
An Experimental Analysis of the Effect
of the Operating System on Memory Performance

in Embedded Multimedia Computing

Sangsoo Park
School of CSE &

Inst. of Computer Technology
Seoul National University

Seoul, 151-744, Korea

sspark@cslab.snu.ac.kr

Yonghee Lee
School of CSE &

Inst. of Computer Technology
Seoul National University

Seoul, 151-744, Korea

yhlee@cslab.snu.ac.kr

Heonshik Shin
School of CSE &

Inst. of Computer Technology
Seoul National University

Seoul, 151-744, Korea

shinhs@cslab.snu.ac.kr

ABSTRACT
As embedded systems grow in size and complexity, an operating
system has become essential to simplify the design of system soft-
ware, for which more accurate analysis of its impact on memory
performance is required. In this paper, we intend to investigate
how the OS influences memory performance at run time by quan-
titatively evaluating the memory system behavior of an MPEG-4
application running on embedded Linux. Through the use of ex-
tensive simulations we have confirmed that the OS has poor mem-
ory performance with less memory locality than applications. The
results of our experimental analysis are deemed useful for helping
embedded system designers understand the memory performance
of the OS and the application within a system, extending their ca-
pability to design a more power-aware and faster system.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies, Performance at-
tributes; D.4.8 [Operating systems]: Performance—Measurements,
Simulation

General Terms
Performance

Keywords
Operating system, multimedia, memory performance, embedded
system

1. INTRODUCTION
Omnipresent embedded systems are as revolutionary in their way

as the wheel. Diversified modern machines, however, demand a
far higher degree of intricacy from embedded systems than ancient
tools did from the wheel. These requirements are translated into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04, September 27–29, 2004, Pisa, Italy
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

technical restrictions on embedded systems which dissociates these
systems from general-purpose systems to some degree. Function-
ality is important in both cases; moreover, embedded systems must
meet many other application-specific constraints on, for example,
performance, power consumption, manufacturing cost and time-to-
market [21].

As embedded systems grow in size and complexity, an operating
system becomes essential to simplify the design of system soft-
ware. In addition, an OS provides not only the resource manage-
ment but also a common API to help embedded application pro-
grammers develop target systems with ease and efficiency. Most
previous studies of embedded system performance have, however,
overlooked OS behavior and its impact on memory performance.
That is why intend to investigate how the OS influences memory
performance at run time.

Multimedia applications are quickly moving from general-purpose
computers to embedded systems such as portable handhelds and
networked terminal devices. For many of these systems, a pure
software-based approach is cost-effective and allows the tracking
of evolving new standards for multimedia applications. MPEG-4
[16] is one of the several widely used international standards for
video compression, with applications ranging from mobile multi-
media to Internet streaming video. As the speed gap between CPUs
and memory widens, memory performance is coming to dominate
overall performance in most applications [5]. While video decod-
ing and encoding are computationally intensive, recent studies fo-
cus on their memory system performance as these applications also
demand more and more memory bandwidth [10].

Analyzing the memory performance of applications in embedded
systems is more difficult than for general-purpose systems. Varying
a few parameters during system design may have significant effect
on the overall performance and cost. To explore this problem, we
set out quantitatively to evaluate the memory system behavior of
a software MPEG-4 application running on an embedded operat-
ing system, by varying both hardware design parameters and the
selection of software components.

The rest of this paper is organized as follows: Background and
related work are reviewed in Section 2. Section 3 introduces our
system model and Section 4 describes our methodology, experi-
mental environments and the experimental results. In Section 5, we
analyze the experimental results in order to understand the memory
system behavior. Finally, this paper is concluded in Section 6.

26

2. RELATED WORK
In general, the impact of operating systems on the memory per-

formance has not been analyzed thoroughly because it is often dif-
ficult to obtain a meaningful trace of OS activity. Chen and Ber-
shad [7] have evaluated the memory performance of two differ-
ent implementations of the UNIX OS on a general-purpose work-
station. Their evaluation was based on software instrumentation
which rewrites assembly code so that it records a complete trace of
instruction and memory addresses. Chen and Bershad analyze the
locality of memory references and look for interference between
the OS and the application. They focus on conventional applica-
tions such as text manipulation and a C compiler running in a fixed
hardware setup. In this experiment, however, it should be noted
that it is possible for software instrumentation to contaminate the
traced memory references.

McKee et al. [17] have evaluated the memory performance of
a software MPEG-4 decoder on a workstation, using a hardware
monitoring tool that provides a limited range of functions, such
as event counters for cache misses, TLB misses and write buffer
stalls. Their results show the impact of both application and OS on
the memory performance but do not differentiate the OS from the
application.

Xu et al. [20, 22] and Soderquist and Lesser [19] use trace-driven
cache simulators to evaluate the memory performance of multime-
dia applications as well as conventional applications by varying
cache design parameters. They also used a hardware monitoring
tool for their hardware setup to verify and compare the simulated
results. Because the cache simulator only deals with memory refer-
ences, it provides no information on the overall performance. Also,
their traces only contain the memory reference for the application
programs.

To refine the art of memory performance analysis, we must be
able to trace the memory references of both application and OS,
and evaluate their overall performance, while varying hardware de-
sign parameters and software components, all without altering the
system behavior through our use of instrumentation.

Previous studies dealing specifically with the memory behavior
of multimedia systems have produced contradictory reports. On
one hand, early studies in multimedia applications suggested that
the memory system may be a performance bottleneck. Diefendorff
and Dubey [10] point out that cache performance is poor because
typical data sets and working sets are so huge that current cache
architectures cannot handle them. Consistent with this suggestion,
Chen et al. [6] and Zucker et al. [23] addressed the memory perfor-
mance bottleneck problem in software MPEG-1 and MPEG-2 de-
coders by employing both software and hardware prefetching tech-
niques.

On the other hand, some recent papers claim that multimedia ap-
plications actually have better memory performance than conven-
tional applications. Xu et al. [20, 22] and Slingerland and Smith
[18] compare the memory performance of conventional and mul-
timedia applications. Their results show that multimedia applica-
tions are characterized by high cache hit rates and low bus band-
width requirements. McKee et al. [17] also present similar results.

3. SYSTEM MODEL
A hardware system needs to be designed specifically to meet

the requirements of embedded system. Most embedded processors
such as the ARM, MIPS and SuperH devices offer a wide range
of CPU cores for various design goals, because cost and perfor-
mance of the embedded system are greatly affected by the choice of

ARM926EJ-S*
(400Mhz)

32KB
D-cache

32KB
I-cache

I-MMUD-MMU

Write buffer

A
H

B
 interface

100M
hz A

H
B

 bus

APB
bridge

System bus
arbiter

100M
hz A

PB
 bus

2 timers

Tube
console

Interrupt
controller

Memory
controller

128MB
SDRAM
(100Mhz)

Access time
NON-SEQ: 80ns
SEQ: 10ns

16-word data
4-address buffer

4-way associative, 32-byte line

P
L

L

*Alternative CPU without MMU: ARM946E-S

Figure 1: An example of a hardware system organization: the
system configuration used in our experiment.

a CPU core organization [14]. The relevant design criteria usually
include the cache size, the clock frequencies of the CPU and bus,
the characteristics of the floating point unit (FPU) and also those of
the memory management unit (MMU). Another notable emerging
technology is the system-on-a-chip (SoC) which consists of a CPU
core and a number of hardware control blocks for external I/O de-
vices. In order to minimize the cost for a given performance level,
device size, and power consumption by the target system, a SoC
is configured with a selective use of CPU components. Embedded
system designers should be able to decide which components to
select to meet their design goals.

Currently audio and video playback and streaming in mobile
devices such as PDAs and mobile phones are the most popular
multimedia applications in embedded computing. Their require-
ments are characterized by high performance to support real-time
video decoding, but with low power consumption and small size
for portability. In this paper, we will focus on alternative CPU core
organizations for performance and size.

The minimum set of components required to support an OS in-
cludes an interrupt controller, a timer, and some medium for a file
system, together with a CPU and RAM. To experiment with vary-
ing hardware design parameters like cache size and MMU, we se-
lected the synthesizable ARM9E core as a target platform. Fig. 1
illustrates the physical system configuration used in our study. Note
that we have used the ARM926EJ-S as the CPU with MMU, and
the ARM946E-S as the CPU without MMU. The lowest 64MB of
SDRAM is reserved for the file system, which stores compressed
and decompressed video as well as the executable binaries of the
application.

It is now commonplace for embedded systems to adopt Linux as
an operating system and we have followed this lead. Linux runs
on the target both with and without MMU, but the software archi-
tecture of Linux is quite different in each case. As our software
MPEG-4 application, we have used a simple profile version of the
optimized MPEG-4 reference software from NCTU [3]. Because
the MPEG-4 software contains floating-point arithmetic and the tar-
get CPU core has no FPU, some operations need to be emulated by
software by kernel floating-point emulation (FPE) or by an FPE
library.

As depicted in Fig. 2, the processing steps for our MPEG-4 ap-
plication are as follows: After initiation of the OS and loading of
the MPEG-4 application, the application reads a video frame from
the file system, encodes or decodes it, stores the result in the mem-
ory buffer, and then writes the buffer to the file system until it en-
codes or decodes the last video frame. In this paper, we will deal

27

OS boot-up
Create initial
process (init)

fork()

Process
initialization

(crt0.o)

execve()

MPEG-4
application

main()

C library

File system

Kernel

Library

Application

File I/O

System call

Interrupt
handler

Scheduler

Timer Interrupt

Cleanup
process

Resume exit()

Figure 2: Software run-time behavior: Stages in the MPEG-4 application adopted for our experiment.

with the processing steps inside the dotted line shown in Fig. 2
because we are only interested in the processing of the MPEG-4
application.

We will start by investigating the overall performance 1 and the
way that the memory behavior varies with changes in the design cri-
teria, namely cache size, clock frequency, MMU and FPU. We eval-
uate the memory performance of a software MPEG-4 application
while changing these design criteria within the feasible ranges of
the parameters, considering what is commercially available rather
than theoretical cache design parameters such as cache line size
and associativity [20, 22]. Subsequently, we will analyze the effect
of each software component - kernel, library and application - on
memory performance.

4. MEASUREMENT

4.1 Experimental Setup
Before the target platform is built, an in-depth analysis of the

system performance requires a full-scale system simulation that can
run the target application together with its OS. Although RTL-level
simulators and transaction-level simulators are often employed as
analysis tools in the early stages of system design, they often turn
out to be much too slow [8].

We therefore used ARMulator, a highly configurable system sim-
ulator provided by ARM which it can not only simulate various
CPU cores but also model different types of memory, a range of
cache architectures, and also external hardware. It is not 100%
cycle-accurate, but it is known to have acceptable accuracy and
moderate simulation time requirements, making it suitable for per-
formance comparison [4, 15]. To evaluate the OS behavior and its
impact we have ported Linux to ARMulator and used it to run the
MPEG-4 application. Table 1 summarizes the software environ-
ment for the experiments.

The uClibc C library is much smaller than the GNU library,
while it is able to support CPUs both with and without MMU. The
file system is managed by an Memory Technology Device (MTD)
subsystem and formatted as an ext-2 file system.

The quality of an MPEG-4 video depends on a set of physi-

1The overall performance is defined as the system performance
measured as a result of application processing and expressed in
terms of, for example, jobs/sec or frames/sec.

Table 1: Software environment.
CPU ARM926EJ-S ARM946E-S

Kernel linux-2.4.21-rmk1 linux-2.4.21-uc0
Library glibc-2.2.3 uClibc-0.9.19

Compiler gcc-2.95.3 gcc-2.95.3
Compile option -O3 -O3

cal properties: its resolution, bit rate, and the number of encoded
frames. These parameters affect the memory performance as well
as the encoding and decoding time and the input data size. To ana-
lyze their influence on the performance, we conducted experiments
with some data sets, with the results reported elsewhere [1].

These results may be summarized as follows: (1) the memory
performance of an encoder is better than that of decoder in all cases;
(2) the cache miss ratio for decoding or encoding 100 frames is
slightly lower than decoding or encoding 10 frames; (3) decoding
a video with a higher bit rate or a lower resolution gives better
memory performance, whereas encoding a video with a lower bit
rate or a higher resolution gives better memory performance.

In the following experiments, we use a short but the representa-
tive sequence of operations which decoding and encoding 10 frames
of 112kbps cif-format video.

4.2 Experimental Results for Cache and Clock
Frequency

The results of using different cache sizes and clock frequencies
are compiled elsewhere [1]. To summarize these results, the exe-
cution time of a decoder decreases by about 43% as the cache size
increases from 4KB to 64KB, but it saturates at 32KB; and the ex-
ecution time of the encoder decreases by about 20% as the cache
size increases from 4KB to 64KB, but it too saturates at 32KB. The
data cache write miss ratio of the decoder was found to be rela-
tively high. This results in a high bus utilization, which implies
that speed of memory access is responsible for a large part of the
overall performance in the case of the decoder.

Another point to be addressed is the cache write policy. One of
two alternative policies, write-back and write-through, is activated
while the OS boots up. In general, how the cache write policy
affects the overall performance depends on the application [12].
Since we have observed that write-back always shows the better
performance, we use only write-back in the following experiments.

28

0

2

4

6

8

10

12

Kernel FPE FPE library

D
ec

od
in

g
tim

e
(s

)

ARM926EJ-S, 400Mhz CPU/100Mhz bus,
32KB write-back cache

XScale, 400Mhz CPU/100Mhz bus,
32KB write-back cache

Figure 3: Simulated and measured MPEG-4 decoding time for
performance comparisons (112kbps cif format).

In the meantime, we have compared the execution times of the
decoder and the encoder as we change the CPU and memory bus
clock frequencies. According to the results from this experiment,
we have also confirmed that speed of memory access for the most
part affects the overall performance in the decoder, which is memory-
intensive as well as computation-intensive.

4.3 Experimental Results for the MMU
The experimental results for the system with and without an

MMU are summarized in Table 2. In general, the system without
an MMU gives better overall performance for the same application
because it is free from TLB miss handing overheads. As shown
in Table 2, the system without an MMU has better memory perfor-
mance. Despite this fact, the execution of both decoder and encoder
in the system without an MMU takes longer than in the system with
an MMU, by about 20% and 26%, respectively. This unexpected
result will be analyzed in Section 5.1.

4.4 Experimental Results for the OS
To evaluate the impact of the operating system on memory per-

formance, we conducted simulations with applications only, ex-
cluding the OS; otherwise, the environment remains the same as
described in Section 3. The experimental results of the simulations
with and without the OS are compared in Table 3. With the oper-
ating system, the execution time of the decoder increases by 27%
in the system with an MMU, and by 44% in the system without an
MMU, whereas the encoder takes 20% longer in the system with an
MMU and 44% in the system without. These results demonstrate
that the OS comes with its own overhead and affects the memory
performance.

We will attempt to explain about the column labeled ”App. +
OS(uClibc)” in Table 3 in terms of OS behavior and memory per-
formance in Section 5.2.

4.5 Experimental Results from FPE
Fig. 3 depicts the way in which the MPEG-4 decoding time

varies with the FPE method used in the simulated system illustrated
in Fig. 1. These experimental results are also compared with a real
hardware platform, namely Intel’s XScale-based BRH evaluation
board from ADI Engineering [2]. This has some additional fea-
tures improving performance, such as a branch target buffer, a fill
buffer and a 2KB mini data cache [13]. As shown in Fig. 3, there
is a performance gap of around 25% between the two methods and
this gap will be analyzed in Section 5.3.

Virtual
memory

Stack

Heap

Static
Data

Text

Top addr.
D000-0000

(virtual)

Virtual gap
~ 256 MB

Gaps round to
next page

Base addr.
C000-0000

(virtual)

(a) with an MMU

Flat
memory

Stack

Heap

Static
data

Text

Top addr.
00EA-6000
(physical)

Base addr.
00E8-0000
(physical)

Fixed-size
stack

No gap

(b) without an MMU

Figure 5: Memory map for the system with an MMU and with-
out an MMU.

5. ANALYSIS
In Section 4, we evaluated the performance of a software MPEG-

4 by varying the design parameters. On the basis of the experimen-
tal results, we are able to characterize its overall performance and
to identify opportunities for improving the design of hardware and
software components. Fig. 4 summarizes the experimental results.
In the figure, the performance improvement ratio archived by vary-
ing each design parameter - cache size, CPU clock frequency, and
memory bus frequency is depicted. The performance improvement
ratio for the system with MMU and without MMU as well as kernel
FPE and FPE library are also compared.

From the figure, we see that the performance of the encoder in-
creases proportionally as the CPU clock frequency increases. But it
saturates quickly when the memory clock frequency and the cache
size are increased, variables which are tightly related to the memory
performance. However, the performance of the decoder continues
to be improved by increasing CPU and memory clock frequency.
The performance of the decoder does saturate as the cache size
increases but the cache does have a significant effect on the per-
formance. This confirms that the encoder is highly computation
intensive, whereas the decoder is both computation and memory
intensive. Changes to the MMU and FPE have a similar impact on
the performance of both the decoder and the encoder.

5.1 Effect of the MMU
In Section 4.3, we unexpectedly observed that the execution time

in the system without an MMU is longer than in the system with an
MMU. The C library is the only software component that changes
between the two systems. We therefore rebuilt the MPEG-4 appli-
cation with uClibc to run on the system with MMU, and performed
additional experiments in order to find out what caused this result.

In Table 3, the column ”App.+OS(uClibc)” contains the results
from this new setup. The execution times in the system without
an MMU are now shorter than for the system with an MMU by
about 5-10%, as we initially expected. This implies that the GNU
C library outperforms uClibc and that the system without an MMU
gives better overall performance for the same application because
it is free from TLB handing overheads.

The OS for the system without an MMU has advantages that
it does not have to handle per-process page tables (or TLB misses)
and the associated protection required in the virtual memory model.

29

Table 2: Impact of the MMU: 400Mhz/100Mhz CPU/bus clock frequency, 32KB I,D-cache, write-back cache.
Decoder Encoder

w/ MMU w/o MMU w/ MMU w/o MMU
Instr. cache miss ratio (%) 0.09 0.03 0.01 0.02
Data cache miss ratio (%) 11.44 10.66 1.17 0.91

Read 1.34 1.05 0.17 0.11
Write 32.68 26.61 8.32 3.02

Write buffer stall ratio (%) 20.01 28.56 2.58 4.24
TLB miss ratio (%) 0.92 0.9

Instruction 0.08 0.01
Data 1.99 0.33

Bus utilization (%) 51.03 51.45 8.33 7.93
Execution time (s) 0.74 0.92 13.08 17.53

Table 3: Impact of the operating system: 400Mhz/100Mhz CPU/bus clock frequency, 32KB I,D-cache, write-back cache.

ARM926EJ-S (w/ MMU) ARM946E-S (w/o MMU)
App. only App. + OS App. + OS(uClibc) App. only App. + OS

Instr. cache miss ratio (%) 0.01 0.09 0.05 0.01 0.03
Data cache miss ratio (%) 17.25 11.44 9.89 17.25 10.66

Read 1.95 1.34 0.96 1.94 1.05
Write 52.07 32.68 24.84 52.07 26.61

Write buffer stall ratio (%) 22.75 20.01 25.44 24.78 28.56
TLB miss ratio (%) 0.00 0.92 0.57

Instruction 0.00 0.08 0.05
Data 0.00 1.99 1.16

Bus utilization (%) 58.57 51.03 48.25 61.40 51.45
Execution time (s) 0.54 0.74 0.96 0.52 0.92

(a) Decoder

ARM926EJ-S (w/ MMU) ARM946E-S (w/o MMU)
App. only App. + OS App. + OS(uClibc) App. only App. + OS

Instr. cache miss ratio (%) 0.00 0.01 0.02 0.00 0.02
Data cache miss ratio (%) 1.32 1.17 1.03 1.32 0.91

Read 0.15 0.17 0.11 0.15 0.11
Write 29.62 8.32 3.43 29.64 3.02

Write buffer stall ratio (%) 3.55 2.58 4.37 4.10 4.24
TLB miss ratio (%) 0.00 0.09 0.11

Instruction 0.00 0.01 0.01
Data 0.00 0.33 0.18

Bus utilization (%) 8.24 8.33 8.27 9.20 7.93
Execution time (s) 10.57 13.08 19.40 9.47 17.53

(b) Encoder

30

32KB
16KB

8KB

800Mhz

400Mhz

200Mhz

400Mhz

200Mhz

100Mhz

w/o MMU

FPE Library

0

10

20

30

40

50

60

70

80

90

100

Cache 4KB, CPU 100Mhz,
Memory 50Mhz, w/ MMU, Kernel FPE

Pe
rf

or
m

an
ce

 I
m

pr
ov

em
en

t (
%

)
Cache Size CPU Clock Frequency Memory Bus Clock Frequency MMU FPE

(a) Decoder

32KB16KB
8KB

800Mhz

400Mhz

200Mhz

400Mhz200Mhz
100Mhz w/o MMU

FPE Library

0

10

20

30

40

50

60

70

80

90

100

Cache 4KB, CPU 100Mhz,
Memory 50Mhz, w/ MMU, Kernel FPE

Pe
rf

or
m

an
ce

 I
m

pr
ov

em
en

t (
%

)

Cache Size CPU Clock Frequency Memory Bus Clock Frequency MMU FPE

(b) Encoder

Figure 4: Performance improvement ratio archived by changes in design parameters.

Instead it uses the flat memory model as depicted in Fig. 5 [9]. But
this introduces restrictions on the use of some features of the API
such as the fork() system call, and on handling memory-related
features. Application programmers are still able to allocate non-
overlapped memory regions to the application, but with caution.
They should define the stack size carefully in order to avoid an
overflowing stack from polluting static data or code, which would
lead to a system collapse.

5.2 Effect of the OS
We observed in Section 4.4 that employing the OS significantly

increases the overall execution time. To identify the extent to which
each software component impacts the CPU and memory traffic, we
divided the experimental results in Table 3 into the three categories
of kernel, application, and library. Table 4 describes the number of
instructions that were performed in each category. The number of
instructions corresponding to the application remains nearly con-
stant, and we deduce that it is the additional instructions given by
the library and the kernel that increased the CPU time.

Fig. 6 summarizes the proportion of each category - cache miss,
write buffer stall and TLB miss ratio - in the memory performance
metrics. In this figure, the proportion of the kernel instructions is
less than 5% for the decoder and 0.26% for the encoder, but the
memory traffic of the kernel is 14-26% for the decoder and 7-15%
for the encoder. This implies that the OS kernel has poor memory
performance, which is mainly attributable to the characteristics of
OS routines, which are exception-driven and intermittently invoked
[7].

Further results were obtained by repeating these experiments on
a benchmark suite for embedded systems, MiBench [11], in order
to find out how the OS behavior and its impact vary between dif-
ferent applications. These experimental results are presented else-
where [1]. We observed that the OS kernel has poor memory per-
formance in the benchmark applications which is consistent with
the results presented in this paper.

5.3 Effect of FPE
Table 5 reports the number of instructions executed in the ker-

nel with FPE. After this change, the number of kernel instructions
increases while the number of library instructions is reduced. We
also observe that a large proportion of the CPU and memory traffic
in the library is caused specifically by the FPE library.

Table 5: Number of instructions executed in the kernel FPE
(ARM926EJ-S).

Decoder Encoder
Kernel 66,771,291 1,593,901,622

Application 77,085,384 2,631,778,060
Library 3,962,210 3,767,988

An undefined exception (or software trap) encountered by any
floating point arithmetic causes an op-code to be fetched and emu-
lated in the kernel FPE as shown in Fig. 7 (a). That makes this
method quite slow because of the frequent context switches be-
tween application and kernel, whereas no such context switch oc-
curs when using the FPE library.

5.4 Implications
So far we have analyzed the effect of the OS on the MPEG-4

encoding and decoding at run time and observed the poor mem-
ory performance of the OS. Having quantitatively evaluated the OS
behavior and its impact, we intend to help a system designer under-
stand the overhead caused by the interplay between hardware and
software components. While the system designer tries to determine
a set of hardware design parameters that will meet requirements
such as size, performance, and power consumption, they should
be aware that the software components depending on their hard-
ware counterparts will have a significant impact on performance.
Whether the target application has FP arithmetic or not, or whether
the maximum stack size is already known for the target application
could be important design considerations. In this paper, we provide
the system designer with clues about how the software components
will affect their design goal.

6. CONCLUSIONS
In this paper, we have quantitatively evaluated the memory sys-

tem behavior of a software MPEG-4 application in an embedded
system by varying both hardware design parameters and software
components. We also analyzed the effect of each software compo-
nent on memory performance. We have also investigated how the
OS influences the system at run time and analyzed the behavior of
the OS.

31

Table 4: Number of instructions executed.
ARM926EJ-S (w/ MMU) ARM946E-S (w/o MMU)

App. only App. + OS App. + OS(uClibc) App. only App. + OS
Kernel 4,682,452 4,044,275 3,621,334

Decoder Application 75,369,923 77,629,880 77,629,584 75,369,928 77,929,561
Library 22,398,959 56,280,438 56,551,698
Kernel 8,238,299 8,767,214 7,471,374

Encoder Application 2,696,156,312 2,660,794,347 2,654,397,397 2,696,156,181 2,649,120,290
Library 555,165,701 2,071,852,802 2,060,961,163

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/ M
M

U
)

A
pp

. +
 O

S
(u

C
li

bc
,w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
 M

M
U

)

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/ M
M

U
)

A
pp

. +
 O

S
(u

C
li

bc
,w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
 M

M
U

)

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/ M
M

U
)

A
pp

. +
 O

S
(u

C
li

bc
,w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
 M

M
U

)

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/ M
M

U
)

A
pp

. +
 O

S
(u

C
li

bc
,w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
 M

M
U

)

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/ M
M

U
)

A
pp

. +
 O

S
(u

C
li

bc
,w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
 M

M
U

)

Instruction Instr. Cache Miss Data Cache Miss Write Buffer Stall TLB Miss

Library

Application

Kernel

(a) Decoder

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/
M

M
U

)

A
pp

. +
 O

S
(u

C
lib

c,
w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
M

M
U

)

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/
M

M
U

)

A
pp

. +
 O

S
(u

C
lib

c,
w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
M

M
U

)

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/
M

M
U

)

A
pp

. +
 O

S
(u

C
lib

c,
w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
M

M
U

)

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/
M

M
U

)

A
pp

. +
 O

S
(u

C
lib

c,
w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
M

M
U

)

A
pp

. o
nl

y

A
pp

. +
 O

S
(w

/
M

M
U

)

A
pp

. +
 O

S
(u

C
lib

c,
w

/ M
M

U
)

A
pp

. +
 O

S
(w

/o
M

M
U

)

Instruction Instr. Cache Miss Data Cache Miss Write Buffer Stall TLB Miss

Library

Application

Kernel

(b) Encoder

Figure 6: Run-time metrics apportioned to the kernel, the application, and library routines.

32

Kernel

Library

Application

Trap
handler

FPE routine

Undefined instruction
(Software trap)

F
P

 op-code

Context switch

(a) Kernel FPE

Kernel

Library

Application

FPE routine

F
P

 op-code

(b) FPE library

Figure 7: Kernel FPE vs. FPE library.

As a result, we have observed that the OS has poor memory per-
formance. These experimental results can be used to help the sys-
tem designer understand the performance of the OS and the appli-
cation within a system. Additionally, the interplay between hard-
ware and software components in determining overall memory per-
formance is also discussed in our study.

In future work, we will study the characteristic of operating sys-
tems and how they affect the OS subsystem and other services to
applications, with the aim of alleviating the locality problem that
operating systems typically exhibit.

7. REFERENCES
[1] http://cslab.snu.ac.kr/ sspark/papar/tr-osmp.pdf.
[2] http://www.adiengineering.com/productsBRH.html.
[3] Optimized MPEG-4 reference software contributed by nctu

in taiwan. http://megaera.ee.nctu.edu.tw/mpeg/.
[4] ARM. Benchmarking with armulator. Application Note.
[5] K. Boland and A. Dollas. Predicting and precluding

problems with memory latency. IEEE Micro, 14(4):59–67,
1994.

[6] H. Chen, K. Li, and B. Wei. Memory performance
optimizations for real-time software HDTV decoding. In
Proc. IEEE International Conference on Multimedia and
Expo (ICME’02), Lausanne, Switzerland, Aug. 2002.

[7] J. B. Chen and B. N. Bershad. The impact of operating
system structure on memory system performance. In Proc.
ACM Symposium on Operating System Principles
(SOSP’93), Asheville, NC, Dec. 1993.

[8] J. A. Darringer, R. Bergamaschi, S. Bhattacharya, D. Brand,
A. Herkersdorf, J. Morell, I. I. Nair, P. Sagmeister, and
Y. Shin. Early analysis tools for system-on-a-chip design.
IBM Journal of Research and Development, 6(6):20–38,
2002.

[9] J. deBlanquier. Supporting new hardware environment with
uclinux. Journal of Linux Technology, 1(3):20–28, 2000.

[10] K. Diefendorff and P. Dubey. How multimedia workloads
will change processor design. IEEE Computer, 30(9):43–45,
1997.

[11] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A free, commercially
representative embedded benchmark suite. In IEEE Annual
Workshop on Workload Characterization, Austin, TX, 2001.

[12] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 1996.

[13] Intel. Intel 80200 processor based on intel xscale
microarchitecture. Developer’s Manual, Nov. 2000.

[14] D. Kirovski, C. Lee, M. Potkonjak, and W. Mangione-Smith.
Application-driven synthsis of core-based systems. In Proc.
IEEE International Conference on Computer Aided Design
(ICCAD’97), San Jose, California, USA, 1997.

[15] R. Klein, K. Travilla, and M. Lyons. Performance estimation
of MPEG4 algorithms on arm based designs using
co-verification. In Proc. Embedded Systems Conference, San
Francisco, USA, 2002.

[16] R. Koenen. MPEG-4: Multimedia for our time. IEEE
Spectrum, 36(2):26–34, 1999.

[17] S. A. McKee, Z. Fang, and M. Valero. An MPEG-4
performance study for non-simd,general purpose
architectures. In Proc. IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’03),
Austin, Texas, USA, Mar. 2003.

[18] N. T. Slingerland and A. J. Smith. Cache performance for
multimedia applications. In Proc. IEEE International
Conference on Supercomputing, Sorrento, Italy, June 2001.

[19] P. Soderquist and M. Leeser. Optimizing the data cache
performance of a software MPEG-2 video decoder. In Proc.
ACM International Conference on Multimedia, Seattle,
Washington, USA, Nov. 1997.

[20] S. Sohoni, Z. Xu, R. Min, and Y. Hu. A study of memory
system performance of multimedia applications. In Proc.
ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’01),
Cambridge, Messachusetts, USA, June 2001.

[21] W. Wolf. Computers as Components: Principles of
Embedded Computing System Design. Morgan Kaufmann,
2001.

[22] Z. Xu, S. Sohoni, R. Min, and Y. Hu. An analysis of the
cache performance of multimedia applications. IEEE
Transactions on Computers, 53(1):20–38, 2004.

[23] D. F. Zucker, M. J. Flynn, and R. B. Lee. A comparison of
hardware prefetching techniques for multimedia
benchmarks. In Proc. IEEE International Conference on
Multimedia Computing and Systems (ICMCS’95),
Washington, USA, May 1995.

33

