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ABSTRACT based on lock-step composition, which usually results in more un-

Dataflow synchronous languages have attracted considerable imer_derstandable designs, and avoids a blow-up of the state space of
est in domains such as real-time control and hardware design. TheParallel programs. , ,
potential benefits are promising: Discrete-time semantics and de- Wh'!e _synchronous programs are well suned_ fo_r synthess of
terministic concurrency reduce the state-space of parallel designs, Monolithic hardware and software, the problenditributedim-

and the engineer’s intuition of uniformly progressing physical time plementation of a syncljronous program IS still a challenglng one.
is clearly reflected. However, for deriving implementations, use Clearly, formal abstractions of distributed systems, along with an

of synchronous programs is currently limited to hardware synthe- automated procedure to synthesize distributed implementations, are

sis, generation of non-distributed software, or deployment on time- ges_lrab]lce fpr severatl) rez_asorlls,_ mclut?glng |rT|1pro_\;_ed pehaworal vali-
triggered architectures. ation, for instance by simulation or formal verification.

In this paper, it is shown how synchronous dataflow designs can Howzver, thereha;e rzqut_el;ou_s ch?llengﬁs to an (preferably au-
be used for synthesizing distributed applications based on targettomate ) approach for distribution of synchronous programs, €. g.

architectures that do not provide a global time base by default. (1) integration of existing systems with the synthesized executives,

We propose a distribution method called “synchronization cascade” @) _reqwred corr_lpatlblllt_y W'.th the nUMerous platfor_ms in the do-
where the nodes’ local clocks depend on each other in a tree-like MM (?.’) compliance with tight qonfunctlonal requirements such
manner. For evaluation of the method, we characterize some re-2S timeliness, memory consumption, and hardware cost.

quirements for firm real-time applications, and evaluate our ap- Lopklng .at real(;nme conlt:olsappllcatlon n th.e automotlvle fsec-

proach with respect to the postulated requirements. tor, t_lme-tng_gere prc_;toc_o (8] are an attract!ve target platform
for highly critical applications such as X-By-Wire. However, for

applications where cost concerns and legacy integration issues

Categones and SUbJeCt DeSCI‘IptOI’S are more dominant compared to criticality requirements, existing

D.2.2 [Software Engineering: Design Tools and Techniques event-triggeredus architectures such as Controller Area Network
(CAN) may play an important role for some time to come. Appli-
General Terms cations characterized by this requirement will be calieedium-

. criticality applicationsin the sequel.
Design, Languages y app q

Synchronous approach vs. firm real time

Keywords In the context of medium-criticality applications, let us discuss the
Embedded Software, Synchronous Languages, AutoFocus, Codesynchronous distribution issue in more depth: Certainly, seman-

Distribution, Scheduling tically correct implementation of the distributed program is vital.
But when looking at the state of the art in distributed real-time con-
1. INTRODUCTION trol applications, many of these applications meet their timing and

criticality requirements even though they are based on communi-
cation media that provide no absolute guarantees about response
times. As a possible explanation, some control applications are
known to tolerate the loss of a bounded number of messages, e.g.
state values. In real-time systems, this corresponds to the notion
of firm real-time transactions are discarded when they miss their
deadlines, as there is no value to completing them afterwards. In
contrast to hard real-time systems, a bounded number of deadline
misses is not considered fatal. How can the notion of firm real-time
Permission to make digital or hard copies of all or part of this work for e married with the distribution of synchronous programs?

personal or classroom use is granted without fee provided that copies are It can also be questioned whether synchronous implementations
not made or distributed for profit or commercial advantage and that copies require the existence of a precise global timebase. Existing works
bear this notice and the full citation on the first page. To copy otherwise, to on asynchronous distribution of synchronous prograims [5] have
repub_llsh, to post on servers or to redistribute to lists, requires prior specific shown that this is not necessarily the case. On the other hand, it
permission and/or a fee. . . e - !
EMSOFT'04 September 27-29, 2004, Pisa, Italy. is qu_lte clear that asyr_lchronous dlstrlb_utlo_n does not satisfy some
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00. requirements of real-time control applications when communica-

Dataflow synchronous programs and specifications, exempli-
fied by LUSTRE and SGNAL[Z], or AUTOFOCUS[T], provide a
discrete-time abstraction from real-time, concurrent implementa-
tions. This abstraction is familiar to control engineers and hard-
ware designers: all parts of the program run in a uniform time-
frame (time-synchronous). Concurrency in synchronous designs is
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tion media are involved that allow message losses or unboundeddepend on future inputs, atehgth-preservingi.e. there is a fixed
latencies. Can we use a loose timebase, which may be cheapecorrespondance between the lengths of inputs and outputs.
to implement, and still obtain implementations suited for real-time

Based on this discussion, our approach is twofold: (1) Provide a For composition of two components (/O function f;, inputs
distribution method for synchronous programs based on a synchro-7,, outputsO;) and ¢, (/O function f», inputs Iz, outputsO-)
nization/communication layer with a loose timebase. The method yields a component with inputd;\O2) U (12\01), and outputs
should ensure semantically correct execution of the synchronousO, UQ,. Semantically, composition @f andc; is then defined by
program under normal operation conditions. (2) Make sure the intersection of:;’s andcz’s behavior on the shared inputs/outputs
synchronization/ communication layer provides a reduced service, (synchronous composition); we restrict the scope of our semantics
including synchronization, in case of certain faults. By adjusting to the class of systems where the intersection is again a (total) 1/0
some well-defined parameters, it is then up to the developer to en-function. Such networks of components can be specified in a graph-
sure that the system remains in normal operation for the most partical style, using rectangles for components, and directed arrows for
of its lifecycle, and meets the correctness and timeliness require- signals/channels][4].
ments imposed by the application. . L

In the following, we will describe the procedure to deploy Abstractions for Communication Channels

synchronous programs onto event-triggered networks based ony the following, we will use components for abstractly defining
loose synchronization, and evaluate our method with respect to prgperties of a given communication channel. This definition will
the requirements of medium-criticality applications. Sectibn 2 e ysed in Sectiong 3 anil 4 to formalize assumptions about the

introduces a simple denotational stylé [4] used for specifying communication medium and guarantees provided by the synchro-
synchronous programs and abstractions of communication chan-pization / communication layer.

nels. Sectiof3 introduces a synchronization/communication layer

called synchronization cascagdevhich is used for distributed de- DEFINITION 1 (CHANNEL). A component: is a channeliff
ployment of synchronous programs. Sectpn 4 defines some re-|J| = |O| = 1andZ = O.

quirements for distribution of synchronous programs for medium-

criticality applications, and shows that our distribution method sat-

isfies some essential properties related to these requirements. Sec- DEFINITION 2 (m-LENGTH-PRESERVING CHANNEL).

tion B, finally, relates our approach to works of other authors, and Given somen > 0, a channel is ann-length-preserving channel

gives an outlook discussing future directions. iff Vor € Z.#(f(o1)) = #(o1) +m.
2. DATAFLOW SYNCHRONOUS DEFINITION 3 (UNIT DELAY CHANNEL). [| A channel is a
SPECIFICATIONS unit delay channel with initial message iff Vor € Z.f(or) =
m&JI.

We model distributed software as a networlcomponentsom-

municating over timegtreams As a corollary, unit delay channels ardength-preserving.

Streams DEFINITION 4 (n-BOUNDED LOSSYCHANNEL).

A stream is a finite or infinite sequenceroéssagefom a setM. Given some: > 0 and somen-length-preserving channeh with
For such a set of messages, we Ligé = M ™ U M to denote the domainZ = O = M, ch is ann-bounded lossy channdf, for
set of all finite and infinite streams ov&f. For a streans € M*“, all input/output streamsor,00) € f, for all of o;'s substreams
thei-th message is written asi. We define a special messadie o’ of lengthn at positioni, for all of oo’s substreams5™ of
theabsent messagéor a given setM, we write M| = M U {L} lengthn at position: + m, the following condition holds:

for the set obtained by adding the absent message.

The length operator# yields the length of the stream to which
it is applied. Concatenatiorof streams, writterr; &0, yields a
stream that starts with the messagesofollowed by the messages
of o2. Thefiltering operator® is used to filter away messages.
M’'®o is the substream of obtained by removing all messages in
o that are not in the seld’ C M.

In the following, we will use aime-synchronous interpretation
of streams: for all streams, the position of a message in a stream is‘?" SYNCHRONIZATION CASCADES
associated with a unique instant in a uniform discrete timeframe. .

3.1 Terminology

#(M®oj) =n = #(MG®os ™) > 1

Intuitively, if fed with messages from the s&f, ann-bounded
lossy channel will lose at most — 1 subsequent messages. As a
direct consequence of the above definition, anlgounded lossy
channel is alsa + 1-bounded lossy.

Components A synchronization cascadgovides a layer for synchronization

A componentc has a set ofnput signalsl = {i1, iz, ... ,im} and communicatiop, and imp.lements a logical network.top.ology
with typesM/;, and a set obutput signalsO = {o1,0s, ... , 0.} on top of some suitable physical topology where each link in the
with typesM;j. T = M2 x M2 x - Mg, andO = M, x logical topology can be mapped to a physical counterpart. We call

the underlying protocol(s) thease protocol(spf the cascade.

Mg, x --- Mg, are the input and output domains of the compo- J T ” .
A synchronization cascade is a rooted tree with nodes { Vo,

nent, respectively. We consider ordgterministic componentbat

arecomplete on their inputsfor these, inputs and outputs can be V- ---}, and edgess C N x V. Each node corresponds to a
related by a total functiorf : T — ©. We call this functionf the processor or control unit in the distributed implementation. Edges

I/0 functionof the component. For time-synchronous streams, we *QOur unit delay definition corresponds with a combined use of the
require 1/0O functions to beausa] that is, present outputs do not pre and-> operators in USTRE
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messages : Writa )
] messagesl
|
. .. . . T T :
s € S are called (directgynchronizing linksEach such link com- L 6,+Q by time
municates a periodic message that is used by its child node to syn-
chronize itself with the parent node. Figure 2: Processing phases for stef of a node N;. Filled

The root of the tree is calleahaster nodeVy. For a non-master  arrowheads denote synchronizing messages, empty arrowheads
nodeN, we denote ad.i(IV) the set of those synchronizing links  correspond to nonsynchronizing messages
that form a path fromVy to nodeN. If (N, No) ¢ S, the links
in Li(N) form anindirect link from N to Ny. Par(N) is the set
of parent nodesalong the path such thafoBPar(N) and N ¢ Computation phase

Par(N). _ _ _ . During the computation phase, the local part of the distributed pro-
The rooted tree is extended to a (directed) multigraph by adding g4 is executed, the received messages are processed, and the next
edgesUV = {u1, uz, ...} (depicted as dashed edges). The edges 5es of the outgoing messages are computed. Outgoing messages
u € U are callechonsynchronizing linkswhile their value is usu- are buffered till the next sendireceive phase.
glly important to the receivgr, the timing of their reception does not  Note that the computation phase may be interrupted by the next
influence the receiver's activation times. ) o sendireceive phase under certain circumstances. It is assumed that
An example for a synchronization cascade is shown in [fig. 1. {he sendjreceive handler uses default values for all of those outgo-
Node No is the master node. Links,, s, s3 are synchronizing jng synchronizing messages where no value has been computed in
links, while u; andu> are nonsynchronizing. The master node g |ast step. Consequently, the availability of a synchronization
emits a periodic synchronizing message with a predefiase: pe- message for the next cycle does not depend on the completion of
riod T'. the computation phase.

Processing phases Activation of the send/receive phase

Fig. 2 shows, schematically, the timing of computations performed Each nodeV; defines the following functions and variables:

by a single node. During each cycle, the node performs two sub- )

sequent computations: send/freceivgphase, and @omputation ° QEtSyncthrjizingMessage: M yields the value of the current
phase. For givelV; € N,j € Ny, instantt; ; denotes the acti- synchronizing message.

vation instant of nodeV; at stepj. .
v e sendReceive: M — t, ff executes the processing phase

given a synchronizing message, and yields a boolean value

Sendfreceive phase whether the execution was successful.

The send/receive phase is triggered by a periodically elapsing timer

for the master, and by the respective synchronizing message fora ¢ getDefaultMessage: M yields a default message for the syn-
non-master node. During this phase, the nonsynchronizing mes- chronizing message, e.g. based on the last available values
sages received since the last send/receive phase and the incoming of the message.

synchronizing message are read, and all outgoing messages com-
puted in the last computation phase are emitted. Because the send/
receive phase requires nonzero time for execution, and the receiver
node could potentially lose synchronizing messages if their inter-
arrival time is too short, we define guiet intervalthat overlaps

the sendfreceive phase, and during which the node is not required e count € N is a counter.

to process incoming synchronizing messages. The remaining part

of the cycle is called theeceptive interval For nonsynchronizing ~ The sendireceive phase of each node is initiated by two tasks,
messages arriving in the quiet interval, the node may either read sage_available_task andtimer_task. timer_task is activated!" time

the message immediately, or leave it in the message buffer so itunits and, if necessaryf’., time units after the last activation.
can be processed by the next send/receive phase. The quiet in{The meaning of/’,,, will be explained in the next paragraphi)
terval (()7 Q] starts at the beginning of each period. The analysis mer_task has an idealized release time of zero. The two tasks and
below will ensure that a node does not receive Synchronizing mes_the states and transitions of the activation algorithm are shown in
sages in0, Q] under given operating conditions) is typically a Fig.B.

worst-case estimate of the sendfreceive period’s combined task re-, .
sponse and execution times. In the following, we formally require States and transitions

0<Q < T-(1-2¢),wheresis aclock drift constant introduced  After initialization of the cascade, the master node is in S&teF-

in Section3]2. Because communication overhead is usually small_TRIGGERED, all other nodes are in StaEXTERNALLY_TRIGGE-
compared to computation time, we expect typical assignments for RED. In stateEXTERNALLY_TRIGGERED, the respective node is

Q to be less thafl'/4. synchronized with its parent node, and the sendfreceive phase is

o state € {EXTERNALLY_TRIGGERED, MESSAGE_ABSENT,
SELF_TRIGGERED} is a state variable.

e timer; € R is the physical timer of nod#/;.
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message_available_task:
if state € {EXTERNALLY_TRIGGERED,
MESSAGE_ABSENT} then
timer; :=0
state := EXTERNALLY_TRIGGERED
sendReceive(getSynchronizingMessage()) endif

timer_task:
if state = SELF_TRIGGERED then
if timer; = T then
timer; :=0
sendReceive(getDefaultMessage()) endif
else ifstate = MESSAGE_ABSENT then
if timer; = T then
timer; := 0, count := count + 1
if count> n,; then
state := SELF_TRIGGERED endif
sendReceive(getDefaultMessage()) endif
else
if timer; = T),, then
timer; := 0, count:=0
state := MESSAGE_ABSENT endif endif

EXTERNALL
TRIGGERED,

msg. available
and count < n,

timer=T

MESSAGE
_ABSENT

count > n

Figure 3: Activation, states, and transitions of a nodeV;

Physical clocks

Each nodeV; has its own physical clockmer;. A physical clock

is typically subject to drifts and jitter w.r.t. the ideal physical time

t. Operation of a synchronization cascade requires that deviations
of all the nodes’ clocks from ideal time are bounded by a constant.

DEFINITION 5  (s-BOUNDED CLOCK DRIFT).
For a given cascade, let each nofig be associated with a physical
clocktimer;. The cascade is said to have aitbounded clock drift
iff, for all intervals wheretimer; is not reset,

VN, € N dtimer;

—1'§€

In combination with our definition afmer_task, the bounded clock
drift assumption guarantees that the physical base period of each
node is bounded by'/(1 + ), T'/(1 — ¢)], and the message ab-
sence detection period is bounded[BY.. /(1 + ¢€), Tima /(1 — €)].

Message jitter

We define for each link;, u; in the cascade a majy;; mapping di-

rect links, i. e. links between adjacent nodes, to their corresponding
worst casemessage jittersassuming that some adequate method
for analysis is availabfe The minimum and maximum message
latencies for direct or indirect link&N;, V;) will be denoted as
dimin (3,1"), dmas (7, 1'), respectively, such that

dmaz (Z7 Z/) - d'rrzz"rL(i7 Z/) - Zs]eLi(N) Ali(sj) (1)

holds for all(N, N').

The message jitter summarizes the end-to-end jitter from the in-
stant the send/receive phase at the parent is activated until the child
node’s activation time. The worst-case jitter will typically include
(1) execution time jitter of the sender’s send/receive code, (2) queu-
ing jitter at the sender, (3) communication jitter of the medium, (4)

periodically activated by the synchronizing message. In siae
SAGE_ABSENT, the node has detected a (possibly transient) ab-
sence of the synchronizing message. The sendireceive phase i§e
activated by the node’s own periodic timer in this state. We will
show in Sectiori 314 that, while in stat¢ESSAGE_ABSENT, the
node is able to re-synchronize itself with its parent node. In state
SELF_TRIGGERED, the node is periodically activated by its own
timer, and there are no guarantees about the node’s ability to re-
synchronize itself with its parent node, if existent. The parameter
T is called themessage absence detection margihdenotes

the time interval after which, if no synchronizing message has been
detected, a node in staBXTERNALLY_TRIGGERED changes to
MESSAGE_ABSENT. Parameten,; is the parent fault detection
count It denotes the maximum number of periods the node will DEFINITION 6 (BOUNDED SYNC. MESSAGE JITTER.

remain in statt’MESSAGE_ABSENT if no synchronizing message  Let Li(N) denote the set of all synchronizing links that form a
is detected. If this number exceeds;, the node will change to  path from the master to the nodé. The network is said to have a
stateSELF_TRIGGERED. Sender fault detection therefore initiates  bounded synchronizing message jititér

a fallback behavior in case either the parent node or the commu-

nication medium fails for a longer period of time. Note thatre- N ¢ /\/‘ZS‘GMW) Ayi(s;) < min <ﬂ7 M)
synchronization with the parent after the node has entered state ’ 2 2
SELF_TRIGGERED is not in the scope of this paper.

response time jitter of the receiver’s task.
Because the message jitter includes the queuing jitter at the
nder, the bound may be invalid if the communication medium
is not accepting messages (e. g. due to unforeseen overload condi-
tions or external disturbances). We therefore assume the existence
of a simplecommunication layethat enforces the predetermined
queuing interval by retracting the message when the precomputed
worst-case queuing time is overrun. Note that this typically re-
quires the layer to have some access to lower-layer operations of
the controllefl

For correct operation of the cascade, the end-to-end jitter from
the master to any node must be bounded:

32 Envi t ti This bound should be satisfiable for a large number of practical ap-
' nvironment assumptions plications. For instance, in an automotive case study described in

We will now state some assumptions about the physical environ- 2For the CAN protocol, the analysis described ih [9] yields both

ment of the cascade. The assgmptlons .W'” be necessary in order t ounds for worst-case response times and message jitters on the
show that the cascade meets its operational requirements. Some of ;5

the assumptions will be required independent of the network state, 3|, the case of the CAN protocol, the two most popular controller
while others are prerequisites for normal operation of the network, |Cs (Intel 82527 and Philips 82C200) allow to retract messages
and may be violated under fault conditions. after they have been put in the send buffer
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[9], for the case of a 1MBit/s CAN bus, most high-priority mes- 3.4 Analysis of Operational Modes

sages have a jitter of aroun@ s, so fore = 107°, 7' = 10~%s, This section will provide an analysis of the different operational
and@ = T'/20, cascades up to depth 4 (four synchronizing links - modes of the cascade: operation undermal conditions opera-
between master and the “farthest” node) are possible. tion undertransient fault conditionsand operation undeserma-

nent fault conditions For normal operation, we will show that

Message loss T )
T _ ) all non-masters remain in SteaXTERNALLY_TRIGGERED, while
The synchronization mechanism has to meet certain fault toleranceunder transient fault conditions, it will be shown that non-masters

requirements. A typical fault in event-triggered real-time systems never enter stateELF TRIGGERED.
is the loss of a message: the loss can be caused by the sender when The following two definitions deal with the property synchro-
aborting a send operation (e. g. if the queuing delay is longer than nization— the offset of the node’s activation instant w.r.t. the mas-
expected, and a newer value is available), or by the communicationter's activation instant is bounded — aretteptiveness an assertion
medium itself. Seen more abstractly, we can associate messagebout the principal ability of a node to receive the synchronizing
loss with theinput/output behavior of a linkn the cascade. The  message for the current step during its receptive interval. Note that
following definition will capture this: for forwarding a synchronizing message over the entire length of
DEFINITION 7 (|/O FUNCTION OF A(DlRECT) LlNK). Fora an indirect Iink,aII nodes along the link have to be receptive.
given execution of a cascade, @ function of a linki € SU U,
written f;, is defined as the function mapping the sequence of mes-
sages written by the sender’s program to the sequence of message
arriving at the receiver node, where the special output symbol

DEFINITION 10  (j-SYNCHRONIZATION). ForanodeN; and
stepj € Ny, the statementV; is j-synchronized” corresponds
o the property

indicates a lost message. dmin(0,7) < 55 — to,; < dmax(0,1) 4)
DEFINITION 8 (I/O FUNCTION OF AN INDIRECT LINK). For Nodes in\ are assumed to b@-synchronized (proper initializa-

a given execution of the cascade, ti@ function of an indirect link tion of the cascade). Furthermore, we define that the master node

=1l —ly— - —ln, Wherel; € SUU andl; andl,, are the Ny is j-synchronized for alfj € Ny. Again, j-synchronization is

first and last links in the direction of message flow, respectively, is extended to sets of nodes and indices.
defined as the composition of the individual links’ 1/0 functions:

fi=fino--0ofi,ofy DEFINITION 11  (j-RECEPTIVENES$. For a nodeN; and a
stepj € N, the statementlV; is j-receptive” corresponds to the

Using these definition, bbssylink models both message loss due A
three properties

to the sender’s communication layer aborting the send, and due to
the medium losing messages. In order to definoendednessage to + dmin(0,i) > ti;14+Q,  (5)
losses, we will use the definition efbounded lossy channels from

SectionP to capture the condition that a cascade may suffer froma  (j — 1)—synchronized(&;) =

bounded _nl_me_erof message losses on each of its direct and indirect tos + dmas(0,) < tij1+
synchronizing links.

DEFINITION 9 (n-BOUNDED LOSSYCASCADE). A cascade
with masterNy is ann-bounded lossy cascadfé for all execu- )
tions of the cascade, for all direct and indirect synchronizing links toj + dmas (0,4) < tij-1+ 11e @)
from Ny to nodesN e N, the link’s input/output function is an
n-bounded lossy channel.

Tma
1+¢’

(6)

—(j — 1)—synchronized(N;) =

whereT,,./(1 + ¢€) is the minimum message absence detection
i period defined in Section_B.2. The master nddeis defined to
3.3 Choice of Parameters be j-receptive for allj € N. j-receptiveness is extended to sets

This section gives some predefined values for the parametersOf nodesV” € A" and to sets of indiced C N such thatV” is
Toma andn,, used by the send/receive phase activation algorithm. J-réceptive iff all of its membg/rs are, any; is .J-receptive iffN;
Toma is chosen such that loss of the synchronizing messages causds J'-receptive for all members” € J.
the receiver’s activations to be delayedBy2 w.r.t. the master’s
activation instants, while,, results from an analysis of the maxi-

mum number of lost messages that can be tolerated by the synchro- DE'_:'N'T'.ON 12 (NORMAL OPERATING COND.'.T'O.NQ.' .A cas-
nization algorithm: cade is said to be undarormal operating conditionsf it is 1-

bounded lossy, and thebounded clock drift assumption holds.

Tow = OT, @
1 A (s LEMMA 1. Let N; be a non-master node in a cascade. Thien
Ppp = A\ 2Te <T - (2 ZSJ €Li(N) 1) receptiveness aW¥; and arrival of a synchronizing message in step

4 at N; imply j-synchronization ofV;.

+max(2Q,79)) ) | ). ®) N N

PrRooF By Definition[T1, it follows fromj-receptiveness av;
where the computed value far,; is required to be positive. For  that, if a synchronization message originating fro arrives at
€ < 1, Q « T, the choice forT,,, can be shown to be very N, for stepj, it is received during the receptive interval of;,
close to an optimally robust assignment, so that a maximal numberleading to an activation aW¥; att; ;. According to our assumption
of lost synchronizing messages can be tolerated in the presence ofibout the communication medium, the differengg— ¢o,; is then
clock drifts. We will demonstrate in the next section that, for our bounded bydmix (0, 2), dmax (0, 7)], SOj-synchronization holds for
assignment fofl},,, the cascade indeed satisfies this robustness N;. [
requirement for am,,;-bounded number of lost messages.
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LEMMA 2. Let N be a non-master node in a cascade un-
der normal operating conditions. Thenrreceptiveness aV and
Par(N) imply j-synchronization ofV.

PrROOF Straightforward adaptation of Lemnfa 1: Normal op-
erating conditions ensure that the direct or indirect synchronizing
link to N is 1-bounded lossy, so synchronizing messages fkam
are never lost. Becaud¥, will send a message in every stgp
and bothN and N’s parent nodes argreceptive, a synchronizing
message will be received By in its receptive interval for alj. [

LEMMA 3. Let N be some non-master node in a cascade under
normal operating conditions. Thegpy — 1)-synchronization ofv
impliesj-receptiveness a¥.

A detailed proof is given in the appendix. Intuitively, it suf-
fices to show that, givep-receptiveness oPar(N) andj — 1-
synchronization ofV, messages will always arrive after the quiet
interval has elapsed &{, and beforeimer of N reachesl,,. It

is sufficient to examine two corner cases, where 3 clock is
“fast”, N’s clock is “slow”, the synchronizing messagejat 1 has
maximum latency, and the synchronizing messagg les mini-
mum latency, and (2)Vo's clock is “slow”, N’s clock is “fast”,
the synchronizing messagejat- 1 has minimum latency, and the
synchronizing message ahas maximum latency.

LEMMA 4. Under normal operating conditions, all nodesAh
are j-receptive and-synchronized for alj.

ProoF Double induction over the index set fgrand over the
nodes on the path fron¥, to given nodeN € N, using Lemmas
@ andB. [

THEOREM 1. Under normal operating conditions, a non-master
nodeN will always remain in statEXTERNALLY_TRIGGERED.

PROOF We observe thalV is initialized to stateEXTERNAL-
LY_TRIGGERED. Because of Lemm@ 4Y is j-receptive for allj,
we conclude from Definitiofi 11 that the precondition for leaving
stateEXTERNALLY_TRIGGERED, timer; = Ti,4, Will never hold.
Therefore, the only reachable state fgris EXTERNALLY_TRIG-
GERED. [

In case of temporary message losses, the network is operating’sf; - - -

undertransient fault conditionts nodes affected by loss of their
synchronizing message may transition temporarily to Svs-
SAGE_ABSENT. We can show, however, that a given node will al-
ways re-synchronize itself with the master, andnt never reaches
npr. AS a consequence, the node will never enter Sate_TRIG-
GERED.

DEFINITION 13 (TRANSIENT FAULT CONDITIONS).
A cascade is said to operate undeansient fault condition#f
it is n,r-bounded lossy, and thebounded clock drift assumption
holds.

LEMMA 5. Let N be some non-master node in a cascade under
transient fault conditions. Then if there existsanl < n < nyy,
such thatV is (j — n)-synchronized, theiV is j-receptive.

Again, the details of the proof can be found in the appendix. It
demonstrates that, for amy such thatl < n’ < n,y, if a nodeN
has performeadh’ — 1 unsynchronized cycles, synchronizing mes-

timer of N reached". Similarly to Lemmd]3, the two corner cases
are: (1)Ng's clock “fast”, N'’s clock “slow”, synchronizing mes-
sage atj — n with maximum latency, synchronizing message at
4 with minimum latency, and (2)Vo's clock “slow”, N’s clock
“fast”, synchronizing message At- 1 with minimum latency, syn-
chronizing message atwith maximum latency.

LEMMA 6. Let N be some non-master node in a cascade under
transient fault conditions. Then for a given step> n,y, letJ =
{j —nps,...,7— 1} be a set of successive step indicesVIand
Par(V) are J-receptive, then there is at least ofié € .J such that
N is j"-synchronized.

PrROOF Transient fault conditions imply that the synchronizing
link from Ny parent toN is n,¢-bounded lossy. According to our
definition for the node’s behaviofy, will send a synchronization
message in every step. Then from Definitfon 9, it is clear ffiat
receives a synchronizing message for at leastiéne J, and so
Lemma[p is a direct adaptation of Lemiia 1.1

LEMMA 7. Under transient fault conditions, all nodesM are
j-receptive for all;.

PROOF The proof is again by double induction oyerin the in-
dex set, and over the nodes on the paths fiésto nodesV € N.
(1 — base caséyjj.j-receptivé No):

By Definition[I1.

(2 — induction step)(Vj.j-receptivéParN)))
receptivé N))):

Split into cases (2a) and (2b) for the inner induction.

= (Vij-

(2a — base case)

Vi < nyr.j-receptivg N):

By Definition[ID, NV is 0-synchronized. So there existsiar n,r
such thatN is (j — n)-synchronized and, By Lemnfa B is j-
receptive.

(2b — induction step)
Vi >mnpr. ({J — nps,... ,J — 1}-receptivéPar(N))
A {j—npr,...,J— 1}-receptivé N))
= j-receptivg N) :

BecauseN and PafN) are j'-receptive for allj’ € {j —
,7—1}, we know by Lemm@6 that there existsiar< n,
such thatV is (j — n)-synchronized. But this is just the precondi-
tion for Lemma[p, saV is j-receptive. []

THEOREM 2. Under transient fault conditions, a non-master
node will never enter stateELF_TRIGGERED.

PrROOF By Lemma[, the non-master node will be always re-
ceptive when receiving a synchronizing message. Therefore, each
arriving synchronizing message is received. Transient fault condi-
tions guarantee that the medium loses at mgst— 1 subsequent
messages. Consequentiyunt never reaches,, so the precondi-
tion count > n,; for transitioning to statSELF_TRIGGERED will
never hold. U

We denote apermanent fault conditionall other operating condi-
tions, such as nons;-bounded lossy cascades, violation of the
bounded clock drift assumption, or complete failure of nodes. Be-
havior of the cascade under such conditions will not be discussed

sages will arrive after the quiet interval has elapsed, and before in the scope of this paper.
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4, PROPERTIES message must reach the receiver, (3) the cascade receiver must be

This section defines some essential requirements that a synchrof€ceptive, (4) a message computed at gtep the sender is pro-
nization cascade has to satisfy for distribution of synchronous pro- cessed at step + 1 at the receiver. (1) and (2) are guaranteed
grams in medium-criticality applications, and demonstrates the cor- by the 1-bounded message loss assumption. (3) and (4) are direct
responding formal properties. consequences of Lemrfia 4.

4.1 ReqlJ|rements PropPosITION 3. Under normal operating conditions or tran-

. sient fault conditions, the input/output behavior of a synchronizing
p-reactivity link is a 1-length-preserving channel.
Distributed real-time control applications typically contaieri-
odic, reactiveparts which continually compute output values from
a given input. Because inputs may originate from other nodes, it
is highly desirable to provide an architecture that allows reactive
programs to safely synchronize their local processing with commu-
nication on the medium, eliminating the needs for special “watch-
dogs” or similar mechanisms. We will define a property calfed
reactivity which captures the fact that a node performs communi-
cation actions with a certain minimal frequency. Local processing
can therefore be triggered by the communicatin handler

In the case of normal operating conditions, thiength-preserving
property results from Propositigh 2. For transient fault conditions,
the fact that the synchronizing link itself islength-preserving fol-
lows from Lemmdl6: letV, N’ be the sender and receiver of the
synchronizing message, respectively. For a given gtelpere are
two possibilities: (1) if the synchronizing message is not lostin step
7, thenN and N’ will both be j-synchronized. They will therefore
agree on the step number, aivd will process in steg the result

of N's computation at step — 1, so the channel’'s behavior may

DEFINITION 14 (P-REACTIVITY). A nodeN; is called P- be characterized as a unit delay for sfe§2) if the synchronizing
reactive for some® € R, iff, for all possible executions aF; message is lost in stgpthenN’ will detect aL symbol each time
and for all instantst, there is at least one activation instant for a v €mits a synchronizing message. In both cases, the input/output
send/receive phase in the time inter{tak + P). behavior of the link constituteslalength-preserving channel.

Unit delay and length preserving channels

Semantically correct deployment of a synchronous specification | the discrete-time abstraction of the synchronous programs,

warrants that the communication channels provided by the com- synchronizing messages correspond to messagesiefiminis-
munication layer are valid implementations of the corresponding ¢ timing: if the sender component has computed the synchroniz-
abstract channels in the specification. As will be indicated in Sec- ing message at step the synchronizing message will always be

tion @3, we will use ur)it delay channe.ls. as our model for an ab- processed by the receiver component at sted in normal opera-
stract channel. Breaking down the original requirements for the i, This is why abstracting the link as a (deterministic) unit delay

cascade from Sectiofj 1 _to the implgmenation o'f channel_s, the channel in the synchronous program, as shown in the Sectipn 4.2,
cascade should (1) provide a valid implementation of unit de- is justified for synchronizing links.

lay channels under normal operating conditions, and (2) provide  £4 honsynchronizing links, the deterministic delay channel ab-
some limited service, including synchronization, under transient straction may not always be valid. A nonsynchronizing message
fault conditions. The synchronization service can be abstracted computed in steg by a sender node may reach a receiver node at
as a lossy channel with thielength-preserving property. Length- stepsj, j + 1, ..., depending on the timing of activations of the
preservation then captures the fact that sender and receiver nevef, o nodes. and the timing of messages on the synchronizing link.
get “out of sync”. _ _ _ . Fortunately, best/worst-case analysis, such ag in [9], can be used in
In the following, we will show that the cascade indeed satisfies theory to ensure thabmenonsynchronizing messages have deter-
the stated requirements. ministic timing. For other messages, it may be necessary to either

4.2 Properties of Synchronization Cascades add some flow control mechanism to the communication layer, or
) to account for the nondeterminism in the discrete-time abstraction.

4.3 Nonsynchronizing messages

PropPosITION 1. Under normal operating conditions or tran- .
sient fault conditions, all nodes atd’,.. /(1 — ¢))-reactive. 4.4 Mapping Synchronous Programs to Cas-
cades

Consider the simple network in Hg.4(a): The network includes
component§ A, B, C, D}, and unit delay channefse in between
componentsA sends messages through sightd components,
and through signat to componentC'. B sends messages to D

By definition oftimer_task in Fig. 3, IV; is activated at least every
T time units (measured by its physical clock) in all of the three
possible stateEXTERNALLY_TRIGGERED, MESSAGE_ABSENT,
SELF_TRIGGERED. Because the bounded clock drift assumption
holds under normal and transient fault conditions, the worst case of (signald,), C sends messages through sigiiato componentD,

a"slow” physical clock isitimer; /d¢ = 1—c. Inphysicaltime, the 34 15 4 ‘through signak. The dataflow network is mapped to

greatest interval in between activations is therefByg /(1 — €). the cascade of Figj 1 with the mappifig, 7o), (B, n1), (C,ms),

O (D, ns)} Fig. @(B) shows a depiction of the resulting cascade. The
PROPOSITION 2. Under normal operating conditions, the in- resulting distribution is correct for normal operation if the two non-

put/output behavior of a synchronizing link is a unit delay channel. Synchronizing channels:, > have deterministic unit-delay be-
havior. Note that the synchronization messages carry values that

the distributed program needs to communicate. If, for a given sys-
For an intuitive treatment, there are four parts constituting the unit tem step, no such value needs to be communicated, an empty mes-
delay channel property: (1) every message sent by the sender mussage with no relevant data must be used as a synchronizing mes-
be accepted by the communication medium, (2) once accepted, thesage.

199



(a) Dataflow network

(b) Deployed
dataflow network

Figure 4: Mapping a dataflow network to a cascade

5. CONCLUSION

Our method of distribution relies on the existence of delays at
the partitioning boundaries in the specification. Clearly, intro-
duction of such delays is somewhat implementation-driven: an
“ideal” platform with infinite resources would not require delays
in the model, except for breaking causal loops. Bottom-up in-
troduction of delays will in most cases necessitate a re-validation
of the entire design, and is in conflict with the idea of having
implementation-independent synchronous specifications. We pro-
pose in [1] a methodology which enforces introduction of delays

val in the range ofA(1 — 1/|A]), with || the number of nodes,
while cascades are merely synchronized in the rangé/af with

T as the base period. However, we claim that our design of a syn-
chronization cascade is more specifically suited to the requirements
outlined in Sectiorf]1: For instance, Welch and Lynch’s algorithm
requireg\'|? synchronization messages for each roundAg.— 1
messages for a cascade. Welch and Lynch’s algorithm uses explicit
synchronization rounds, where the synchronization messages could
potentially block other real-time traffic on the medium. Cascades,
on the other hand, provide synchronization using the regular real-
time traffic of the distributed program. We also claim thatTfye
precision may be sufficient in cases where synchronization is im-
portant for correct, timely implementation of the distributed pro-
gram’s semantics, but a precise absolute global time base is not
necessary.

Our next goals will be an experimental evaluation of the method
along with some tool supporf][7], and the definition of a fault-
modular variant of the cascade, where subtrees within the cascade
can safely retain their relative synchronization in the case of master
faults.
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APPENDIX
Upper and Lower Bounds

We will use the following properties for working with upper and
lower bounds: LefS be a set, leF’, G : S — R be functions from
S to the reals such that upper and lower bounds existFa®,
and letminses(F(s)) andmaxscs(F(s)) be the lower and up-
per bounds off" on S, respectively. Furthermore, I€t be some
constant. Then the following properties hold:

Téagc(C) = C (8)

grleig(C) = C 9)

max(F(s) +G(s)) < max(F(s)) +max(G(s)) (10)

min(F(s) + G(s) > min(F(s)) +min(G(s)) (11)

max(~F(s) = - min(F(s) (12)

min(-F(s)) = —max(F(s)) (13)

r?eaSX(F(s)) < lzlelg(G(s)) = Vs € S.F(s) < G(s) (14)

I?EaSX(F(s < Isnelgl(G(S)) = Vs € S.F(s) <G(s) 15)
Proof of Lemmé]3

For j-receptiveness aiV, Equationd]5 (case (1)) amtl 6 (case (2))
must hold.
(1) We can rewrite Equatidi 5 as

Q + (tij—1 —to,j—1) < dmin(0,%) + (to,; — to,j—1)-

This condition is quantified over all possible executions of the cas-
cade under normal operating conditions: we indicate the set of such

executions withNOC. Using Equationg]§=15, we eliminate the
quantification and use lower/upper bounds instead:

tiii1—toi—1) < dmin(0,4 in (to; —toj_1).
Q+(glgg)( -1 —toj-1) < (7Z)+Urglolg)( 0, — to,j—1)

From Sectior{ 3]2, it follows thaf’/(1 + ¢) is a lower bound for
to,; — to,j—1. BecauseN is (j — 1)-synchronized by assump-

tion, the bounded message jitter property from Sedfion 3.2 yields

max(yoc)(tij—1 — to,j—1) = dmax(0,%). Substituting and using
Equation]L, the following must hold:

T

Q+ ZSjGLi(Ni) Au(sj) < Tz

Using the(T'— Q) /2 bound for the message jitter from Definitign 6,
we have to show

T-—Q T
Q+ 5 <7 s
Solving for Q yields the conditior)(< ¢ < 1)

1—-¢
1+¢)’
which holds forQ < T - (1 — 2¢),0 < ¢ < 1. This proves case 1.

(2) By assumption, it is true that; — 1)-synchronizedN).
Rewriting Equatiorf]é and using upper/lower bounds yields:

—Tma + min
14+e (NOC)

Q<T(

(tij—1 —toj-1) >(glgé<)(to,j —t0,j—1)+dmax(0,17)
With T'/(1 — €) as an upper bound f@p ; — t0,;—1, dmin (0, %) as
a lower bound foft; j_1 — to,;—1), and Equatiofi]1, we obtain:

T‘"l(L > T
1+¢ 1—¢

+ szeLi(Ni) Aui(s;).
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Substituting our choice fof3,, from equatio]2 and solving for
25 eri(n,) Aulsi) with 0 < & < 1yields:

T(1 - 5¢)
2(1 —¢e2)’

For0 < e < 1, this inequation follows from Definitiof] 6. This
proves case 2. O

Proof of Lemma]5

By assumption, there exists anc {1,...,n,s} such thatV is
(7 — n)-synchronized. Lek’ be the smallest such. Then for
j-receptiveness aV, Equationg]5 (case (1)) afd 6 (case (2)) must
hold.

(1) We distinguish cases (1ajN(is (j — 1)-synchronized) and
(1b) (N is (j — n')-synchronized, andl < n’ < n,y).

(1a) See case (1) of the proof for Lemfja 3.

(1b) We can rewrite Equatidh 5 as

Q + (tij—1 — to,j—1) < dmin(0,%) + (to,; — to,j—1)-

The equation is implicitly quantified over the set of executions un-
der transient fault conditions'F'C'. Quantification is removed by
taking upper/lower bounds:

ZSjGLi(Ni) Aui(sy) <

tij—1 —to,j— dmin (0,17 in (to,; —to,j—1)-
@+ max (tij—1 — lo.j-1) < dmin(0,7) + min (fo,; —to,1)
(16)
For obtaining an upper bound foy; 1 — to,;—1, we split the term
ti,j—1 — to,;—1 using the identity
(tij—nr — toj—n)
+(tij—1 — tij—n)

—(to,j—1 — to,j—n’)-

tij—1 —to,j-1

Taking the maximum over executiorisF'C, and using Equations
B-L3, we obtain

(r;lgg)(ti,j—l —toj-1) < (f;lgg)(ti,jfn' = to,j—n)
+ (HTlgé()(tz‘,j—l —tijnr)
- (I%lgg)(to,j—l —to,j—n’),

which can be resolved as follows:

® MAaX(TrC) (ti,j—n’ — tO,jfn/):
We observe that, by assumption of Lemfpa 5 and using the
right-hand side condition of Equatigh &,,_,.» — to,j—n’ <
dmax(0,1). Thereforedax (0, ) is a valid upper bound.

o max(rpey(tij—1 —tij—n'):
According to the operational definition &f, N will first de-
tect a message absence (yieldifig./(1 — <) as an upper
bound for the duration of cyclg — »n’) and then perform
n' — 2 unsynchronized steps (yielding an upper bound of
(n' —2)-T/(1 — ¢) for the remaining cycles). The total
upper bound i€,0 /(1 —€) + (n —2) - T/(1 — ¢).

° min(TFC)(to,]‘_1 — tO,jfn’):
The lower bound for the duration af — 1 cycles of the master
is(n'—1)-T/(1+¢).

We substitute the upper bound g, —1 —to,;—1 into Equatior[ 16,

and usél’/(1+¢) as alower bound faf ; —to,;—1 and Equatiofi]1
for dimax — dmin. Then the following property remains to be shown:

Tma
1—¢

+(n—2)i

-z Q+ Zs]‘ELi(Ni) Ai(s;) <n'

1+e’



Solving forn’ results in the condition( < ¢ < 1,7 > 0):

n' < 1 (T(l +e)— (2Q+QZSjELi(Ni) AM(S],)> 1- 52)) .

4Te
For0 < ¢ < 1, this holds if
1
! . .
W< g (T (20425 ey Bus))) .

This follows fromn’ < n,; and Equatiofi|3, so we're done for case
1.

(2) We distinguish cases (2ajN(is (j — 1)-synchronized) and
(2b) (N is (j — n’)-synchronized and < n’ < n,y).

(2a) See case (2) of the proof for Lemia 3.

(2b) For this case, it is true that(j — 1)-synchronizedN).
Rewriting Equatiorf]7 and using upper/lower bounds yields:

T . .
1Tre +(I%1]‘1101)(ti,j71 —toj-1) >(UTOFaé()(t0,j — t0,j—1) +dmax(0,%).
17)

A lower bound fort; ;1 —to,;—1 is again found by splitting up the
term and using Equationk B313:
o min rpey(ti j—n — to,j—n’):
By assumption of Lemm@ 5 and using the left-hand side con-
dition of Equation[},t; j—n/ — to,j—n/ > dmin(0,), SO
dmin (0, 1) is a valid lower bound.
o min ppey (tij—1 — tij—n):
N willfirst detect a message absence (lower bafing/ (1+
¢)) and then perforrn’ — 2 unsynchronized steps (lower
bound(n’ — 2) - T/(1 + ¢) for the remaining cycles). The
total lower bound i.0 /(1 +¢) + (n — 2) - T/(1 + ¢).
® Max(rrC) (t()’j_l — tO,jfn/):
The upper bound for the durationwef—1 cycles of the master
is(n’ —1)-T/(1—e¢).
With T'/(1 — €) as an upper bound fa@p ; — to,;—1 and Equation
[, substituting the above bounds into Equafion 17 yields:

Tma T
1+¢ 1+e¢

Solving forn’ yields 0 < e < 1,7 > 0):

T
+(n/—1) >n/1—_E+ZSjELi(Ni) Ali(sj).

1
n' < ITe (T(l —€) =22 eniny Bulsi)(1 - 52)) .

For0 < e < 1, this constraint is satisfied if

1
n < — (T(l —g) — 223j€Li(Ni) Ah(sj)> .

4Te
Again, forn’ < n,y, this follows from Equatiofi]3. This concludes
the proof for case 2. |

202



	Introduction
	Dataflow Synchronous\ Specifications
	Synchronization Cascades
	Terminology
	Environment assumptions
	Choice of Parameters
	Analysis of Operational Modes

	Properties
	Requirements
	Properties of Synchronization Cascades
	Nonsynchronizing messages
	Mapping Synchronous Programs to Cascades

	Conclusion
	REFERENCES -9pt 

