈ and β oi() µm=()∑() µm⁄≥
289

Since inequality (13) must be met for all the available classes of
resources, we then have:

.
 (14)

Using (11) and (14), a lower bound on the period of any valid
periodic schedule is then:

.

 (15)

6. MINIMIZING LATENCY UNDER
RESOURCE CONSTRAINTS AND FOR A
TARGET INITIATION INTERVAL

As we have stated in Section 1, there are two parameters related
to the technique of software pipelining: Latency (L) which is the
time required to execute all the instructions that constitute the body
of the loop, and the Initiation Interval (II) which is the interval of
time that separates the start execution time of each two consecutive
iterations of the loop. Figure 3 illustrates the software pipelining
technique as well as L and II. For loops that execute for a large
number of times, applying that technique to a loop leads to a new
loop called New-Loop on Figure 3. While each iteration of the
original loop requires L units of time to execute, the execution of
each iteration of New-Loop requires only II units of time. We have

, which justifies why the software pipelining technique allows
to reduce the total execution time of an original loop. Before New-
Loop appears, instructions from some first-iterations of the original
loop must first be executed. Those instructions form the part called
Prologue on Figure 3. Once New-Loop terminates executing, non-
executed-yet instructions from some last-iterations of the original
loop must be executed. Those instructions constitute the part called
Epilogue on Figure 3.

Figure 3. Illustration of software pipelining and its important
parameters.

With the help of Figure 3, one can deduce that the New-Loop
appears at the iteration number

 (16)

of the original loop, where denotes the ceiling of . From
expression (16), it is then clear that the values of L and II have an
impact on the size (in terms of number of instructions) of both the
Prologue and the Epilogue if one wants to use software pipelining to
minimize the run-time of a loop. Consequently, those values have an
impact on the size of the software-pipelined code. Reducing the size
of that code is very important in the case of embedded systems as
well as of system-on-chip. Both of these two kinds of systems have
constraints on the memory size, and hence the code size must be
reduced for them. The size of the code has also an implicit impact on
both the execution time as well as the power consumption. For a
fixed II, it is then clear that to minimize the code size, one needs to
minimize L. One of our objectives in this paper is then to minimize
the code size by minimizing L for a certain target value of II.

Many approaches are proposed to realize the software pipelining
technique. As it can be observed from Figure 3, realizing that
technique transforms to finding a valid periodic schedule with
period equal to II. Regarding the relationship between that schedule
and L, with the help of Figure 3 and the definition of in
Section 5, we have that:

. (17)

The problem of realizing the software pipelining technique while
minimizing the size of the code (by minimizing L for a given II as
explained above) transforms to the problem of determining a valid
periodic schedule with a period II and a latency L (as defined by
inequality (17)) such that L is minimal for a given value of II. The
value of II is given by the user or computed by automatically trying
various values starting from a lower bound, such as the one given by
expression (15), until a minimal value for L is found. The latter
problem constitutes our target in the rest of this section. We stated it
in another manner as follows:

Problem 1: Given a directed cyclic graph
modeling a loop, our objective is to find a valid periodic schedule
with a target period and a minimal latency , under resources
constrains.

Problem 1 can be solved by solving the following optimization
problem:

 (18)

Subject to:

Constraint #1:

Each vertex in must have an unique
start execution time.

Constraint #2:

The schedule must satisfy data dependency
constraints.

Constraint #3:

The schedule must satisfy resource constraints.

Constraint #4:

Each vertex in must finish
executing no later than .

Figure 4. Solving Problem 1 as an optimization problem.

µ

P Maxm 1= , 2 ..., µ , d oi()
o∀ i O∈ and β oi() µm=()∑() µm⁄()≥

P
s

P Max

Maxc ζ∈

d oi()
oi O∈∀ and eoi oj, c∈∑ 

 

w eoi oj,()
eoi oj, c∈∑ 

 
--

 
 
 
 
 

,

Maxm 1= , 2 ..., µ , d oi()
o∀ i O∈ and β oi() µm=()

∑ 
  µm⁄ 
 

 
 
 
 
 
 
 
 
 
 
 

≥

L II≥

II
L

Iterations

Time

0 1 2 ...

Prologue

New-Loop

Epilogue

II

II

L II⁄ 1–()

x x

s0 oi()

s0 oi() d oi()+ L 1+() oi O∈∀,≤

G O E d w, , ,()=
s

II L

Minimize L()

G O E d w, , ,()=

s

s

G O E d w, , ,()=
L 1+()
290

We will start by first transforming the informal definition of the
above optimization problem to a formal one. The resulting formal
definition is an Integer Linear Program (ILP). Normally that ILP
must produce a solution to Problem 1 with an absolute minimal
value for L. We will show that this is not the case. In fact, that ILP
will produce a relative minimal value for L, which is an absolute
minimal value for L relative to the directed cyclic graph that was
used. To avoid that situation, we will unify that ILP and basic
retiming to produce another ILP that will always produce an optimal
solution to Problem 1 (the minimal value for L will not be sensitive
to the graph used). The main idea is that instead of solving Problem
1 using the given directed cyclic graph, we will solve it using a
retimed version of that graph, where the retiming function to be used
is computed during the schedule determination.

We now focus on deriving an ILP, a formal version of Figure 4.
Let us start by translating constraint #1 to a formal constraint. We
are looking for a schedule as the one defined by equation (7).
Since the period is given, then what we still need to compute is

 for each . Since is an upper bound on the latency
to be minimized, we have from equation (17) the following:

. (19)

From equations (8) and (19), we deduce that:

. (20)

By definition of the schedule , we have for each
. Hence, using binary variables and expression (20),

we can then write each as follows:

, (21)

, (22)

and

.
 (23)

Constrain #1 in Figure 4 is now formally defined by expressions
(21), (22) and (23).

We focus now on transforming Constraint #2 of Figure 4 to a
formal one. The schedule must satisfy data dependency
constrains. Hence, inequality (10) must be met. By combining
expressions (10) and (21), the data dependency constraints are:

.
 (24)

Recall that is the period of the schedule.

We focus now on devising a formal version of the resource
constraints expressed by Constraint#3 in Figure 4. The schedule

must be computed in a such way that at any time
, the number of instructions that are executing

on the class of computational elements, , must not exceed
(the number of computational elements of that class). We derive a
mathematical formula for resource constraints as follows. Any
instruction that is executing at time implies that has
started to execute somewhere in the discrete interval

, which transforms to:

 .
 (25)

From expression (20), any instruction must start
executing no later than . Thus, equation (25)
transforms to:

 .
 (26)

Software pipelining allows to start executing an iteration of the
original loop before the previous iteration has finished its execution.
Consequently, instructions that are executing at any time can be
classified into two classes: and . The class contains
instructions belonging to the set of instructions of the first iteration
of the original loop (i.e., no instance of anyone of those instructions
is executed before). The class contains instructions from
iterations of the original loop that are not from its first iteration (i.e.,
the instance of an instruction is executing, where). The
number of instructions that are executing at any time using the
class of computational elements is the sum of some instructions
from and some instructions from . Expression (26) holds
for the case of instructions belonging to class . Hence, the
number of instructions belonging to class that are executing (at
any time) using the class of computational elements is given
by the following formula:

 (27)

We focus now on deriving the number of instructions belonging
to class that are executing (at any time) using the class of
computational elements . The schedule is periodic with period

. Hence, the class is empty in the time interval .
is not empty starting at time . As stated above, any instruction

 that is executing at time implies that has started to
execute somewhere in the discrete interval

. Since , this means that
some instances of are executing and have been executed in the
discrete interval ,
where (i.e., derived using Figure 3 and
expression (16)). This implies that:

 (28)

s

s0 oi() oi O∈ l L

s0 oi() d oi()+ l 1+() oi O∈∀,≤

1 s0 oi() l 1 d oi()–+() oi O∈∀,≤ ≤

s s0 oi() N∈
oi O∈ xoi t oi(),

s0 oi()

s0 oi() t oi() xoi t oi(),⋅
t oi() 1=

l 1 d oi()–+()

∑= oi O∈∀,

xoi t oi(),t oi() 1=

l 1 d oi()–+()∑ 1= oi O∈∀,

xoi t oi(), 0 1{ , }∈ , oi O∈∀ t oi() 1 2 ... l 1 d oi()–+(), , ,=,

s

t oj() xoj t oj(),⋅
t oj() 1=

l 1 d oj()–+()∑ 
  t oi() xoi t oi(),⋅

t oi() 1=

l 1 d oi()–+()∑ 
  – ≥

d oi() II w eoi oj,()⋅– eoi oj, E∈∀,

II

s

t 1 2 ... l 1+(), , ,=
µk µk

oi O∈ t oi

Max 1 t d oi() 1+–(),() ... t, ,{ }

xoi t oi(),
t oi() Max 1 t d oi() 1+–(),()=

t

∑ 1= oi O, t 1 2 ... l 1+(), , ,=∈∀,

oi O∈
l 1 d oi()–+()

xoi t oi(),
t oi() Max 1 t d oi() 1+–(),()=

Min l 1 d oi()–+() t,()

∑ 1= oi O, t 1 2 ... l 1+(), , ,=∈∀,

t
Ct 1, Ct 2, Ct 1,

Ct 2,

j
th

j 2≥
t

µk
Ct 1, Ct 2,

Ct 1,
Ct 1,

t µk

xoi t oi(),
t oi() Max 1 t d oi() 1+–(),()=

Min l 1 d oi()–+() t,()

∑ 
 
 

o∀ i O∈ and β oi() µk={ }
∑

 k 1 2 ... µ, , ,= t 1 2 ... l 1+(), , ,=,

Ct 2, t
µk s

II Ct 2, 1 II,[] Ct 2,
t II>

oi O∈ t oi

Max 1 t d oi() 1+–(),() ... t, ,{ } oi Ct 2,∈
oi
Max 1 t d oi() 1 n II⋅–+–(),() ... t n II⋅–(), ,{ }

1 n t II⁄ 1–()≤ ≤

xoi t oi(),
t oi() Max 1 t d oi() 1 n II⋅–+–(),()=

t n II⋅–

∑ 
 
 

n 1=

t II⁄ 1–

∑ 1, =

oi O, t II 1+(), II 2+() ... l 1+(), ,=∈∀
291

Let be a 0-1 known variable defined as follows:

, (29)

where denotes the floor of x. Note that is 0 when ,
and 1 otherwise. Hence, equation (28) can be re-written as follows:

 (30)

As we did for the case of class , the number of instructions
belonging to class that are executing (at any time) using the
class of computational elements is given by the following
formula:

 (31)

Expressions (27) and (31) give the number of instructions that are
executing at any time using the class of computational elements

, . That number must not exceed . Hence,
using (27) and (31), the resource constraints to be met by the
schedule are then formally defined as follows:

.

 (32)

A formal version for Constraint #4 of Figure 4 can be done by
using expressions (19) and (21), and replacing in the right hand
side of (21) by . We then obtain:

. (33)

All the constraints in Figure 4 are now expressed mathematically.
The resulting ILP is given in Figure 5.

 (34)

Subject to:

Constraint #1: (21), (22) and (23).

(Expression (21) can be omitted since it is just a definition that
is already replaced in the other constraints).

Constraint #2: (24)

Constraint #3: (32)

Constraint #4: (33)

Figure 5. An ILP derived from Figure 4.

The ILP of Figure 5 depends on . To solve it, we then need to
fix . If the value of is not provided by the user, then the
following algorithm can be used to determine a such value, and solve
this ILP.

Algorithm: Solve_the_ILP

Begin

1. A tight value for could help in reducing the run-time for
solving the ILP. Compute a tight value for by, for instance,
using one of some known heuristics for the resource-
constrained software pipelining problem. Else, use defined
in Section 4.

2. Fix to its lower bound using (15). Without loss of
generality, we assume that has an integer value. If

, then one can unroll the loop b times, or fix
to the ceiling of .

3. Solve the ILP using the current value of and .

3.1 If no solution is possible, then increment by 1 and
go to step 3. Instead of incrementing by 1, a binary
search in the interval [value found in step 2, l] could be
used to speed up the algorithm.

3.2 Else report the solution and exit.

End.

Lemma 1 : The ILP of Figure 5 produces a relative optimal solution
to Problem 1.

Proof: Assume that we have 2 adders and 2 multipliers. Using the
graph of Figure 1 (b), the ILP in Figure 5 produces the schedule
depicted on Figure 6 (a), which has . However, it is possible
to get a schedule like the one of Figure 6 (b) with , by first
pre-processing the graph before passing it to the ILP.

❏

Figure 6. Schedule for two functionally equivalent graphs.

One might want to know why the input graph leads the ILP in
missing the absolute minimal value for ? The answer is that the
input graph imposes already a partial sequencing of the vertices
(instructions of the loop’s body). As one can deduce from expression
(24), any two vertices of the graph that are connected by an arc
having a weight equal to zero can never execute in the same time
even if we have unlimited number of resources (this because the
destination of that arc can start executing only after the source of the
arc finishes executing). To avoid that situation, one then needs to
reduce the number of arcs having a weight equal to zero. More
precisely, one needs to reduce the length (in terms of time units) of

δt

δt Min 1 t 1–() II⁄,()= , t 1 2 ... l 1+(), , ,=

x δoi t, t II≤

δt xoi t oi(),⋅
t oi() Max 1 t d oi() 1 n II⋅–+–(),()=

t n II⋅–

∑ 
 
 

n 1=

t II⁄ 1–

∑ 1, =

oi O, t 1, 2 ... l 1+(), ,=∈∀

Ct 1,
Ct 2, t

µk

δt xoi t oi(),⋅
t oi() Max 1 t d oi() 1 n II⋅–+–(),()=

t n II⋅–

∑ 
 
 

n 1=

t II⁄ 1–

∑
o∀ i O∈ and β oi() µk={ }

∑

 k 1 2 ... µ, , ,= t 1 2 ... l 1+(), , ,=,

t
µk k 1 2 ... µ, , ,= µk

s

xoi t oi(),
t oi() Max 1 t d oi() 1+–(),()=

Min l 1 d oi()–+() t,()

∑ 
 
 





o∀ i O∈ and β oi() µk={ }
∑

+
δt xoi t oi(),⋅

t oi() Max 1 t d oi() 1 n II⋅–+–(),()=

t n II⋅–

∑ 
 
 

n 1=

t II⁄ 1–

∑ 
 
 





 µk , k 1 2 ... µ, , ,= t 1 2 ... l 1+(), , ,=,≤

l
L

t oi() xoi t oi(),⋅
t oi() 1=

l 1 d oi()–+()

∑ 
 
 

d oi()+ L 1+() oi O∈∀,≤

Minimize L()

II
II II

l
l

l

II
II

II a b⁄()= II
a b⁄()

l II

II
II

L 5=
L 3=

o1

o2 o3

o4

1

2

3

4

o2 o3

1

2

3

5

o1 o4

(a) Schedule using Figure 1 (b).

(b) Schedule using a pre-processed
functionally equivalent version of
Figure 1 (b). The pre-processed graph in
this case is the one in Figure 2. Vertices
o1 and o4 execute in parallel because
their data dependency is now not of the
same iteration since . w eo4 o1, 

  1=

T
im

e

L

292

paths composed by arcs of weight equal to zero (0-weight paths);
this task is nothing else than the pre-processing we have mentioned
above. The question now is how can that pre-processing be done?
We focus in the rest of this section on answering that question.

As we have introduced in Section 3, there is a close relationship
between a directed cyclic graph modeling a loop and a directed
cyclic graph modeling a synchronous sequential digital circuit. By
thinking of the former graph as a directed cyclic graph modeling a
synchronous sequential digital circuit, the weight of each arc can
then be viewed as the number of registers on that arc. In this case,
basic retiming can be used to move registers, thereby defining one
possible pre-processing we are looking for. The pre-processing we
did to obtain Figure 6 (b) is in fact a retiming, and the pre-processed
graph passed to the ILP in this case is the one of Figure 2.

In the case of limited resources, the pre-processing must be done
during the schedule determination. Indeed, let us assume that we
have now 1 adder and 2 multipliers instead of 2 adders and 2
multipliers assumed in proof of Lemma 1. Graphs in Figure 2 and
Figure 7 (a) are two possible retimed graphs of Figure 1 (b). The
graph in Figure 2 is used to produce Figure 6 (b). If we again use
graph in Figure 2 for the new resource constraints, we obtain a
schedule with . Vertices and will be assigned
to time steps 1, 3, 4, and 3, respectively. Vertices and are
serialized since we have only 1 adder. However, if we use Figure 7
(b) we obtain the schedule in Figure 7 (b) with only . Hence,
it is then clear that retiming cannot be de-coupled from the schedule
determination step.

We now agree that the pre-processing must be done during the
schedule determination. The question is how can this be done? The
pre-processing in our case is computing a retiming to be applied to
the vertices of the graph. The retiming must be valid which means it
must satisfy expression (3). The weight of each arc after any
retiming is defined by equation (1). Since the retiming will be
computed during the schedule determination, this implies that the
weight of each arc is now an unknown variable but that variable is
equal to:

 . (35)

Figure 7. The right retiming for the pre-processing can always
be obtained only if retiming and scheduling were unified.

In the ILP of Figure 5, the only constraints that depend on the
weight of arcs are the data dependency constraints which are
expressed by (24). By using (24) and (35), we obtain

 (36)

where (i.e., (37) expresses the fact that retiming must be valid)

, (37)

and

. (38)

By putting together all the development above, an ILP that
combines both the scheduling and the pre-processing (i.e., applying
basic retiming) is given by Figure 8.

 (39)

Subject to:

Constraint #1: (22) and (23).

Constraint #2: (36)

Constraint #3: (32)

Constraint #4: (33)

Valid retiming: (37)

Retiming takes values on Z: (38)

Figure 8. Unifying scheduling and retiming to optimally solve
Problem1.

The ILP of Figure 8 depends on . To solve it, we then need to
fix . Again, if the value of is not provided by the user, then the
algorithm Solve_the_ILP can be used to determine a such value, and
solve this ILP.

7. MINIMIZING PEAK POWER UNDER
RESOURCES, LATENCY, AND INITIATION
INTERVAL CONSTRAINTS

Suppose that we want to accelerate the loop in Figure 1 (a) to
achieve a latency and initiation interval , using two
adders and two multipliers. And assume that each adder (multiplier)
has execution delay equal to 1ns (2ns) and power consumption equal
to 20 mW (100mW). We previously showed that without retiming,
applying software pipelining on that loop will lead to . A
possible retiming that allows to obtain is the one that leads
to the graph in Figure 2. Using the graph in Figure 2, we obtain two
possible schedules given by Figure 9. These schedules satisfy timing
constraints (i.e.,), but differ in terms of peak power.
The power consumed at each time step is given on the right hand
side of each schedule. The peak power for Figure 9 (a) is 100mW
while it is only 70mW for Figure 9 (b). Our objective is then to
propose an approach that allows to compute periodic schedules (i.e.,
to realize software pipelining) that meet timing and resource
constraints but require the minimum peak power consumption. More
precisely, our objective is to solve the following problem:

Problem 2: Given a directed cyclic graph
modeling a loop, our objective is to find a valid periodic schedule
with a target period and a latency , under resources constrains,
but with a minimal peak power consumption.

The left hand side of expression (32) gives the number of
instructions that are executing at any time
using the class of computational elements , . If we
do not take care about which class of computational elements is used
at time , then from (32) the number of instructions that are
executing at time is:

L 4= o1 o2 o3, , o4
o2 o3

L 3=

w eoi oj,() r oj() r oi(), eoi oj, E∈∀–+

o1

o2 o3

o4

0 1

1 0

1

11

2

2

o2

1

2

3

o1 o3

o4

(a) Retiming Figure 1(b) by applying the retiming vector
 to the vector of vertices . 0 0 1 1, , ,{ } o1 o2 o3 o4, , ,{ }

(b) Schedule of (a) using 1 adder
and 2 multipliers.

t oj() xoj t oj(),⋅
t oj() 1=

l d oj()–()

∑ 
 
 

t oi() xoi t oi(),⋅
t oi() 1=

l d oi()–()

∑ 
 
 

–

 d oi() II w eoi oj,() r oj() r oi()–+()⋅–()≥ eoi oj, E∈∀,

 r oj() r oi()– w eoi oj,()– , eoi oj, E∈∀≥

 roi
Z∈ , oi O∈∀

Minimize L()

II
II II

L 4= II 4=

L 5=
L 4=

L II 4= =

G O E d w, , ,()=
s

II L

t 1 2 ... l 1+(), , ,=
µk k 1 2 ... µ, , ,=

t
t

293

 (40)

Let be the power consumed by the operation at any time
step . The total power consumed by
operations that are executing at any time is the sum of their

‘s. Hence, using (40), is formally defined as:

.

 (41)

The peak power is defined as:
. This implies that:

 . (42)

When the latency is fixed to a target value, then expression
(39) can be omitted, and the resulting ILP allows to compute a valid
periodic schedule with period (which is the initiation interval),
and latency . That resulting ILP can then be extended to solve
Problem 2. Indeed, what we have to do is to add expressions (41)
and (42) to the constraints of that resulting ILP and then replace (39)
by the following expression:

 . (43)

Figure 9. Schedules may differ in terms of peak power.

8. DISCUSSIONS AND RELATED WORK
Software pipelining is not a new technique. It has been proposed

since many years to optimize timing for parallel processors like
VLIW and superscalar ones. Many approaches has been proposed to
the problem of realizing that technique in the case of unlimited as
well as limited number of resources. In the case of unlimited number

of resources, that problem is optimally solvable in polynomial run-
time. The problem is NP-hard in general in the case of limited
resources. Due to space limitation, the reader can consult [4][8] for
a literature review of many proposed approaches to that problem.
We restrict ourself to approaches that are close to the problem we
address in this paper.

Rotation scheduling [7] is a heuristic that realizes software
pipelining under resource constraints with a shorter initiation
interval . While the approach in [6] starts with a tight an
iteratively increases it when a schedule cannot be found, rotation
scheduling finds an approximate solution to the problem and then
iteratively improve it. The value of is iteratively shortened by
rotating some vertices of the graph and then re-scheduling them.
Each rotation is in fact a retiming. The heuristic does not control the
latency of the schedule, which might lead to a large value of .
Recall that having a large value for implies that the code size of
the Prologue and the Epilogue after applying software pipelining
will be large. An approach to reduce the code size of the Prologue
and Epilogue is proposed in [3].

To the best of our knowledge, this is the first paper that addresses
the problem of minimizing peak power consumption for a target
latency and initiation interval, and under resource constraints.

9. EXPERIMENTAL RESULTS

The objective of this experimentation is to test the effectiveness,
in terms of relative timing improvement (which has a relationship
with code size of the Prologue and the Epilogue of the optimized
loop), relative peak power reduction, and execution time of the
proposed approach. To this end, we think of cyclic graphs modeling
some real-life filters as cyclic graphs modeling loops. The names of
these filters are given in the first column of Tables 1 and 2.

We assume that we have an hypothetical processor with 3 adders
and 2 multipliers. Each adder has execution delay equal to 1ns and
power consumption equal to 20mW. Each multiplier has execution
delay equal to 2ns and power consumption equal to 100mW.

All the experiments were done using an UltraSparc 10 with 1GB
RAM. For results in Table 1 and 2, we developed a C++ tool and
implemented the algorithm Solve_ILP to solve ILPs in Figures 5 and
8 as well as the one described in Section 7. The input of the tool is a
graph modeling each filter, as well as resource constraints and their
related features. For step 3 of the algorithm Solve_ILP, we used the
lp_solve tool available at [2].

For the case of Table 1, the C++ tool reports a lower and an upper
bounds on the latency (the second and third columns,
respectively), a lower bound on using the right hand side of
expression (15) (see fourth column), the value of used to compute
the schedule (fifth column; it contains the value of II used to solve
the ILP in Figures 5 and 8). Columns 6 and 7 of Table 1 report the
value of and the run-time when the ILP in Figure 5 is solved.
Columns 8 and 9 report the value of and the run-time when the
ILP in Figure 8 is solved. Column 10 reports relative reduction of the
latency defined as

. As it can be
observed, relative reduction of the latency is 60.19% on average, and
the run-time for solving the two ILPs is less than 30s on average.

The C++ tool is also used to assess the approach proposed in
Section 7 to minimize peak power consumption. We use the same
circuits as those used in Table 1. We fixed and to the minimal
values found in Table1 (see column 2 and 3 of Table 2). Obtained
results are summarized by Table 2. For column 4, we first solve

xoi t oi(),
t oi() Max 1 t d oi() 1+–(),()=

Min l 1 d oi()–+() t,()

∑ 
 
 

+
δt xoi t oi(),⋅

t oi() Max 1 t d oi() 1 n II⋅–+–(),()=

t n II⋅–

∑ 
 
 

n 1=

t II⁄ 1–

∑ 
 

 oi O∈∀ t 1 2 ... l 1+(), , ,=,

ρoi t, oi
t 1 2 ... l 1+(), , ,= ρt

t
ρoi t, ρt

ρt

ρoi t, xoi t oi(),⋅
t oi() Max 1 t d oi() 1+–(),()=

Min l 1 d oi()–+() t,()

∑ 
 
 

+
ρoi t, δ⋅

t
xoi t oi(),⋅

t oi() Max 1 t d oi() 1 n II⋅–+–(),()=

t n II⋅–

∑
n 1=

t II⁄ 1–

∑ 
 
 

 
 
 
 
 
 
 
 
 
 
 

=

oi O∈∀ t 1 2 ... l 1+(), , ,=,

PeakPower Maxt 1 2 ... l 1+(), , ,= ρt()=

PeakPower ρt≥ t 1 2 ... l 1+(), , ,=,

L

II
L

Minimize PeakPower()

o2

1

2

3

o1

o3 o4

4o2

1

2

3

o1

o3

o4

4

(a) peak power = 100mW. (b) peak power = 70mW.

100mW

100mW

20mW

20mW

50mW

50mW

70mW

70mW

II II

II

L L
L

L
II

II

L
L

L column 6() L column 8()–() L column 8()()⁄ 100×

II L
294

Figure 8 without (39) and then we compute the peak power. The run-
time for this task is reported in column 5. For column 6, we solve the
ILP proposed in Section 7 to minimize peak power consumption,
and then we compute the peak power of the resulting schedule. The
run-time for this task is reported in column 7. Column 8 reports
relative reduction of peak power, which is defined here as:

.

As we can observe from Table 2, the proposed approach is able to
reduce peak power consumption by 13.17% on average even
thought and are set to their minimal values. If and are set
to values greater than the used ones, then more peak power reduction
could be obtained. Indeed, for the circuit named Example in Table 2,
this table shows that peak power was not reduced. However, in
Section 7 we showed that peak power for that circuit can be reduced
from 100mW to 70mW when .

10. CONCLUSIONS

For loops optimized by software pipelining, we have showed that
there is a relationship between the latency and the code size. An
increase of latency implies an increase of the code size. Also,
decreasing latency implies reducing the idleness of computational
elements. We have showed that optimizing loops by only applying
software pipelining can lead to sub-optimal value of the latency
compared to the case of unifying basic retiming and software
pipelining. We have proposed an ILP to realize that unification.

For software pipelined loops, concurrency between instructions
increases, which implies that more computational elements are

operating at the same time. Thus, peak power would increase.
However, by choosing a good schedule, it is possible to reduce peak
power consumption while still having the same target timings.
Indeed, peak power can be reduced by using the ILP that we have
proposed in this paper. To the best of our knowledge, this proposed
approach is the first one in the literature that deals with peak power
consumption in the context of software pipelining.

The proposed ILPs are flexible and could be extended to address
other problems related to software pipelining. Indeed, as an example
of such problems is the problem of reducing the number of registers.
That problem can be solved with the proposed ILPs by adding
constraints into the constraints of these ILPs.

PeakPower column 4() PeakPower column 6()–()
PeakPower column 6()

--- 100×

L II L II

L II 4= =

Circuit Name

Initiation
Interval

Used
Latency

Used

M3: PeakPower Not
Minimized (In mW)
(Retiming Is Used)

Run-Time
For M3
(Sec.)

M4: PeakPower
Minimized (In

mW) (Retiming Is
Used)

Run-Time
For M4
(Sec.)

Relative
PeakPower

Reduction (%)

Example 3 3 100 0.02 100 0.01 0.00

Correlator_Order_3 3 3 120 0.02 100 0.03 20.00

Correlator_Order_4 3 4 140 0.15 140 0.74 0.00

Correlator_Order_5 4 4 160 0.1 140 6.59 14.29

BiquadratiqFiltr 4 4 160 0.21 120 0.13 33.33

PolynomDivider 4 4 160 0.1 140 6.41 14.29

TransFIR 3 4 120 0.14 120 0.48 0.00

ThreTapNonRecDigiFiltr 4 4 120 0.06 100 0.2 20.00

DES 6 6 140 5.24 120 8.19 16.67

0.67 2.53 13.17

Table 2. Case of Minimizing Peak Power.

Average

Circuit Name

Lower
Bound

On
Latency

Upper
Bound

On
Latency

Lower
Bound On
Initiation
Interval

(II)
II

Used

M1:
Latency
Without
Retiming

Run-Time
For M1
(Sec.)

M2:
Latency

With
Retiming

Run-Time
For M2
(Sec.)

Latency
Improvement

(Relative-
Improvement In

%)

Example 3 6 3 3 5 0.01 3 0.01 66.67

Correlator_Order_3 3 7 3 3 5 0.02 3 0.06 66.67

Correlator_Order_4 4 10 3 3 7 0.08 4 0.36 75.00

Correlator_Order_5 4 13 4 4 9 0.34 4 1.82 125.00

BiquadratiqFiltr 4 12 4 4 6 0.56 4 135 50.00

PolynomDivider 4 13 4 4 7 0.24 4 5.55 75.00

TransFIR 3 8 3 3 5 0.1 4 0.63 25.00

ThreTapNonRecDigiFiltr 4 8 4 4 5 0.09 4 0.03 25.00

DES 6 17 6 6 8 38.27 6 80.3 33.33

4.41 24.86 60.19

Table 1. Case of Minimizing Latency.

Average
295

ACKNOWLEDGEMENT
The authors would like to thank the three anonymous reviewers for
their valuable comments from which this paper has benefited.

REFERENCES
[1] C.E. Leiserson and J.B. Saxe, “Retiming Synchronous

Circuitry,” Algorithmica, pp. 5-35, Jan., 1991.

[2] The LP_Solve Tool: ftp://ftp.ics.ele.tue.nl/pub/lp_solve/

[3] Q.Zhuge, B.Xiao, E.H.MSha, “Code size reduction technique
and implementation for software-pipelined DSP applications,”
ACM Trans. on Embedded Computing Systems, V.2, N.4,
November 2003, pp. 590-613.

[4] V.Allan, R.B.Jones, R.M.Lee, S.J.Allan, “Software Pipelining,”
ACM Computing Surveys, Vol. 27, No. 3, September 1995, pp.
367-432.

[5] A.Dasdan, R.K.Gupta, “Faster Maximum and Minimum Mean
Cycle Algorithms for System Performance Analysis,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, V.17, N.10, Oct. 1998.

[6] B.R.Rau, “Iterative Modulo Scheduling,” International Journal
of Parallel Programming, 24 (1), pp. 3-64, 1996.

[7] L.F.Chao, A.S.LaPaugh, E.H.M.Sha, “Rotation scheduling: A
loop pipelining algorithm,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, V.16, N.3,
March 1997, pp. 229-239.

[8] B.R.Rau, J.A.Fisher, “Instruction-level parallel processing:
history, overview, and perspective,” The Journal of
Supercomputing, V.7, N.1, 1993, pp. 9-50.
296

