
Using Resource Reservation Techniques for Power-Aware
Scheduling∗

Claudio Scordino
Computer Science Department

University of Pisa, Italy

scordino@di.unipi.it

Giuseppe Lipari
Scuola Superiore Sant’Anna

Pisa, Italy

lipari@sssup.it

ABSTRACT
Minimizing energy consumption is an important issue in the
design of real-time embedded systems. As many embedded
systems are powered by rechargeable batteries, the goal is
to extend, as much as possible, the autonomy of the system.

Recently, many scheduling algorithms have been proposed
in the literature to exploit the capability of some processor
to dynamically change its operating voltage and frequency.
The goal of the scheduling algorithm is to select not only the
task to be scheduled, but also the operating frequency, so
minimizing the energy consumed without jeopardizing the
schedulability of the real-time tasks.

In this paper we present GRUB-PA, a new scheduling al-
gorithm for power-aware systems. The algorithm can effi-
ciently handle systems consisting of hard and soft real-time
tasks. In addition, tasks can be periodic, sporadic or aperi-
odic. The algorithm reclaims the spare bandwidth caused by
periodic tasks that execute less than expected or by sporadic
tasks that arrive less frequently, and use this information to
lower the processor frequency. We show the effectiveness of
the GRUB-PA algorithm in scheduling hard and soft real-
time tasks with a set of simulations. Finally, we present the
implementation of GRUB-PA in the Linux OS.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based systems]:
Real-time and embedded systems; D.4.1 [Operating Sys-
tems]: Process Management—Scheduling

General Terms
Algorithms

Keywords
DVS, real-time, resource-reservation, scheduling, power-aware

∗This work has been supported in part by the European
Commission under the OCERA IST project (IST-35102)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04, September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

1. INTRODUCTION
The problem of reducing the energy consumption is be-

coming very important in the design and implementation
of embedded real-time systems. Many of these systems are
powered by rechargeable batteries, and the goal is to ex-
tend as much as it is possible the autonomy of the system.
Similar problems can be found in normal workstation PCs.
As processors become more and more powerful, their power
consumption increases correspondingly, and it becomes a
problem to dissipate the heat produced by the processor.

To reduce energy consumption, one possible approach is
to selectively change the processor voltage. This technique
is called dynamic voltage scheduling (DVS). Many modern
processors can dynamically lower the voltage to reduce the
power consumption. However, by reducing the voltage, the
gate delay increases. Thus, the processor must also lower
the operating frequency and the processor speed. As a con-
sequence, all tasks will take more time to be executed. In
real-time systems, if this frequency change is not done prop-
erly, some important task may miss its deadline. Thus, it
is necessary to identify the conditions under which we can
safely slow down the processor without missing any dead-
line.

A power-aware scheduling algorithm can exploit DVS by
selecting, at each instant, both the task to be scheduled and
the processor’s operating frequency. Recently, many power-
aware algorithms have been proposed in the literature. The
problem becomes more difficult in systems with a combina-
tion of hard and soft, periodic and aperiodic real-time tasks.

The problem of mixing hard and soft real-time tasks can
be efficiently solved by using the resource reservation frame-
work [19]. In such framework, each task is assigned a server
characterized by a budget Q and a period P , the interpre-
tation being that the task is allowed to execute for at least
Q units of time every P . Many server algorithms have been
presented in the literature, both for fixed priority and dy-
namic priority schedulers [10, 24, 25, 2]. If the tasks execute
less than expected, the remaining slack time can be used to
reduce the response time of soft aperiodic tasks. Techniques
for using this slack time are usually referred as reclamation
techniques [5, 3].

Intuitively, the problem of reclaiming the spare bandwidth
is similar to the problem of power-aware scheduling. We can
divide both problems in two parts. A first part consists in
identifying the spare bandwidth (or the slack time) in the
system. A second part consists in deciding how to use the
spare bandwidth. The first part of the problem is common
to both the bandwidth reclamation problem and the power-

16

aware scheduling problem. The second part, instead, differs
radically: in the reclamation problem, the goal is to use the
spare time to anticipate the execution time of the aperiodic
tasks, whereas in the power-aware scheduling problem the
goal is to lower the processor frequency as much as it is pos-
sible. We believe that many reclamation algorithms can be
used as power-aware schedulers by modifying their “second
part”.

In this paper, we present the GRUB-PA (Greedy Recla-
mation of Unused Bandwidth–Power Aware) algorithm, that
is based on the GRUB algorithm, proposed by Lipari and
Baruah [5, 11]. In turn, the GRUB algorithm is based on
the resource reservation framework, so it can support both
hard and soft real-time tasks. Tasks can also be periodic,
sporadic or even aperiodic.

The paper is organized as follows. After recalling the rules
of the algorithm and proving its correctness, we present sim-
ulation experiments that compare GRUB-PA with the DRA
and DRA-OTE algorithms, proposed by Aydin et al. [6] and
with the DVSST algorithm proposed by Qadi et al [18]. Fi-
nally, we present the implementation of the algorithm in
the Linux operating system and some experiments on a real
test-bed system.

2. RELATED WORK
Power-aware scheduling techniques can be divided into

static off-line and dynamic on-line techniques. In static tech-
niques, the goal is to find the minimum constant processor
frequency so that no task misses its deadline. Yao et al.
[28] provided a static off-line scheduling algorithm, assum-
ing periodic tasks and worst-case execution times. Non-
preemptive power aware scheduling is investigated in [7].

Dynamic voltage scheduling (DVS) has been the topic of
much recent research. When tasks have a variable execu-
tion time, DVS can exploit the slack time for reducing the
energy consumption. Pillai and Shin [15] proposed different
techniques to take into account the slack time. Aydin et. al.
[6] proposed three algorithms based on EDF for reclaiming
the spare time. Similar techniques have been proposed by
Saewong and Rajkumar [20] in the context of fixed priority
scheduling.

All these techniques assume hard real-time periodic task
sets. Some work has been done in the context of soft real-
time tasks. For example, Pouwelse et al. [17, 16] presented a
study of power consumption and power-aware scheduling ap-
plied to multimedia streaming. Lorch and Smith addressed
the variable voltage scheduling of tasks with soft deadlines
in [13]. However, these techniques are based on heuristics.

Recently, Qadi et. al. [18] presented the DVSST algo-
rithm that schedules sporadic hard real-time tasks reclaim-
ing the unused bandwidth to lower the processor frequency.
The basic idea is to keep track of the total bandwidth used
by all active sporadic tasks with a variable U : when a spo-
radic task is activated, U is increased by Ui (the task’s util-
isation, Ui = Ci

Ti
), and at the task’s deadline the bandwidth

is decreased by Ui. The processor frequency is changed de-
pending on the value of U . This approach resembles our al-
gorithm GRUB-PA. However, the DVSST algorithm is not
able to reclaim the spare bandwidth that is due to tasks
with variable execution time. Indeed, in the case of periodic
tasks, DVSST maintains a constant U . As we will see in
the remaining of the paper, our algorithm GRUB-PA, in-
stead, explicitly reclaims the spare bandwidth of tasks that

execute less than expected, and therefore is able to reclaim
spare time even in the case of periodic tasks.

Shin and Kim [23] proposed dynamic algorithms for power-
aware scheduling, using a fixed priority or earliest deadline
first policy and a dedicated server (i.e. Deferrable Server [26]
or Total Bandwidth Server [25]) to handle aperiodic tasks.
Using some existing DVS algorithms (including a modified
version of the DRA [6]) they reclaim the slack time for both
periodic and aperiodic tasks.

We extended the latter approach by taking a more ab-
stract view. Our algorithm is based on the resource reser-
vation framework [19], so it provides the temporal isolation
property. Therefore, it is possible to provide real-time guar-
antees on a per-task basis.

3. ALGORITHM GRUB
In this section, we describe the GRUB (Greedy Reclama-

tion of Unused Bandwidth) algorithm, proposed by Lipari
and Baruah [5, 11]. The interested reader can refer to the
original paper for a more detailed presentation of the algo-
rithm.

GRUB is an algorithm belonging to the class of aperiodic
servers with dynamic priorities. This class of techniques
consists in creating an abstract entity for each task — the
server. Each server is assigned a budget Qi and a period Pi.
The algorithm guarantees that the served task will execute
at least Qi units of time every Pi.

Almost all servers provide the temporal isolation property:
the temporal behaviour of one task (i.e. its ability to meet
its deadlines) is not affected by the behaviours of the other
tasks. If a task misbehaves and requires a large execution
time, it cannot monopolize the processor. Thanks to tem-
poral isolation property, each task executes as it were on
a slower dedicated processor. Therefore, it is possible to
provide guarantees on a per-task basis.

Several server-based global schedulers (e.g., CBS [1]), can
offer performance guarantees somewhat similar to the one
made by algorithm GRUB. However, Algorithm GRUB has
an added feature that is not to be found in many of the
other schedulers — an ability to reclaim unused processor
capacity (“bandwidth”) that is not used because some of the
servers may have no outstanding jobs awaiting execution.

3.1 System model
In our model, each server is characterised by two parame-

ters, (Ui, Pi), where Ui is the server bandwidth (or fraction
of the processor utilisation) and Pi is the period.

Each task τi executing on server Si generates a sequence
of jobs J1

i , J2
i , J3

i , . . . , where Jj
i becomes ready for exe-

cution (arrives) at time aj
i (aj

i ≤ aj+1
i ∀i, j), and requires a

computation time of cj
i . We assume that, inside each server,

these jobs are executed in FIFO order, i.e. Jj
i has to finish

before Jj+1
i can start executing.

We make the following requirements of our scheduling dis-
cipline:

• The arrival times of the jobs (the aj
i ’s) are not a priori

known, but are only revealed on line during system ex-
ecution. Hence, our scheduling strategy cannot require
knowledge of future arrival times.

• The exact execution requirements cj
i are also not known

beforehand: they can only be determined by actually

17

executing Jj
i to completion. (Nor do we require an a

priori upper bound (a “worst-case execution time”) on
the value of cj

i .)

• We are interested in integrating our scheduling method-
ology with traditional real-time scheduling — in par-
ticular, we wish to design a scheduler that is a minor
variant of the classical Earliest Deadline First schedul-
ing algorithm (EDF) [12].

In this paper, we will consider a system comprised of n
servers S1, S2, . . . , Sn, with each server Si characterized by
the parameters Ui and Pi as described above. We require
that the sum of the processor shares of all the servers sum
to no more than one; i.e.,

nX
i=1

Ui

!
≤ 1 .

The tasks will be executed on a single processor with a
variable operating frequency. We assume that the processor
can provide M frequencies, φ1, . . . , φM , in increasing order.
Each frequency is associated a normalized processor “speed”
U1, . . . , UM , again in increasing order, with UM = 1. The
computation times of the tasks are relative to the maximum
operating speed UM = 1, and vary linearly with processor
speed: therefore, if a job executes ej

i units of time when

the processor speed is 1, it will execute for ej
i/Uk when

the processor speed is set equal to Uk (in Section 6, this
assumption will be validated experimentally).

In the following section, we will assume that the processor
speed is set to the maximum and is not changed. In Sec-
tion 4 we will show how it is possible to extend the GRUB
algorithm to exploit variable frequency.

3.2 Description of the GRUB algorithm

3.2.1 Algorithm Variables.
For each server Si in the system, Algorithm GRUB main-

tains two variables: a deadline Di and a virtual time Vi.
At any instant in time during run-time, each server Si is

in one of three states: Inactive, Active Contending, or Active
Non Contending. The initial state of each server is Inactive.
Intuitively at time to a server is in the Active Contending
state if it has some jobs awaiting execution at that time; in
the Active Non Contending state if it has completed all jobs
that arrived prior to to, but in doing so has “used up” its
share of the processor until beyond to (i.e., its virtual time
is greater than to); and in the Inactive state if it has no jobs
awaiting execution at time to, and it has not used up its
processor share beyond to.

At each instant in time, from among all the servers that
are in their Active Contending state, Algorithm GRUB chooses
for execution (the next job needing execution of) the server
Si, whose deadline parameter Di is the smallest.

While (a job of) Si is executing, its virtual time Vi in-
creases (the exact rate of this increase will be specified later);
while Si is not executing Vi does not change. If at any time
this virtual time becomes equal to the deadline (Vi == Di),
then the deadline parameter is incremented by Pi (Di ←
Di + Pi). Notice that this may cause Si to no longer be the
earliest-deadline active server, in which case it may surren-
der control of the processor to an earlier-deadline server.

inactive

activeContending

activeNonContending

1

2a

2b

3

4

Figure 1: State transition diagram.

3.2.2 State Transitions.
Certain (external and internal) events cause a server to

change its state (see Figure 1).

1 If server Si is in the Inactive state and a job Jj
i arrives (at

time-instant aj
i), then the following code is executed

Vi ← aj
i

Di ← Vi + Pi

and server Si enters the Active Contending state.

2 When a job Jj−1
i of Si completes (notice that Si must

then be in its Active Contending state), the action taken
depends upon whether the next job Jj

i of Si has al-
ready arrived.

a If so, then the deadline parameter Di is updated as
follows:

Di ←− Vi + Pi ;

the server remains in the Active Contending state.

b If there is no job of Si awaiting execution, then
server Si changes state, and enters the Active Non
Contending state.

3 For server Si to be in the Active Non Contending state at
any instant t, it is required that Vi > t. If this is not
so, (either immediately upon transiting into this state,
or because time has elapsed but Vi does not change for
servers in the Active Non Contending state), then the
server enters the Inactive state.

4 If a new job Jj
i arrives while server Si is in the Active

Non Contending state, then the deadline parameter Di

is updated as follows:

Di ←− Vi + Pi ,

and server Si returns to the Active Contending state.

5 There is one additional possible state change — if the
processor is ever idle, then all servers in the system
return to their Inactive state.

Algorithm GRUB maintains a global variable total system
utilisation that, at every instant, is equal to

U =

nX
i=1,Si �=Inactive

Ui

18

where n is the number of servers in the system. This variable
is initialised to 0 and it is updated every time a server enters
in or exits from state Inactive. In particular, when Si exits
from state Inactive U is increased of Ui, whereas when Si

enters state Inactive it is decreased of Ui.
The rule for updating the virtual time of every server is

as follows:

d

dt
Vi =

U
Ui

if Si is executing

0 otherwise
(1)

The rate of increase of the virtual time is proportional to
the current total bandwidth of the active servers. In other
words, the rate of update of the virtual time is automatically
adjusted depending on the current system load.

Let us make an example to understand the way the al-
gorithm works. Consider a server S1 with bandwidth U1 =
0.25 and period P1 = 20msec that serves a MPEG player
that needs to visualise 25 frames per second. If the sys-
tem is fully utilised (i.e. the total system bandwidth U is
equal to 1), then Equation 1 tells us that the virtual time
is increased at a rate of 1/0.25 = 4. By looking at the algo-
rithm rules, we see that the server executes approximately
P1/4 = 5msec every period P1.

In general, the bandwidth U1 can be computed using some
rule of thumb, or by performing a careful analysis of the ap-
plication code. For our purposes, in this example we assume
that in the worst case 5msec are enough to visualise a frame
in most cases.

However, suppose that at some point the total system
utilisation U is equal to 0.75. Then, server S1 can execute
more than 5msec every period, because we can reclaim the
spare bandwidth. According to Equation 1, the virtual time
is increased at a rate of 0.75/0.25 = 3. This means that
our server will be able to execute for P1/3 = 6.66msec every
period.

Thus, if our application sometimes requires more than
5msec to display a frame, it can take advantage of the re-
claimed bandwidth and still execute inside the period bound-
ary. This property can help us in setting the server band-
width U1 to a lower value. For example we can decide to set
U1 equal to the average bandwidth required by the appli-
cation. Algorithm GRUB ensures that our application will
take advantage of the spare bandwidth and execute more
than U1P1 in most cases. This property of GRUB is called
“reclamation”, because we are giving the spare bandwidth
to the needing servers.

3.3 Performance guarantees
The following theorem formally states the performance

guarantee that can be made by Algorithm GRUB vis a vis
the behaviour of each server when executing on a dedicated
processor. For proofs of the following theorems, see [5, 11].

Theorem 1. Suppose that job Jj
i would begin execution

at time-instant Aj
i , if all jobs of server Si were executed on

a dedicated processor of capacity Ui. In such a dedicated

processor, Jj
i would complete at time instant F j

i

def
= Aj

i +

(ej
i/Ui), where ej

i denotes the execution requirement of Jj
i .

If Jj
i completes execution by time-instant f j

i when our global
scheduler is used, then it is guaranteed that

f j
i ≤ Aj

i +

‰
(ej

i /Ui)

Pi

ı
· Pi . (2)

For the previous inequality, it follows that fk
i < F k

i + Pi.
Thus, the period Pi represents the granularity of the time
from the point of view of the server: by using algorithm
GRUB, every job finishes at most Pi time units later than
the completion time on a dedicated slower processor.

Moreover, the GRUB algorithm is able to serve hard real-
time periodic tasks without any deadline miss, as stated by
the following theorem.

Theorem 2 ([11]). Let τi be a hard real-time periodic
task with worst case execution time Ci and period Pi. If task
τi is assigned a server Si with bandwidth Ui ≥ Ci

Ti
and period

Pi = Ti, then no deadline of τi will be missed.

4. POWER-AWARE SCHEDULING
We now modify GRUB for power-aware scheduling. The

new resulting algorithm is called GRUB-PA (Power-Aware).
As first step, let us assume that the processor speed can be
varied continuously, from a maximum speed factor of 1 (i.e.
the processor works at its maximum speed) to a minimum of
0 (i.e. processor is halted). As explained previously, GRUB
maintains a global variable U that is the sum of the band-
widths of all servers that are not in the Inactive state. The
key idea is that, if we set the speed factor of the processor
to be equal to U , no server will miss its deadline. This idea
is similar to the one on which the DVSST algorithm [18] is
based. However, GRUB-PA updates variable U in a more
effective way, allowing additional power saving also in the
case of periodic tasks, as shown in 4.1.

It is important to note that we are implicitly assuming
that the execution time of a task varies linearly with the
processor frequency. In Section 6 we will validate this as-
sumption.

The GRUB algorithm can be divided in two different
parts: a set of rules for identifying the spare bandwidth
(1 − U); and a set of rules for re-assigning the spare band-
width.

The second part can be adapted for power-aware schedul-
ing. In practice, if the processor is not fully utilised (U < 1)
the exceeding bandwidth (1− U) can be used in two ways:

1. To execute the active servers for a longer time, so that
they can execute faster and finish earlier. This is the
“reclamation” property, and it is the original goal the
GRUB algorithm was designed for.

2. To slow down the processor. Each active server will
execute for a longer time, but they will execute at a
slower speed. The net effect is that their performance
is not degraded.

The reclamation rule in GRUB is given by Equation (1).
The increment in the virtual time depends on the amount
of used bandwidth in the system. This rule can also be used
in the power-aware part to automatically adapt the server
bandwidth to the new frequency. In addition, we need an
additional rule that sets the processor’s speed equal to U
whenever a server goes in the idle state or leaves the idle
state.

Hence, in the new GRUB-PA algorithm, state transitions
1 and 3 (see Figure 1) are modified as follows:

1 When a job Jj
i arrives at time instant aj

i , update the

19

following variables:

Vi ← aj
i

Di ← Vi + Pi

U ← U + Ui

Moreover, the processor speed is set equal to U .

3 When a server is in the Active Non Contending state and
Vi = t, then the server goes in the Inactive state and
the system utilisation is updated:

U ← U − Ui

Moreover, the processor speed is set equal to U .

4.1 Example
In this section we present a complete example showing

how the GRUB-PA algorithm updates the processor speed
depending on the bandwidth of the active servers. Consider
a system consisting of two tasks. Task τ1 is a sporadic task
with minimum interarrival time T1 = 8 and computation
time C1 varying between 2 and 4. This task is assigned a
server with U1 = 0.5 and P1 = 8. The second task τ2 is a
periodic task with period T2 = 10 and constant execution
time C2 = 5. τ2 is assigned a server with U2 = 0.5 and
P2 = 10.

Suppose that the first instance of task τ1 arrives at time
t = 0 requesting 2 units of computation time; the second
instance arrives at time t = 12 with computation time equal
to 3. The resulting schedule is shown in Figure 2. The
upward arrows denote an arrival time, while the downward
arrows denote a deadline.

Initially, all servers are active, so U = 1 and the processor
speed is set equal to 1. At time t = 0 task τ1 is selected
to execute, since the deadline of the server D1 = 8 is the
earliest server deadline. The task executes until t = 2, when
it completes. At this time, the virtual time is V1 = 2/U1 = 4,
so the server goes into Active Non Contending state. Then,
task τ2 starts executing, and it executes for 2 time units
until t = 4. At this time, the first server changes states
from Active Non Contending to Inactive: the total bandwidth
of all active servers is decreased to U = U−U1 = 0.5, so the
processor can be slowed down to U = 0.5. Then task τ2 can
continue executing at half the speed. However, its virtual
time V2 is also increased at half the speed: for each units
of execution, the virtual time will now increase at a rate of
dV2 = dtU2

U
= dt. Therefore, task τ2 can now execute for 6

units of time, which correspond to 3 more units of execution
time at maximum speed, and complete just by the deadline
at 10. However, at time t = 10 another instance of task τ2

arrives, so the second server remains in the Active Contending
state and τ2 resumes execution at half the speed.

At time t = 12 the second instance of τ1 is activated. The
server becomes active and U = U + U1 = 1. Therefore, the
processor speed is again raised to U = 1 and task τ1 can
start executing (as it is the one with the earliest server’s
deadline).

Notice that the mechanism used by the GRUB-PA algo-
rithm is very similar to the one used by the DVSST al-
gorithm [18]: they both use variable U to set the processor
speed. However, there is a difference in the instant when the
variable is updated. The DVSST algorithm does not keep
track of the actual execution time of the tasks. Therefore, it
can only subtract the bandwidth of a completed task at the

task’s deadline. In the example above, even if task τ1 com-
pletes by time t = 2, the DVSST algorithm must wait until
time t = 8 to lower the processor speed. Instead, algorithm
GRUB-PA can anticipate this time at t = 4 as it explicitly
takes into account the fact that task τ1 has executed less
than expected. In general, the GRUB-PA algorithm always
anticipates this time with respect to algorithm DVSST, re-
sulting in a larger amount of saved energy.

4.2 Properties of GRUB-PA
We now demonstrate that Theorem 1 is valid for the

GRUB-PA algorithm. The complete proof is very similar
to the one for Theorem 1 and it can be found in [22]. The
following proof sketch is meant to ease the understanding
of “why” the GRUB-PA algorithm works. Again, the basic
idea is to show that every task behaves approximately as it
were executing alone on a processor of speed Ui. First, a
preliminary lemma.

Lemma 3. Under the GRUB-PA algorithm, when a job
Jj

i completes, the completion time f j
i is always less than or

equal to the current server deadline Di.

Proof sketch The basic idea is to compare the schedule
generated by GRUB-PA with the schedule generated by a
fluid algorithm. We first define an algorithm GPS-PA (Gen-
eralized Processor Sharing - Power Aware) that allocates the
processor in proportion to the bandwidths Ui of the active
jobs. Moreover, GPS-PA adjusts the processor speed to the
sum of the bandwidths of all active jobs U(t). In the fluid
schedule σf (t) generated by GPS-PA, it can be proved that

all jobs complete no later than Dj
i = Aj

i +

‰
e

j
i

Pi

ı
Pi. Then

we transform schedule σf (t) into a non-fluid schedule σnf (t),
by following a technique proposed by Coffman and Denning
[4, Chapter 3]. The new schedule maintains the properties
on the finishing time of the jobs. Finally, by the optimality
of EDF, we can easily prove that GRUB-PA has the same
property. �

Now we report the proof sketch of Theorem 1 for the
GRUB-PA algorithm.
Proof sketch.

We will prove the theorem by induction on j. Let V Aj
i

denote the virtual time of server Si when the job Jj
i starts

executing and let V F j
i denote the virtual time when the

job completes. In addition, let Ej
i denote the set of time

intervals in which job Jj
i is scheduled by the GRUB-PA al-

gorithm. The server is allowed to execute with a deadline
Di until the virtual time is less than Di. Therefore, the
cumulative length of the intervals in Ej

i is

LEj
i =

Z V F
j
i

V A
j
i

Ui

U
dVi

If the processor speed is constantly equal to 1, LEj
i ≡ ej

i .

The slower the processor speed, the largest is LEj
i .

From Equation (1):

V F j
i = V Aj

i +

Z
E

j
i

dVi(t) = V Aj
i +

Z
E

j
i

U(t)

Ui
dt.

Now consider the base induction step (j = 1). The fol-

20

0 2 4 6 8 10 12 14 16 2018

1.0

0.5

τ1

τ2

U

Figure 2: Example of schedule produced by GRUB-PA

lowing inequalities hold:

V A0
i ≡ A0

i

V F 0
i = V A0

i +

Z
E0

i

U(t)

Ui
dt = A0

i +
e0

j

Ui
≡ F 0

i

The last equation holds because, even if the job executes
with speed U(t), LE0

i is such that V F 0
i does not change.

Then, the finishing time can be obtained as:

f0
i ≤ V A0

i +

‰
V F 0

i − V A0
i

Pi

ı
Pi ≤ A0

i +

‰
e0

j

Ui

ı
Pi

Now, we develop the inductive step. Suppose that the fol-
lowing inequalities hold for job Jj−1

i :

V Aj−1
i ≤ Aj−1

i

V F j−1
i ≤ F j−1

i

From Equations (1):

V Aj
i = max(aj

i , V F j−1
i) ≤ max(aj

i , F
j−1
i) = Aj

i (3)

V F j
i = V Aj

i +

Z
E

j
i

U(t)

Ui
dt = V Aj

i +
ej

i

Ui
≡ F j

i

Finally, from Lemma 3, the finishing time can be bounded
as follows:

f j
i ≤ Di = V Aj

i +

‰
V F j

i − V Aj
i

Pi

ı
Pi = Aj

i +

‰
ej

i

Ui

ı
Pi

and the theorem is proved. �.

4.3 Discrete frequencies
Of course, no existing processor can vary its frequency

with continuity. All processors that support DVS provide a
discrete set of frequencies. Correspondingly we can set some
“thresholds” on the values of the total system bandwidth.
Suppose that the processor supports M different frequencies
φ1, . . . , φM . We can compute U1, . . . , UM different values
of the bandwidth. If U(t) is comprised in (Uk, Uk+1] for
some k, then the processor frequency is set equal to φk+1.

By using this approach, the properties of the GRUB-PA
algorithm continue to hold.

It is also possible to apply a technique similar to the one
proposed by Ishihara et al. [9]. It consists in alternating
between the two frequencies φk and φk+1, in order to fur-
ther reduce the energy consumption by approximating the
desired frequency U(t). If the requested bandwidth is con-
stant over an interval [t1, t2], it is possible to compute an
instant t1 < t′ < t2 so that in interval [t1, t

′] the processor
frequency is set equal to φk+1 and in interval [t′, t2] the pro-
cessor frequency is set equal to φk. The original technique
was devised as an off-line algorithm for periodic tasks with
constant execution time. In our model, tasks may be peri-
odic or aperiodic. Therefore, it is difficult to precisely know
in which intervals the system bandwidth is constant. It is
possible to further approximate in a conservative way the
previous technique, for example by dividing the time line
into intervals of arbitrary length and applying the previous
technique. Since we always start with the highest frequency,
we are guaranteed that in case the bandwidth changes, no
deadline will be missed. The smallest are such intervals, the
more precise is the approximation. However, the overheads
in terms of time and energy of additional frequency switches
need to be carefully considered. We leave the analysis of the
potential trade-offs of such technique on our algorithm as a
future work.

It is important to note that the GRUB-PA algorithm, like
GRUB, is able to reclaim the spare bandwidth for soft ape-
riodic tasks. Suppose that the processor speed is set equal
to Uk, while the actual bandwidth is U(t) < Uk. Then
the GRUB-PA algorithm automatically reclaims the spare
bandwidth Uk−U(t) for soft real-time aperiodic tasks. The
spare bandwidth is assigned entirely to the currently exe-
cuting server (GRUB-PA is a greedy algorithm).

5. EVALUATION OF THE ALGORITHM
We decided to compare our algorithm against the DRA al-

gorithm proposed by Aydin et al. [6] and against the DVSST
algorithm proposed by Qadi et al. [18].

21

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70

E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

Utilization (%)

DRA
DRA-OTE

GRUB

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70

E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

Utilization (%)

DRA
DRA-OTE

GRUB

Figure 3: Energy consumption with constant WCET/BCET ratio on the a) PXA250 and on the b) TM5800

5.1 Comparison with DRA
The DRA algorithm permits to schedule periodic tasks

in a hard real-time environment, reducing the energy con-
sumption without missing any deadline. In particular, this
solution consists of two parts:

• A static (off-line) solution that computes the optimal
speed assuming the WCET for each instance;

• An on-line speed adjustment mechanism to dynami-
cally reclaim slack time not used by tasks that com-
plete without consuming their worst-case workload.

We compared GRUB-PA with the dynamic reclaiming al-
gorithm (called DRA) and its ’One Task’ extension (called
DRA-OTE). Both algorithms use a queue of tasks ordered
by earliest deadline, called α-queue. The queue is used to
compute the earliness of tasks when they are dispatched. At
any time it contains information about tasks that would be
active (i.e. running or ready) at that time in the canonical
schedule Scan, which is the static optimal schedule on which
every instance presents its worst-case workload and the pro-
cessor runs at the constant speed S = max{Smin, Utot}. At
time t this queue contains informations about all instances
Tij such that rij ≤ t ≤ dij , and whose remaining execution
time is greater than 0.

At dispatch time the algorithm computes the earliness
of tasks and adjusts the processor speed according to this
value.

To compare the algorithms, we used a software tool called
RTSim 1 [14]. In this tool, a simulation is a C++ program
that must be linked to an appropriate library of components
that includes schedulers, task models, etc. For our purposes,
we extended the processor components of RTSim, to include
models of processors with varying speed. Moreover, we im-
plemented the new power aware schedulers.

In particular, we simulated the power consumption on
both a Intel PXA250([8]) processor, using 4 different op-
erating frequencies, and a Transmeta Crusoe TM5800([27])
processor, using 7 operating frequencies. We associated a
power consumption Pk ∝ φk ∗ V 2

DD−k to each frequency.
The power consumption model chosen in the simulation is

1The software is distributed under the GPL and it is freely
downloadable from http://rtsim.sssup.it.

very simple but effective. In fact, we are not interested in
accurate simulations of the real consumed power, but rather
in a comparative analysis among different algorithms.

To compare the algorithms we performed two different
kinds of simulations. Each simulation consists of 5 differ-
ent periodic tasks with randomly generated periods. We
followed the same methodology of Aydin et al. [6]. Let
WCET and BCET indicate the worst case and the best case
execution time, respectively. In the simulations with GRUB-
PA, we generated a server for each task, with Pi equal to
the task period, and Ui equal to the ratio WCET/period,
so that, according to Theorem 2, no task ever misses its
deadline.

In the first set of simulations we fixed the WCET/BCET
ratio of each task equal to 2, while the average workload
varies from 0.1 to 0.7. For each value of the average work-
load, we simulated 100 different task sets. The results are
shown in Figure 3.a for the PXA250 processor and on Figure
3.b for the TM5800 processor. In both cases, the GRUB-PA
performs better than the DRA and DRA-OTE algorithms.

The second test measured the amount of power consump-
tion with a constant average workload (50%) and a variable
WCET/BCET ratio. For each value of the WCET/BCET
ratio we run 100 simulations using different task sets.

Since the convexity of the power/speed curve suggests to
use an uniform speed to obtain a lower power consump-
tion, we expected to see a greater energy saving using a
WCET/BCET ratio close to 1 (that is, a small variation in
the execution times).

Our results (see Figure 4.a and Figure 4.b) confirm this
assumption, and show that GRUB-PA is more clever than
DRA and DRA-OTE at maintaining a constant CPU speed
even when the task execution times are very different from
the worst case ones.

Aydin et al. also proposed a third version of the DRA
algorithm, called DRA-aggressive. It is an on-line specula-
tive (“aggressive”) speed adjustment mechanism to antici-
pate and compensate probable early completions by using
the average-case workload information. According to the
simulations results [6], DRA-aggressive performs 10% bet-
ter than DRA-OTE, and its performance is approximately
similar to the one presented by GRUB-PA.

However, GRUB-PA can also be applied to hard and soft,
and periodic, aperiodic and sporadic tasks.

22

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

WCET/BCET ratio

DRA
DRA-OTE

GRUB

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9

E
ne

rg
y

C
on

su
m

pt
io

n
(%

)

WCET/BCET ratio

DRA
DRA-OTE

GRUB

Figure 4: Energy consumption with constant average workload on a a) PXA250 and on a b) TM5800

5.2 Comparison with DVSST
We also compared the GRUB-PA algorithm against the

DVSST algorithm [18]. In each simulation run, we gener-
ated 8 sporadic tasks with minimum interarrival times Ti

randomly chosen between 1,000 and 10,000 and with ac-
tual interarrival time uniformly distributed between Ti and
Ti ∗ 1.1. Each task has a variable computation time, with a
20% of variation over the central value. In each experiment,
the sum Umax of the maximum bandwidth requested by all
tasks is constant. Finally, Umax is varied between 0.1 and
0.9. The results for the PXA250 and the TM5800 processors
are shown in Figure 5.

As it is possible to see, the DVSST algorithm is much more
sensitive to the discretization of the frequencies with respect
to GRUB-PA, due to the lack of reclamation of early tasks’
completions. The irregularity of the pattern for DVSST
decreases as the number of available discrete frequencies in-
creases, as it can be noticed by comparing Figure 5.a with
Figure 5.b. As expected, GRUB-PA presents an improve-
ment up to 40% with respect to DVSST.

5.3 Overhead
One detail that must be taken into careful consideration

is the overhead of changing frequency. Changing frequency
is not “for free”, as the processor needs some transitory time
to adjust to the new frequency. The duration of this transi-
tory is variable and varies a lot from processor to processor.
For example on the Intel PXA250 it can go up to 500µsec.
In many soft real-time applications, this can be considered
negligible, however, it should not be ignored. Moreover, we
want to avoid limit situations in which the processor keeps
changing its frequency up and down, because this would
completely trash the system.

For example, suppose that a task with a very low band-
width is activated and de-activated very often. If the system
is close to one threshold value Uk, every activation would
cause an increase of the frequency, and every de-activation
would cause a decrease in the frequency.

To avoid these situations, when an increase of the total
system bandwidth U goes over one of the thresholds Uk, we
immediately increase the processor frequency because we do
not want to risk a hard task to miss its deadline. When a
decrease of the total system bandwidth U goes below one of
the threshold Uk, instead, we do not change the frequency

immediately, but we set a timer. If the timer expires and U
is still below the threshold we lower the frequency. If U goes
above the threshold again, we cancel the timer. In this way,
we reduce the number of unnecessary frequency switches.

Let δ be the maximum time it takes to switch frequency
and let ∆ be the timer expiration interval. We can have a
maximum of 2 frequency switches every ∆, one to go down
and another one to go up. Therefore, in the worst case, this
accounts for a bandwidth reduction of 2δ

∆
. Therefore, we

can admit new servers up to a total bandwidth of 1− 2δ
∆

.
It is also undeniable the presence of an energy overhead

at every frequency switch. This overhead depends on the
particular kind of CPU the algorithm is running on, and it
is quite difficult to estimate and measure. Thus, we decided
not to deal with it at simulation time. Instead, the presence
of this overhead has been automatically accounted for in our
experimental results (see the next section). In fact, the total
energy consumed by our test-bed also comprises the energy
due to frequency changes.

6. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

The implementation of the GRUB-PA algorithm has been
done in the context of the OCERA project (IST-35102). The
main objective of this project is the design and implementa-
tion of a library of free software components for embedded
real-time systems. These components will be used to create
flexible (new scheduling will support a wide variety of appli-
cations), configurable (scalable from a small to a fully fea-
tured system), robust (fault-tolerant and high performant)
and portable (adaptable to several hw/sw configurations)
systems.

We implemented the GRUB-PA on the Linux operating
system, running on an Intrinsyc CerfCube 250 system. The
CerfCube system consists of 32 MB Flash ROM, 64 MB
SDRAM, and a Ethernet 10/100 Mbps. The processor is an
Intel PXA250. It is a superpipelined 32 bits RISC processor
based on the Intel Xscale micro-architecture. This architec-
ture permits a on-the-fly switch of the clock frequency and
a sophisticated power consumption management.

We configured the system to support three different fre-
quencies, 100Mhz, 200Mhz and 400 Mhz. The modified OS
is Linux 2.4.18. A description of the implementation can be

23

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90

E
ne

rg
y

co
ns

um
pt

io
n

(%
)

Utilization (%)

GRUB
DVSST

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90

E
ne

rg
y

co
ns

um
pt

io
n

(%
)

Utilization (%)

GRUB
DVSST

Figure 5: Energy consumption with constant average workload varying between 0.1 and 0.9 a) PXA250 and
on a b) TM5800

Speed

100MHz 200MHz 400MHz

CPU Frequency

1

4

ideal rise

real rise

Figure 6: Decompression speed related to CPU
speed (99% confidence interval).

found in [21]. Our study is particularly focused on multi-
media applications. Therefore, we decided to evaluate the
performance of our system using a multimedia application.
However, our approach can be used for a large range of dif-
ferent applications, because it is completely transparent to
the application characteristics. Unfortunately, our testbed
system, the Intrinsyc CerfCube, does not present a video
output. So, we decided to focus our attention on a audio
decoder.

To execute the first test, we decompressed a set of audio
streams at 44100 Hz and two channels, measuring the time
necessary to decompress every stream under the different
fixed clock frequencies.

From the obtained values, we extracted how much the
speed of decompression is related to the speed of the CPU.
The result is shown in Figure 6, where we show on the x-
axis the frequency of the processor, and on the y-axis the
decompression speed. As you can see the relationship is
almost linear. This justifies our assumption that by doubling
the processor frequency, the computation time of one task’s
job halves. In the Figure we also show the 99% confidence
interval.

Then, we evaluated the power consumed by our system

Table 1: Average values of the input current.
CPU frequency Current

100 MHz 446.0 mA
200 MHz 508.5 mA
400 MHz 579.9 mA

under different conditions, with or without GRUB-PA. We
inserted a dedicated electronic circuit between the CerfCube
board and the power supply, to measure the input current to
the board. The circuit is powered by a separate 9V battery:
it puts a very small resistor in series with the CerfCube
board and measures the voltage at the ends of the resistor.
The resulting data are sampled and sent through a serial
link to a PC that collects the data.

By using our algorithm, we measured the temporal evolu-
tion of the current under different loads. We computed the
average values of the input current, reported in the table 1.

We did many experiments using the multimedia appli-
cation, and we observed that, using our frequency scaling
mechanism, we saved up to 38.4% of the total power con-
sumed by the system. Notice that this is the energy saved
in the whole system, not only by the processor.

7. CONCLUSIONS
In this paper we presented the GRUB-PA algorithm, a

novel power-aware scheduling algorithm suitable to systems
consisting of hard periodic and soft aperiodic real-time tasks.
The GRUB algorithm is based on the resource reservation
framework, so it does not make any restrictive assumption
on the characteristics of the tasks.

Our simulations show that GRUB-PA, besides giving guar-
antees about the temporal execution of tasks, presents a sig-
nificant improvement over other power-aware scheduling al-
gorithms presented in the literature. Moreover, we presented
an implementation of the GRUB-PA in the Linux operating
system. The experimental results show that using GRUB-
PA we saved up to 38.4% of the total power consumed by
the system with respect to the unmodified one.

24

8. ACKNOWLEDGEMENTS
The authors would like to thank Franco Zaccone for his

precious help in setting up the experimental system and for
building the electronic circuit for measuring the input cur-
rent.

9. REFERENCES
[1] L. Abeni. Server mechanisms for multimedia

applications. Technical Report RETIS TR98-01,
Scuola Superiore S. Anna, 1998.

[2] L. Abeni and G.Buttazzo. Integrating multimedia
applications in hard real-time systems. In Proceedings
of the 19th IEEE Real-Time Systems Symposium,
Madrid, Spain, december 1998. IEEE.

[3] M. Caccamo, G. Buttazzo, and L. Sha. Capacity
sharing for overrun control. In Proceedings of the
IEEE Real-Time Systems Symposium, Orlando,
Florida, December 2000.

[4] J. E. Coffman and P. J. Denning. Operating Systems
Theory. Prentice-Hall, Englewood Cliff, NJ, 1973.

[5] G.Lipari and S. Baruah. Greedy reclaimation of
unused bandwidth in constant bandwidth servers. In
IEEE Proceedings of the 12th Euromicro Conference
on Real-Time Systems, Stokholm, Sweden, June 2000.

[6] H.Aydin, R.Melhem, D.Mossé, and P.Mejia-Alvarez.
Dynamic and aggressive scheduling techniques for
power-aware real-time systems. In Proceedings of
Real-Time System Symposium, pages 95–105., London,
UK, December 2001.

[7] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and
M. Srivastava. Power optimization of variable voltage
core-based systems. In In Proceedings of the 35th
Design Automation Conference, 1998.

[8] Intel corporation. Intel PXA250 and PXA210
Application Processors Developer’s Manual, February
2002.

[9] H. Ishihara, T.and Yasuura. Voltage scheduling
problem for dynamically variable voltage processors.
In Proceedings of the International Symposium on Low
Power Electronics and Design, pages 197 – 202, Aug.
1998.

[10] J. Lehoczky, L. Sha, and J. Strosnider. Enhanced
aperiodic responsiveness in hard real-time
environments. In Proceedings of the IEEE Real-Time
Systems Symposium, December 1987.

[11] G. Lipari. Resource Reservation in Real-Time
Systems. PhD thesis, Scuola Superiore S.Anna, 2000.

[12] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the Association for Computing Machinery,
20(1), 1973.

[13] J. R. Lorch and A. J. Smith. Improving dynamic
voltage scaling algorithms with pace. In In
Proceedings of the ACM SIGMETRICS 2001
Conference, Cambridge, MA, June 2001.

[14] L. Palopoli, G. Lipari, G. Lamastra, L. Abeni,
B. Gabriele, and P. Ancilotti. An object oriented tool
for simulating distributed real-time control systems.
Software: Practice and Experience, 2002.

[15] P. Pillai and K. G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In

Proceeding of the 18th ACM Symposium on Operating
Systems Principles, 2001.

[16] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic
voltage scaling on a low-power microprocessor. In 7th
ACM Int. Conf. on Mobile Computing and Networking
(Mobicom), 2001.

[17] J. Pouwelse, K. Langendoen, and H. Sips. Energy
priority scheduling for variable voltage processors. In
Int. Symposium on Low Power Electronics and Design
(ISLPED), 2001.

[18] A. Qadi, S. Goddard, and S. Farritor. A dynamic
voltage scaling algorithm for sporadic tasks. In
Proceedings of the 24th Real-Time Systems
Symposium, pages 52 – 62, Cancun, Mexico, 2003.

[19] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa.
Resource kernels: A resource-centric approach to
real-time and multimedia systems. In SPIE/ACM
Conference on Multimedia Computing and
Networking, January 1998.

[20] S. Saewong and R. Rajkumar. Practical
voltage-scaling for fixed-priority rt-systems. In
Proceedings of the ninth IEEE Real-Time and
Embedded Technology and Applications Symposiuam
(RTAS), May 2003.

[21] C. Scordino and G. Lipari. Energy saving scheduling
for embedded real-time linux applications. In 5th

Real-Time Linux Workshop, Valencia, Spain, 2003.

[22] C. Scordino and G. Lipari. Using resource reservation
techniques in power-aware scheduling: The grub-pa
algorithm. Technical report, Scuola Superiore
Sant’Anna, 2003.

[23] D. Shin and J. Kim. Dynamic voltage scaling of
periodic and aperiodic in priority-driven systems. In
proceedings of ASP-DAC ’04, pages 653–658, January
2004.

[24] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task
scheduling for hard-real-time systems. Journal of
Real-Time Systems, 1, July 1989.

[25] M. Spuri and G. Buttazzo. Scheduling aperiodic tasks
in dynamic priority systems. Journal of Real-Time
Systems, 10(2), 1996.

[26] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The
deferrable server algorithm for enhanced aperiodic
responsiveness in hard-real-time environments. IEEE
Transactions on Computers, 4(1), January 1995.

[27] Transmeta Corporation, http://www.transmeta.com.
CrusoeTM Processor Model TM5800 Version 2.1 Data
Book Revision 2.01, June 2003.

[28] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced cpu energy. IEEE Annual
foundations of Computer Science, pages 374–382,
1995.

25

