
Making Mechatronic Agents Resource-aware in order
to Enable Safe Dynamic Resource Allocation ∗

Sven Burmester†, Matthias Gehrke, and
Holger Giese

Software Engineering Group
University of Paderborn

Warburger Str. 100
D-33098 Paderborn, Germany

[burmi|mgehrke|hg]@upb.de

Simon Oberthür
Heinz Nixdorf Institute

University of Paderborn
Fürstenallee 11

D-33102 Paderborn, Germany

oberthuer@upb.de

ABSTRACT
Mechatronic systems are embedded software systems with hard
real-time requirements. Predictability is of paramount importance
for these systems. Thus, their design has to take the worst-case
into account and the maximal required resources are usually al-
located upfront by each process. This is safe, but usually results
in a rather poor resource utilization. If in contrast resource-aware
agents, which are able to allocate and free resources in a control-
lable safe manner, instead of thumb processes are present, then a
resource manager will coordinate their safe dynamic resource al-
location at run time. But given such a resource manager, how can
we transform thumb processes into smart resource-aware agents?
Starting with mechatronic components that describe their reconfig-
uration by means of statecharts, we present how to automatically
synthesize the additional information and code, which enables a
process to become a resource-aware agent.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques—
Modules and interfaces, State diagrams; I.2.8 [Control Methods]:
[Control theory]; C.3 [Special-Purpose And Application-Based
Systems]: Real-time and embedded systems; D.4.2 [Operating
Systems]: Allocation/deallocation strategies

General Terms
Algorithms, Design, Management

†Supported by the International Graduate School of Dynamic In-
telligent Systems. University of Paderborn
∗This work was developed in the course of the Special Research
Initiative 614 - Self-optimizing Concepts and Structures in Me-
chanical Engineering - University of Paderborn, and was published
on its behalf and funded by the Deutsche Forschungsgemeinschaft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04,September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

Keywords
Real-time systems, dynamic resource allocation, resource aware-
ness

1. INTRODUCTION
Mechatronic systems [2] are technical systems, combining tech-
nologies applied in mechanical and electrical engineering as well
as in computer science. Their behavior is actively controlled with
the help of computer technology. As failures of these technical
systems usually have severe consequences, safety and predictabil-
ity is of paramount importance. Therefore, mechatronic systems
have to be designed taking the worst-case resource requirements
into account.

The standard approach to achieve safe and predictable behavior
for multiple processes on a real-time operating system is to allo-
cate the maximal required resources upfront. While this approach
ensures that the real-time operating system guarantees the timely
execution of the process, this resource allocation scheme usually
results in a rather poor resource utilization.

We exploit the fact that the different processes in a system usu-
ally do not require their maximal resources all the time. In astatic
scenario additional information about the resource requirements of
processes are exploited to synthesize static schedules. The addi-
tional information might, for example, include time-dependent re-
source requirements in form of timed automata (cf. [11]) or a de-
scription how a scheduler influences the switching between alter-
native resource states (cf. [5]).

We even go one step further and consider adynamicscenario,
where resource-aware agents guarantee a predictable resource allo-
cation behavior. Then a resource manager coordinates at run time
the assignment of the available resources such that the resource
utilization is optimized. Following this idea, approaches for soft
real-time systems [3], global scheduling, and load balancing for
CORBA systems [9, 10], and the adaptive resource management
(ARM) middleware [7] for hard real-time systems have been pro-
posed. In this paper we use the Flexible Resource Management
(FRM) framework [1] which is part of the the real-time operat-
ing system libraryDistributedReal-timeExtensibleApplication
ManagementSystem (DREAMS) [6].

As outlined, appropriate proposals for resource managers, which
handle resource-aware agents, exist, but the development of the
also required resource-aware agents results in additional costs that
most developers today would refuse to pay. Therefore, we present
in this paper an approach that permits toautomatically synthesize

175

the profiles and possible profile transitions from hybrid statecharts
describing the behavior of self-optimizing mechatronic agents.

We first present an application example and its normal design
without dynamic resource allocation extensions in Section 2. Then
the employed profile framework is sketched in Section 3. In Section
4, the design from Section 2 is extended towards dynamic resource
allocation and our synthesis algorithm to automatically derive pro-
files from the design model is presented. Section 5 then describes
the required extensions of the design process for resource-aware
mechatronic agents and Section 6 draws a conclusion.

2. APPLICATION EXAMPLE
Our application example is taken from the RailCab project.1 In
this project a modular rail system is developed, consisting of au-
tonomous shuttles, which apply the linear drive technology used in
the Transrapid2 but use existing rail tracks.

A B C

prop.- valves

A / D

controller

D / A

sensors

hydr. pump

coach body

hydr. actuators

air springs

to the
actuators

z

y

a

Figure 1: Scheme of the suspension/tilt module

In this paper we focus on the shuttle’s active suspension system.
The suspension/tilt module, depicted in Figure 1, is based on three
vertical hydraulic cylinders, which control the coach body to pro-
vide the passengers a high comfort and to guarantee safety and sta-
bility when controlling the shuttle’s coach body. In order to achieve
this goal multiple feedback controllers are applicable with different
capabilities in matters of safety and comfort.

2.1 Modeling
The design process of mechatronic systems today is based on high-
level design tools like MATLAB/SIMULINK3 or CAMeL-VIEW4

that support the modeling, analysis, and synthesis of the feedback
controllers. In our controlling componentbody control (BC) we ap-
ply three feedback controllers (see Figure 2)reference, absolute,
androbust, providing different levels of comfort and requiring dif-
ferent inputs.

The most sophisticated controllerreference uses a given trajec-
tory zref = f(x) that describes the ideal motion of the coach body

1www-nbp.upb.de/en
2www.transrapid.de/en
3www.mathworks.com/products/familyoverview.html
4ixtronics.de/English/CAMeLView.htm

and the absolute acceleration̈zabs of the coach body. Thezref

trajectory is given for each single track section and is communi-
cated by a track section’s registry to the shuttle. In case the ref-
erence trajectory is not available, the less comfortable controller
absolute, which requires only thëzabs signal has to be used. In
case the sensor that provides thez̈abs signal fails, therobust con-
troller which provides the fewest comfort, but guarantees stability
even when only standard inputs are available, has to be applied.

z
..
z

Z ref.

abs.

X
Z, A, ref.

X
Z, B, ref.

X
Z, C, ref.

normal

“reference”

“absolute”

failure

“robust”

body control

common
inputs

t0 tend

1

0

f (t)fade

1-f (t)fade

blending curves

Figure 2: Fading between different control modes

For switching between two controllers one must distinguish be-
tween two different cases:atomic switchingandcross fading.5 If
the operating points of the controllers are not identical, then it will
be necessary to cross-fade between the two controllers. This is
specified by a fading functionfswitch(t) and the fading-duration.
This handling is required when switching between thereference
and theabsolute controller.

When the target controller is designed to guarantee stability even
in case of atomic switching (e.g. therobust controller can do this),
the change can take place between two computation steps. Then it
just has to initialize its internal state vector on the basis of the old
controller’s state.

Implementing a cross-fading requires both, the original and the
resulting controller, to operate in parallel and to cross-fade their
output using an additional fading block. Therefore, usually the re-
sources for both controllers and the fading block are required. For
atomic switching only the resources for the target controller and
both state vectors are required.

Monitor
Role

:Sensor

:Registry

Registry
Role

:Monitor

storage : Storage

:BC

Registration
Pattern

Monitor−

Figure 3: Structure of the overall system

To describe the structure of the system and the discrete parts of

5The structure and type of cross-fading depends on the controller
types and could lead to complex structures. In our example we use
only output fading.

176

its behavior, we use our UML CASE tool Fujaba.6 This CASE tool
provides an interface to the CAE tool CAMeL. The integration of
the two tools leads to our hybrid extensions of UML component
diagrams and UML statecharts [8, 4].

Figure 3 depicts the structure of the overall system, consisting
of the registry and the agent’smonitor component, which embeds a
sensor, a storage, and theBody Control (BC). Thesensor delivers
the z̈abs signal, in thestorage the reference curve is stored and the
BC component is responsible for the chassis control.

The monitor’s task is to coordinate theBC component dependent
on the available signals from the sensor and storage. The behav-
ior of the monitor is specified by the statechart from Figure 4. Its
upper orthogonal state consists of 4 states, representing which of
the 2 signals are available or not. The lower orthogonal state de-
scribes the communication with the registry. Thick transitions are
time consuming and are associated with a minimal and a maximal
duration intervald.

In order to coordinate the monitor and the body control, we em-
bed configurations of the subordinated components into the stat-
echart that describes the monitor’s behavior. There each discrete
state of the monitor is associated with a configuration of the embed-
ded components, that specifies which components and connections
are required and in which discrete state the embedded components
have to reside. Therefore, a transition from stateAllAvailable to
AbsAvailable implies a state change ofBC from modeReference to
Absolute. The design and our concept for hybrid statecharts and
hybrid components is described in detail in [8, 4].

3. PROFILE FRAMEWORK
Part of our Flexible Resource Manager (FRM) is the Profile Frame-
work. We only give a brief overview about the concepts within this
section. A formal description can be found in [1].

With this framework the developer defines a set of profiles per
agent. Profiles describe different service levels of the agent, with
different quality and different resource requirements. The resource
manager then tries to find an appropriateresource assignmentat run
time, which optimizes the system behavior and resource utilization.

3.1 Profile definition
A single profile contains the following information:

Resource requirements:Themaximumandminimum resource
usageper resource of the agent when the profile is active.

Maximal assignment delay:All resource allocations of an agent
require an announcement to the FRM. The maximal delay is the
worst-case time, after the announcement, the assignment of the re-
quested resource can be delayed through the FRM.

Switching conditions: The information between which profiles
can be switched and the worst-case execution times (WCET) of the
enter and leave functions of the profiles.

Profile quality: With this value the profiles of an agent can be
ordered according to their quality. So the FRM knows which pro-
file to prefer when trying to increase the system quality through
selecting a profile for activation.

3.2 Internal representation and algorithm
The FRM schedules the resource demands of multiple agents.

Each agent is equipped with a set of possible profiles and transi-
tions between them. For internal management the FRM builds a
profile reachability graphwhere the nodes represent a configura-
tion of profiles that maps each agent to one of its profiles. The di-
rected edges represent possible transitions between configurations,

6www.fujaba.de

derived from the switching conditions of the agent’s profiles. A
weight is assigned to the edges, which indicates how long the re-
configuration of the agent’s profiles will take. Each node is clas-
sified to be in one of the two states:guaranteed allocation state
if all resource requirements of all agents could be granted at once,
or over-allocation stateif it could happen, that more recourses are
required than are available in the system.

The basic idea of the FRM is to allow the system to be in an over-
allocation state configuration, only when the FRM guarantees that
a guaranteed allocation state configuration can be reached in time.
Here, ”in time” means that a new resource requirement that leads
to a conflict must have a greater maximal assignment delay than
the switching time to a guaranteed allocation state configuration.
This is required to guarantee a roll-back – a reconfiguration to a
guaranteed allocation state – under hard real-time constraints.

Of course finding an optimal configuration is an NP-complete
problem. Elsewhere the search for a better configuration is done in
the idle time of the agents only under soft real-time constraints. So
the worst-case – if no better solution is found – is as bad as if the
FRM is not used. For flexibility the optimization algorithm in the
FRM framework is exchangeable, so heuristics can be used.

The FRM framework extends the ideas of the ARM middle-
ware [7]. While the latter assumes a system-wide defined constant
switching time, FRM supports transition specific WCET times and
additionally supports temporaryover-allocationof the resources.

3.3 A simple profile example

Profile
A Profile Memory WCET

name
q

in kb Delay Enter Leave

ρα1,1 0.6 128-256 1µs 1µs 2µsα1
ρα1,2 1.0 256-768 1µs 3µs 4µs

α2 ρα2,1 1.0 256-512 6µs 5µs 7µs

c2c1

5µs

5µs

Figure 6: A simple example for profiles and their reachability
graph

Figure 6 shows a simple profile example with two agents and
the corresponding profile reachability graph. The first agentα1

has two profilesρα1,1 and ρα1,2, the second agentα2 has only
one profileρα2,1. From this follows that the corresponding pro-
file reachability graph consists of two nodes: one for configura-
tion c1 = (ρα1,1, ρα2,1) and one forc2 = (ρα1,2, ρα2,1). When
we assume that our system has 1024kb memory for the application
agents, the configurationc1 belongs to the set of guaranteed allo-
cation states and the configurationc2 to the set of over allocation
states. We also assume that agentα1 allows to activate the pro-
file ρα1,2 when it is in profileρα1,1 and vice versa. So, the two
nodes of the profile reachability graph are connected with two di-
rected edges, one fromc1 to c2 with the weight (switch time) 5
(2µs+3µs) and one fromc2 to c1 with weight 5 (4µs+1µs).

Let us start with this scenario. We assume that our system is in
the configurationc1 and both agents have each 256kb memory allo-
cated. In this case, the agents use only up to 512kb memory of the
system memory. Our FRM checks whether agentα1 can switch to

177

:Sensor[Off]:BC[Robust]

storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

:BC[Robust] :Sensor[Off]

when(next
Segment)
noData? /

when(nextSegment)
data(Vector zRef)?

when(
!storage.isEmpty())
/ data(Vector zRef)!

after(20)
/ registry.
requestInfo

RefNon
Available

/ noData!
registry.sendInfo(zRef) / storage.add(zRef)

Ref
Available

when(storage.isEmpty())

when(nextSegment)
data(Vector zRef)? /

sensor.ok

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

AbsAvailableAllAvailable

sensor.failure

when(nextSegment)
data(Vector zRef)? /

db

dd da

dc

Figure 4: Behavior of the monitor component with modular reconfiguration of the subcomponents

storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

:Sensor[Off]:BC[Robust] :BC[Robust] :Sensor[Off]

when(next
Segment)
noData? /

when(nextSegment)
data(Vector zRef)?

when(nextSegment)
data(Vector zRef)? /

Q = 0.9

Q = 0.1 Q = 0.1

Q = 0.4

sensor.ok

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

sensor.failure

when(nextSegment)
data(Vector zRef)? /

AllAvailable AbsAvailable

Mem: 300 kb

Mem: 200 kbMem: 200 kb

(r, e)

(r, e)

(r, e)

Mem: 500 kb

Mem: 850 kb

Mem: 200 kb

(r, e)Mem: 200 kb

(r)

Mem: 205 kb
Mem: 750 kb

Mem: 205 kb

Mem: 550 kb

Mem: 850 kb

dd da

dc

db

Figure 5: Monitor behavior with annotated resource requirements, quality and transition types

178

profile ρα1,2, which would bring the system in the over allocation
statec2. This can be granted, because when agentα2 would allo-
cate more memory, the assignment has to be fulfilled in 6µs. Thus,
the FRM has enough time to reconfigure the system in the guaran-
teed allocation statec1, by forcing agentα1 to go back from profile
ρα1,2 in profile ρα1,1, which takes only 5µs. The FRM grants the
transition into the over allocation statec2 and caches a way back to
the guaranteed allocation state. This can help to optimize the sys-
tem quality, whileα2 uses less memory (in its average case only
256kb), taskα1 is allowed to use up to 768kb memory by entering
an over allocation configuration. When agentα2 wants to enter its
worst-case scenario, then agentα1 has to switch back to its lower
profile.

4. DESIGN AGENTS WITH PROFILES
We extend in this section the design approach of [8, 4] presented
in Section 2.1 to support the design of resource-aware agents. The
model is equipped with additional semantic information to derive
the profiles automatically.

4.1 Extended Modeling
In the following we present the provided semi-automatic support
for the design of resource-aware agents by using the profile frame-
work. As mechatronic agents are usually safety-critical systems,
the design has to ensure safety even for the dynamic resource allo-
cation.

For each specific control state of a hybrid statechart we deter-
mine the required resources by simply accumulating its own re-
source requirements as well as the state specific resource require-
ments of all sub-components of the current configuration. As the
employed approach already supports automatic code generation the
model contains the required knowledge about the resource require-
ments. The memory requirements are visualized in Figure 5 below
the state names.7 If a transition leads to the exchange of controllers,
they require resources as well (conf. Section 2). In case of fad-
ing, the required amount is the sum of the source and the target
states plus additional resources for the fading itself (here50 kb).
Atomic transitions just require the resources of the target state plus
some for the state vector (here5 kb). As the transitions between
NoneAvailable andRefAvailable do not lead to reconfiguration,
they require just as much memory as the source and the target states
(200 kb). Besides some relevant attributes, which can be derived
automatically from the standard design model, some more specific
semantic information has to be added.

At first, we have to assign a quality to each state of the state-
chart in order to support rating of a profile’s quality. It is visualized
in a state’s upper right corner. The statesNoneAvailable andRef-
Available both have the lowest quality because they apply the same
controller.

In order to derive the profiles automatically, a transition obtains
capabilities: A transition might be required, blocked due to re-
source constraints, or can be enforced to release resources.

As a profile should not prohibit transitions that are indispensable
for the safety of the system, these transitions are marked asre-
quired(r) (e.g. thesensor.failure-transitions in Figure 5). Transi-
tions, which can be safely blocked to restrict the former allocation
of resources, are namedblockable. As all transitions that are not
required are blockable we only mark the required ones. The transi-
tions toAllAvailable are blockable, because they are just increasing
the comfort and are not required to guarantee safety.

When the operating system demands resources and, therefore,

7Note that we omitted the lower orthogonal state in this figure

initiates a profile-switch, the monitor needs to reside in a state
whose resource requirements are still fulfilled by the new profile.
To achieve this, the FRM is allowed to enforce transitions. There-
fore, in addition to the marksblockable/required, a transition is
marked asenforceable(e) . Such a transition fires either –as usual
transitions– when it is triggered by an event and a true guard,or
when it is triggered by the operating system. The transitionsfrom
AllAvailable are enforceable, because all input signals that are re-
quired in the target states are available inAllAvailable, too. In con-
trast to that switchingto AllAvailable may only occur, when the ac-
cording inputs are available and not due to resource requirements.
Note, that the distinction betweenblockable/required, as well as
the markenforceablehas to be taken into account when formal ver-
ification of the system is considered.

4.2 Profile Synthesis
These resource requirements, the state’s profile qualities, and the
outlined classification of the transitions as required, blockable, or
enforcable are further used to automatically derive profiles for an
agent.

The idea is simply to relate each profile with a subset of the dis-
crete states of the statechart. Each profile blocks transitions, which
result in entering a state that requires more resources than guar-
anteed for that profile. Required transitions cannot be blocked and,
therefore, a profile has to be closed with respect to all states that are
reachable via required transitions. The framework can additionally
switch between profiles by enforcing specific transitions. In order
to ensure that the framework does not disable the reactive behavior,
by enforcing a series of transitions and, therefore, interrupting the
regular communication or synchronization process, aminimal inter
enforceable time (MIET)has to be specified, which ensures that at
least the specified amount of time passes between two consecutive
enforcements.

Let G = (N, T) denote the related graph with nodesN rep-
resenting the states of the statechart andT ⊆ N × N its tran-
sitions. We additionally distinguish the subsetTr, Tb, andTe of
required, blockable, and enforcable transitions withT = Tr ∪ Tb

and Tr ∩ Tb = ∅. Any subgraph(N ′, T ′) with N ′ ⊆ N and
T ′ ⊆ T ∩N ′ ×N ′ could be a possible profile.

The quality of each staten ∈ N is denoted byq : N → IR and
for a group of statesN ′ ⊆ N we useq(N ′) := max{q(n)|n ∈
N ′}. The quality of a profile is given by the maximum of all con-
tained state’s qualities (q((N, T)) = q(N)).

The required amount for allm resources of each state and tran-
sition is accordingly assigned by the functionr : (N ∪T) → IRm.
For a subgraph(N ′, T ′) we use the element-wise cost maxima as
costs (r((N ′, T ′)) := max({(r1, . . . , rm)|∀i ∈ [1 : m] ∃x ∈
N ′ ∪ T ′ : r(x) = (x1, . . . , xi, . . . , xm) ∧ xi = ri}).8

4.2.1 Optimal Permanent Profiles
The profile framework usually expects that an agent is able to

stay within the assigned profile permanently. For such permanent
profiles of an agent, we require that the related subgraph is closed
with respect to required transitions.

DEFINITION 1. A profile (N ′, T ′) is permanentiff forall re-
quired edges(n, n′) ∈ Tr ∩N ′ ×N holdsn′ ∈ N ′.

We further denote with[(N ′, T ′)] the largest subgraph of(N ′, T ′)
which is closed with respect to required transitions. It can be com-
puted as the largest fix-point of the functionC on profiles defined

8We have for anyr, s ∈ IRm r ≤ s iff forall i ∈ [1 : m] holds
ri ≤ si andr < s iff r ≤ s and it existsi ∈ [1 : m] with ri < si.

179

asC((N ′, T ′)) := (N ′′, T ′′) with N ′′ = {n ∈ N ′|∀(n, n′) ∈
Tr : n′ ∈ N ′} andT ′′ = T ′ ∩ (N ′′ ×N ′′). The set of permanent
profiles is further closed under union and intersection.

The number of profiles can be exponential in the number of states
(which might itself be rather large). Thus, we are not interested in
computing all possible profiles but only ”optimal” ones.

Informally, a profile is optimal when no other profile contains it
which offers a higher or equal quality for the same or less costs.
We formalize optimality in the following definition:

DEFINITION 2. A permanent profile(N ′, T ′) is optimal iff no
other permanent profile(N ′′, T ′′) exists with:

(N ′, T ′) ⊂ (N ′′, T ′′) (1)

r((N ′, T ′)) ≥ r((N ′′, T ′′)) (2)

q((N ′, T ′)) ≤ q((N ′′, T ′′)) (3)

The conditions 1, 2, and 3 describe resp. that no larger profile with
equal or less costs exists which has the same or higher quality. As
the quality is implied by set containment, we can simply skip con-
dition 3. Also condition 2 can be made more strict, as a larger set
of nodes and transition can by definition only be as cheap as the
contained one but not cheaper. Thus, we have:

(N ′, T ′) ⊂ (N ′′, T ′′) (4)

r((N ′, T ′)) = r((N ′′, T ′′)). (5)

If such a profile(N ′′, T ′′) exists, we further say that(N ′′, T ′′)
dominates(N ′, T ′). The full graph(N, T) is by definition an op-
timal one as condition 4 cannot be fulfilled by any other profile. To
compute optimal profiles efficiently, we use the following idea.

LEMMA 1. For a given optimal profile(N ′, T ′) with costsk =
r((N ′, T ′)), we can construct an optimal profile(Nk′ , Tk′) for any
k′ ≤ k with maximalr((Nk′ , Tk′)) ≤ k′ as follows:

• N ′′ = N ′ − {n ∈ N ′|r(n) > k′},

• T ′′ = T ′ − {t ∈ T ′|r(t) > k′}, and

• (Nk′ , Tk′) = [(N ′′, T ′′)].

PROOF. Assuming it exists a profile(N ′′′, T ′′′) which fulfills
conditions 4 and 5 w.r.t. the profile(Nk′ , Tk′) constructed as out-
lined above, we havek′′ = r((N ′′′, T ′′′)) and (N ′′′, T ′′′) ⊃
(Nk′ , Tk′). It must hold(N ′′′, T ′′′) ⊆ (N ′, T ′), because other-
wise(N ′′′, T ′′′)∪(N ′, T ′) dominates(N ′, T ′) and, thus,(N ′, T ′)
would not be optimal.

It must thus exist an elementx ∈ (N ′′′ ∪ T ′′′) − (Nk′ ∪ Tk′),
otherwise the assumed profile would not dominate(Nk′ , Tk′). For
x ∈ (N ′ ∪T ′)− (N ′′ ∪T ′′) we can conclude thatr(x) > k′ and,
thus,r((N ′′′, T ′′′)) > k′ which contradicts our assumption. For
x ∈ (N ′′ ∪ T ′′) − (Nk′ ∪ Tk′) we can conclude that(N ′′′, T ′′′)
is not permanent which also contradicts our assumption. Thus,
finally no such profile(N ′′′, T ′′′) which dominates(Nk′ , Tk′) can
exist and thus the profile(Nk′ , Tk′) is an optimal one.

As no(N ′′′, T ′′′) ⊃ (Nk′ , Tk′) can exist,k′′′ = r((Nk′ , Tk′))
is always maximal with respect to the upper boundk′.

Therefore, we compute the optimal profile for a givenk′ ∈ IRm by
simply starting with the full graph and applying the outlined steps.

Besides optimality of permanent profiles, the controlled transi-
tion between two profiles is required to allow the framework to
enforce a switch between these two profiles.

Using the set of enforcable transitionsTe, we can formally define
whether the framework can enforce the transition form one profile
to another.

DEFINITION 3. A profile (N ′, T ′) is reachablefrom a profile
(N ′′, T ′′) iff forall n ∈ N ′′−N ′ exists(n, n′) ∈ Te withn′ ∈ N ′.
We write(N ′′, T ′′) →e (N ′, T ′).

For the relation between optimal profiles and reachability, we can
prove the following Lemma 2, which ensures that each time a non
optimal profile is reachable although the larger optimal profile is
reachable. Thus, we can restrict our attention to optional profiles
when reachability is considered.

LEMMA 2. For profiles (N ′, T ′), (N ′′, T ′′), and (N ′′′, T ′′′)
with (N ′, T ′) ⊆ (N ′′, T ′′) holds

(N ′′′, T ′′′) →e (N ′, T ′) ⇒ (N ′′′, T ′′′) →e (N ′′, T ′′)

PROOF. Follows directly from Definition 3, asN ′′′ − N ′ ⊇
N ′′′ −N ′′.

4.2.2 Temporary Profiles
An optimal profile may not be reachable from another one due

to the fact that not enough enforcable transitions inTe exist. Then
we addtemporaryprofiles to our profile graph to improve the con-
nectivity using a series of steps and accept non optimal profiles
temporarily. It is to be noted, that such a sequence of enforced
transitions has to respect the MIET to ensure that the agent is still
able to do its regular work.

For a temporary profile we thus only require that a related core
profile exists which ensures that for any application of an composed
edge fromT MIET

r the profile is not left.

DEFINITION 4. For a profile (N ′, T ′) and itscore (N ′′, T ′′)
must hold that forall edges(n, n′) ∈ T MIET

r ∩ N ′′ × N holds
n′ ∈ N ′.

To compute the largest core(N ′′, T ′′) of (N ′, T ′) with respect to
T MIET

r , we can computeN ′′ = {n ∈ N ′|∀(n, n′) ∈ T MIET
r :

n′ ∈ N ′} andT ′′ = T ∩ (N ′′ ×N ′′). We write[(N ′, T ′)]MIET

to denote this maximal core.
Analogously, we can compute the largest profile(N ′, T ′) for

a given core(N ′′, T ′′) with respect toT MIET
r asN ′ = {n ∈

N |∀(n, n′) ∈ T MIET
r : n ∈ N ′′} andT ′ = T ∩ (N ′ ×N ′). We

write](N ′, T ′)[MIET to denote this maximal profile for a given
core.

The problem to realize a transition between two optimal profiles
relates to the problem of finding a series of temporary profiles (at-
tractor) with respect toTe the controlled transitions.

DEFINITION 5. A series of profiles{(Ni, Ti)|i ∈ IN} is an
attractor for the profile (N ′′, T ′′) with respect to the controller
transitions setTe and the uncontrolled transition setT MIET

r iff
forall n ∈ Ni+1 and(n, n′) ∈ T MIET

r exists(n′, n′′) ∈ Te with
n′′ ∈ Ni and(N0, T0) = (N ′′, T ′′).

We have to construct an attractor for the target profile(N ′′, T ′′)
such that a path backwards to our start profile(N ′, T ′) exists.

We compute theattractor starting with the target profile. By
looking for additional states of the current profile where any pos-
sible uncontrolled step can be continued in such a manner that the
current profile is reached, we compute the next profile. If the ex-
tension leads to a profile which includes the source profile we are
done. Otherwise no indirect connection can be established.

ForT MIET
r the set of uncontrolled steps which are the possible

series of steps which can occur within the time bound MIET and
Te the controlled transitions, we can thus compute theattractor of
(N ′′, T ′′) as follows:

1. Initially setN0 = N ′′ andT0 = T ′′.

180

2. ComputeN ′
i+1 = Ni ∪{n ∈ N −Ni|∃(n, n′) ∈ Te ∧n′ ∈

Ni} andT ′
i+1 = T ∩ (N ′

i+1 ×N ′
i+1) from (Ni, Ti).

3. Compute the core(N ′′
i+1, T

′′
i+1) = [(N ′

i+1, T
′
i+1)]

MIET of
(N ′

i+1, T
′
i+1) and determine the next profile(Ni+1, Ti+1)

by Ni+1 = N ′′
i+1 ∪Ni andTi+1 = T ∩ (Ni+1 ×Ni+1).

4. Repeat with step 2 until the start profile(N ′, T ′) is included
((Ni+1, Ti+1) ⊇ (N ′, T ′)) or the expansion has terminated
((Ni+1, Ti+1) = (Ni, Ti)).

By construction we always have(Ni+1, Ti+1) ⊇ (Ni, Ti). The
profiles of the attractor{(Ni, Ti)|i ∈ IN} are, thus, monotonous
increasing but not necessarily strict monotonous increasing. For
each stepi ∈ [2 : p] we further write(Ni, Ti) →r,e (Ni−1, Ti−1)
as it holds:

(Ni, Ti) →MIET
r](Ni, Ti)[

MIET→e (Ni−1, Ti−1).

If no (Ni, Ti) ⊇ (N ′, T ′) has been found, there is in fact no
possible sequence of temporary profiles leading from(N ′, T ′) to
(N ′′, T ′′). Otherwise, if we have found a profile(Np, Tp) which
contains(N ′, T ′), we can construct such a sequence using the com-
puted profiles of the attractor in opposite ordering

(N ′, T ′) ⊇ (Np, Tp) →r,e · · · →r,e (N0, T0) = (N ′′, T ′′).

Using the above outlined procedure we can construct the con-
nections in the profile graph as follows. We add a direct edge, if
for two optimal profiles of the graph(N ′, T ′) and(N ′′, T ′′) holds
(N ′, T ′) →e (N ′′, T ′′). Otherwise, the above outlined procedure
is used to derive additional required temporary profiles. Finally, if
all possible profiles connections have been established, we can fur-
ther optimize the graph by keeping between two optimal profiles
only the shortest using the Floyd-Warshall all shortest path algo-
rithm.

4.2.3 Compute Profile Graph
For a resource functionr : (N ∪ T) → IRm, no unique order-

ing of the elements with respect to resource requirements is possi-
ble and, thus, we have a partially ordered set of profiles, which in
the worst-case contains exponentially many optimal profiles. Thus,
we propose to partition them dimensional space using a proper
set K of upper resource limits which is derived as follows: (1)
determine for each dimension the minima and maxima (mini =
min({ri(x)|x ∈ N ∪ T}) andmaxi = max({ri(x)|x ∈ N ∪
T})), (2) determine a number of stepssi ≥ 1 for each dimension,
and (3) choseK asK1 × · · · ×Km with Ki = {c|∃j ∈ [0 : si] :
c = mini +(maxi −mini)/si ∗ j}.

As every use of the algorithm, which is sketched in Lemma
1, will cost at most|N | + |T | steps, computing all optimal pro-
files is then inO(|K| ∗ (|N | + |T |)). The computation of the
maximal |K| profiles with at most(|K|)2 direct transitions is in
O(|K|2 ∗ (|N |+ |T |)). For the indirect connections via temporary
profiles we requireO(|N |+ |T |)2 for computing the attractors and,
thus, the algorithm to compute them is inO(|K|2 ∗ (|N |+ |T |)2).
Optimizing the profile graph using the Floyd-Warshall all shortest
path algorithm for|K| profiles (nodes) is inO(|K|3). Thus, we
have an overall algorithmic effort, which is inO(|K|2 ∗ (|N | +
|T |)2 + |K|3).

The maximal required duration (WCET) of the transitions be-
tween the different profiles is derived from the transition’s deadline
information of the hybrid statechart.

If the transition itself does not require more resources than the
source state, the transition deadline determines the allocation delay.
If the transition itself requires more resources than the source state,

then the delay is the time that the agent can wait before the tran-
sition execution has to start. Note, that this time can be increased
when a shorter period is assigned to the agent.

4.3 Application
We apply the presented algorithm to our extended models in or-
der to derive the profiles. In our example we obtain three different
profiles (cf. Figure 7):ρ3 consisting of the statesRefAvailable and
NoneAvailable, ρ2 consisting of additionallyAbsAvailable andρ1

consisting of all states. Figure 8 shows each profile’s capabilities:
The profile’s qualityq is the maximum of its node’s qualities. The
lower and upper bounds for the resource requirements are depen-
dent on the memory requirements of the profile’s states and tran-
sitions. The acceptable delay is derived from the deadline interval
and must be less than the maximal allowed duration of the transi-
tion. The WCETs for entering and leaving the profiles are constants
that are derived automatically from the model.

Profile Memory WCET
name

q
in kb Delay Enter Leave

ρ1 0.9 200-850 10µs 5µs 7µs
ρ2 0.4 200-550 12µs 3µs 4µs
ρ3 0.1 200-200 10µs 1µs 2µs

Figure 8: Capabilities of the derived profiles

The profile-graph, which indicates the worst-case duration of
switching between the single, derived profiles, is visualized in Fig-
ure 9: As leavingρ2 has a WCET of4µs and enteringρ1 has a
WCET of5µs, a switch fromρ2 toρ1 has a WCET of4µs+5µs =
9µs.

ρ2ρ1

ρ3

9µs

10µs

7µs
8µs

5µs5µs

Figure 9: The derived profile graph

5. EXTENDED DESIGN PROCESS
There have been numerous different approaches to the system-

atic development of mechatronic systems but no comprehensive
methodology became established. Therefore, the new VDI Guide-
line 2206, ”Design Methodology for mechatronic systems”, was
released by the VDI [13]. One well-known approach is depicted in
Figure 10. It consists of the three phasessystem design, domain-
specific design, andsystem integration. The result of the design
phase is the principle solution of the system and describes the used
components and their interactions. This principle solution marks
the start of the domain-specific design phase. After the domain-
specific phase, all partial solutions from the different domains are
available. This initializes the last phase, the integration phase. Here
all partial solutions will be put together, tested, and compared with

181

storage:Storage

:Sensor[On]:BC[Reference] :Sensor[On]:BC[Absolute]

:Sensor[Off]:BC[Robust] :BC[Robust] :Sensor[Off]

when(next
Segment)
noData? /

when(nextSegment)
data(Vector zRef)?

when(nextSegment)
data(Vector zRef)? /

Q = 0.9

Q = 0.1 Q = 0.1

Q = 0.4

sensor.ok

RefAvailable NoneAvailable

sensor.failure

sensor.ok

data(Vector zRef)?

noData?

sensor.failure

when(nextSegment)
data(Vector zRef)? /

AllAvailable AbsAvailable

Mem: 300 kb

Mem: 200 kbMem: 200 kb

(r, e)

(r, e)

(r, e)

Mem: 500 kb

Mem: 850 kb

Mem: 200 kb

(r, e)Mem: 200 kb

(r)

Mem: 205 kb
Mem: 750 kb

Mem: 205 kb

Mem: 550 kb

Mem: 850 kb

dd da

dc

db

ρ3

ρ2

ρ1

Figure 7: Result of the synthesis algorithm

the requirements. If all requirements are fulfilled, then the mecha-
tronic system is complete. If not, corrections have to be made and
the process starts again (new iteration).

Figure 10: Design process of the VDI-Guideline 2206

In our example the principle solution specifies which actuators,
sensors, hydraulic pumps, springs etc. have to be used. Further,
it denotes that a feedback controller (software agents)9 has to be
used. It does not specify the behavior of the feedback controller.
This will be done within the domain specific-design.

The development process of automatic control systems, which is
part of the domain-specific phase, is described in [12]. Unfortu-
nately, the development of more than one feedback controller for
the same function within a mechatronic system is not designated
within this process. Further, this process acts on the assumption
that only one feedback controller will be executed on hardware ex-
clusively.

To overcome this problem the amount of micro-controllers must
be reduced and the execution of the feedback controllers on the re-
maining micro-controllers has to be administered. This is a new
approach to develop mechatronic systems and has to be considered
within the design process. Figure 11 shows the classical develop-

9every software, including feedback controller, will be called
agents

ment process for mechatronic systems enriched by 4 new steps that
are identified while using our modeling approach.

Figure 11: Extended Design process of feedback controller de-
velopment

Situation Analysis. In this step all imaginable situations of the
system are analyzed. It will be identified, whether multiple and
how many different feedback controllers for the same system are
applicable.

Hybrid Design. In this step the switching strategy between dif-
ferent feedback controllers will be specified. Therefore, the system
constraints will be identified, which indicate the switch between the
feedback controllers. Further, the time frame (start and duration) of
a switch between the feedback controllers will be specified. Finally,
the quality values for the different feedback controllers are speci-
fied. The notation, which is used within this step, are the hybrid
statecharts that are described in Section 4.

Deployment specification. This step specifies on which hard-
ware (micro-controller, etc.) the different agents will be executed.

Synthesis.This is an automatic step. Within this step the source-
code will be generated. Here the profile synthesis algorithm (cf.
Section 4.2) is carried out. The required computer resources are
determined and the profile partitions are generated with a represen-
tative increment (cf. Section 4.2.3).

182

6. CONCLUSION
The outlined approach enables to develop resource-aware agents

for self-optimizing mechatronic agents at low costs. As sketched
in the last section, the additional required steps can be seamlessly
integrated into the standard process for the design of mechatronic
systems. The presented results can also be employed for other em-
bedded system classes, if alternative operation modes with distinct
resource requirements are present that can but must not be used.
Otherwise the correct operation of the agents would not tolerate to
temporarily block alternative behavior by the resource manager.

Current work deals with the tool integration of our approach.
When having the tool support, we will use it to simulate the exam-
ple and validate our concepts. Further we will apply our approach
to larger examples.

7. REFERENCES
[1] C. Böke and S. Obertḧur. Flexible Resource Management - A

framework for self-optimizing real-time systems.IFIP
Working Conference on Distributed and Parallel Embedded
Systems (DIPES2004), August 2004.

[2] D. Bradley, D. Seward, D. Dawson, and S. Burge.
Mechatronics. Stanley Thornes, 2000.

[3] S. Brandt and G. J. Nutt. Flexible Soft Real-Time Processing
in Middleware.Real-Time Systems, 22(1-2):77–118, 2002.

[4] S. Burmester, H. Giese, and O. Oberschelp. Hybrid UML
Components for the Design of Complex Self-optimizing
Mechatronic Systems. InProc. of 1st International
Conference on Informatics in Control, Automation and
Robotics (ICINCO 2004), Setubal, Portugal. IEEE, August
2004.

[5] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and
M. Stoelinga. Resource Interfaces. InThird International
Conference on Embedded Software (EMSOFT 2003),
Philadelphia, Pennsylvania, USA, October 13-15, 2003,
volume 2855 ofLecture Notes in Computer Science, pages
117–133. Springer-Verlag, 2003.

[6] C. Ditze. DREAMS – Concepts of a Distributed Real-Time
Management System. InProc. of the 1995 IFIP/IFAC
Workshop on Real-Time Programming (WRTP), 1995.
(Another copy with quite identical contents appeared in
journalControl Engineering Practice, Vol. 4 No. 10, 1996.).

[7] K. Ecker, D. Juedes, L. Welch, D. Chelberg, C. Bruggeman,
F. Drews, D. Fleeman, and D. Parrott. An Optimization
Framework for Dynamic, Distributed Real-Time Systems.
International Parallel and Distributed Processing
Symposium (IPDPS03), April 2003.

[8] H. Giese, S. Burmester, W. Schäfer, and O. Oberschelp.
Modular Design and Verification of Component-Based
Mechatronic Systems with Online-Reconfiguration. InProc.
of 12th ACM SIGSOFT Foundations of Software Engineering
2004 (FSE 2004), Newport Beach, USA. ACM, November
2004. (accepted).

[9] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser.
Dynamic Modeling of Replicated Objects for Dependable
Soft Real-Time Distributed Object Systems. InFourth IEEE
International Workshop on Object-Oriented Real-time
Dependable Systems, Santa Barbara, CA, January 1999.

[10] V. Kalogeraki, P. M. Melliar-Smith, and L. E. Moser.
Dynamic Scheduling for Soft Real-Time Distributed Object
Systems. InThird IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, March
2000.

[11] K. G. Larsen. Resource-Efficient Scheduling for Real Time
Systems. InThird International Conference on Embedded
Software (EMSOFT 2003), Philadelphia, Pennsylvania,
USA, October 13-15, 2003, volume 2855 ofLecture Notes in
Computer Science, pages 16–19. Springer-Verlag, 2003.

[12] S. Toepper.Die mechatronische Entwicklung des
Parallelroboters TriPlanar. PhD thesis, University of
Paderborn, 2002.

[13] VDI. VDI-Guideline 2206 - Design Methodology for
mechatronic systems. Beuth-Verlag, 2003.

183

