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ABSTRACT
Data flow process networks are a good model of computation
for streaming multimedia applications incorporating audio,
video and/or graphics streams. Process networks are con-
current processes communicating streams of data through
FIFO channels. They can be executed efficiently and de-
terminately on multiprocessor platforms. However, such
stream processing applications are becoming more dynamic,
often requiring run-time reconfigurations. Moreover, stream
processing is not always an application on its own, but may
be a component of a larger application. This application,
e.g. a game application, may be control oriented and event
driven; events may interact with the streaming component
and (re)configure it. In order to capture the interaction
between reactive and streaming components as well as re-
configuration in dynamic stream processing, we introduce in
this paper a formal, operational and compositional seman-
tics of so-called reactive process networks. This operational
semantics can serve as the basis for programming models
that allow the programming of streaming components in-
teracting with reactive system components and their recon-
figurations. It also supports the construction of analysis
and synthesis tools for dynamic streaming multimedia ap-
plications. It allows the integration of reactive behaviour in
process networks as general as Kahn process networks, but
it is also suitable for more restricted and efficient classes of
process networks.
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F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Operational semantics
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1. INTRODUCTION
Multimedia applications work with information streams

such as audio, video or graphics. With modern applications,
these streams and their encodings can be very dynamic.
Smart compression, encoding and scalability features make
these streams less regular than they used to be. Streams
are typically parts of larger applications. Other parts of
these applications tend to be event-driven and interact with
the streaming components. Modern (embedded) multimedia
applications can often be seen as instances of the structure
depicted in Figure 1. At the heart of the application, compu-
tationally intensive data operations have to be performed in
streams of for instance pixels, audio samples or video frames.
Input and output of these processes are highly regular pat-
terns of data. These data processing activities can often
be statically analysed and scheduled on efficient processing
units. At a higher level, modern multimedia streams show a
lot of dynamism. Object-based video (de)coders for instance
work with dynamic numbers of objects that enter or leave
a scene. Decoding of the individual objects themselves uses
the static data processing functions, but they may need to be
added or removed dynamically. These dynamic streams still
compute functions and processing is determinate, i.e. the
functional result is independent of the order in which opera-
tions are executed. In turn, the processing of these dynamic
data streams is governed by control oriented components.
This may for instance be used to convey user interactions to
the streaming application or to respond to changing network
conditions.
In our view, the three levels of an application require

typical modelling and implementation techniques. A good
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Figure 2: Automaton with process networks

candidate for instance to describe static computation ker-
nels is Synchronous Data Flow (SDF) [13]. SDF graphs
consist of actors describing data transformations with fixed
data consumption and production rates, allowing them to
be executed according to a periodic schedule, which can
be determined at design time. Dynamic stream processing
can be described using Kahn Process Networks (KPNs) [9].
KPNs are also networks of processes operating on streams of
data. They are however capable of showing data dependent
behaviour and dynamic changes in their processing. Yet,
they are still determinate and can be executed fully asyn-
chronous. KPNs allow for dynamic network reconfigurations
(even if many of the current implementations of KPN do
not). To specify the control dominated parts of an applica-
tion, there are many techniques, such as state machines and
event-driven software.
It is the intention of this paper to define a model and

formal operational semantics that allows for an integrated
description of an application consisting of these three levels
of computation. A unified model is presented for stream-
ing and control, that is also hierarchical and fully composi-
tional. This model can be used as the basis for constructing
analysis or synthesis tools or defining programming systems
for realising streaming media applications on programming
platforms with reconfigurations and control. Moreover, we
feel that defining a formal semantics can be very important
for understanding the subtle details of the models and for
verifying what we believe to know about these models. For
traditional KPNs for instance, formulating a formal oper-
ational semantics of their execution allowed us to discover
that a popular execution model could fail under specific con-
ditions [6].
Figure 2 illustrates what we intuitively try to achieve. A

process network is a component with stream input(s) (i in
Figure 2), stream output(s) (o) and event input(s) (e).
At any point in time, the network operates in a mode

that implements a particular streaming function, for in-
stance mode h in Figure 2, implemented as the network
drawn below it. At some later time, because of the occur-
rence of some event a, the function of the network needs to
change to a mode g having a different streaming function.
One could think for instance of a video system where a user
changes settings or turns on or off special features. One
could view this as a (finite) state machine where in every
state, the network implements a particular function and ex-

ternal events force the state machine to move from one state
to another. In every state, a particular process network per-
forms operations on data streams. Since process networks
can be hierarchical entities, we would like such a construct
to be compositional and applicable at different levels of a
network hierarchy.
The remainder of this paper is structured as follows. The

following section discusses related work. Section 3 discusses
the principles behind our definition of Reactive Process Net-
works (RPN). An example is introduced in Section 4. This
is followed by the formal definition of Reactive Process Net-
works and their formal operational semantics in Section 5.
Some implementation considerations for realising RPNs are
the topic of Section 6, followed by conclusions and sugges-
tions for future work in Section 7.

2. RELATED WORK
Process networks and data flow models are very popu-

lar for specification, analysis and synthesis of high perfor-
mance signal processing and streaming multimedia appli-
cations [13]. Advanced analysis and automatic synthesis
techniques exist for a class of dataflow systems called syn-
chronous dataflow (SDF) and extensions of SDF that pre-
serve the static analysis options, such as cyclo-static dataflow
[3]. More expressive classes of process networks or dataflow
systems exist, such as dynamic dataflow systems or Kahn
Process Networks (KPNs). Their expressiveness disables
many of the advanced static and compile time analysis meth-
ods and run-time scheduling and resource management and
arbitration is required. Many of the existing run-time envi-
ronments for such systems are commonly used as simulation
frameworks rather than actual implementations [12, 8, 10].
The desire to express non-deterministic behaviour and

event-based communication has lead to additions to pure
data flow models. Examples are the probes of [15] and [10].
[15] describes an extension of the dataflow model with the
ability to probe a channel for the presence or absence of
data. While this enhances the expressiveness of the model,
it destroys the property of determinacy, of independence of
any concrete schedule. This probe construct inspired the de-
signers of Yapi [10] to introduce the select statement, having
the same disadvantage. In Ptolemy [12, 8], a framework is
defined to connect multiple models of computation, includ-
ing data flow and event-based ones. The combination of the
reactive and process network domains however, induce too
much synchronisation overhead to be used for implementa-
tion.
Many of the combinations of data flow and reactive be-

haviour are based on a combination of the Synchronous Data
Flow model together with some form of reactive behaviour
[19, 11, 18, 7]. The use of an analysable model such as SDF
is natural because it allows for a predictable and determi-
nate combination. The reactive part is frequently specified
using (hierarchical) state machines.
[11] describes a combination of hierarchical state machines

and SDF models, where a complete iteration of the SDF is
taken as an action of the state machine. A state machine
inside an SDF is required to adhere to the SDF firing charac-
teristics. FunState [18] defines a model, described as ‘func-
tions driven by state machines’, which deliberately tries to
separate data flow from control. *charts [7] separates hier-
archical finite state machine models from concurrency mod-
els. In the data flow domain, a combination of Hierarchical
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Finite State Machines with Synchronous Data Flow is pre-
sented.
[2] describes parameterisable SDF models, allowing dy-

namic reconfiguration during runtime. Processes can change
their dataflow behaviour depending on parameter settings.
In a given SDF configuration, actor executions are charac-
terised by iterations, that fire subprocesses in a particular
order that returns the internal buffer states in their original
configuration. Such a process can (only) be reconfigured
between such iterations and if the dataflow behaviour has
changed, a new schedule is determined (at run-time).
Most similar to our approach is a very recent paper [16]

of Neuendorffer and Lee. They focus on reconfiguration
as a particular kind of event handling. They define qui-
escent states as the states where reconfigurations are al-
lowed. These quiescent states are strongly related to our
maximal streaming transactions. They also propose, simi-
lar to this paper, to use FIFO (First In First Out) channel
communication also for events or parameters and to divide
input ports in streaming input ports and parameter input
ports. In contrast with [16], we consider more general event
handling and reconfiguration than changing parameters. It
also focusses primarily on analysability and schedulability
of reconfigurable SDF graphs, whereas we start from more
general KPNs.
What makes this paper different from other work, is that

we look at dataflow systems in the style of KPNs (hence,
more general than SDF which is often used), because we
feel that that is required for many modern multimedia ap-
plications. We furthermore consider the possibility of dy-
namically changing the structure of the process network as
opposed to reconfiguration by only changing parameters. In-
stead of combining a data flow graph with a state machine,
we seek to define a single, unified model, that is also fully
compositional. Moreover, we give a formal semantics which
enables rigourous analysis of our model and systems speci-
fied using this model.

3. DESIGN PRINCIPLES
In this section, we discuss the basic ideas that have had a

major impact on the design of our model of Reactive Process
Networks.

3.1 Streams, Events and Time
Streaming applications represent functions or data trans-

formations. Presented with input (strings of tokens offered
to input ports) they produce output (strings of tokens pro-
duced at output ports). There is typically no inherent notion
of time, except for the ordering of tokens in the individual
data streams. There is no relation in time between tokens
in different streams, except for causal orderings implicitly
defined by the processes that operate on the tokens. These
process networks are determinate, i.e. the order in which
processes execute is irrelevant for the functional result. The
reaction of a process network is conceptually immediate (the
output is determined as soon as the input is known). How-
ever, it is understood that the actual production of the out-
put introduces a certain latency in the reaction. This latency
is not inherent in the functional specification, but merely a
byproduct of the computation process. It may be subject to
constraints, such as a maximum latency. Time is sometimes
implicitly present in the intention of steams. A stream may
carry for instance, a sequence of samples of an audio sig-

nal that are 1/44100th of a second apart, or video frames
of which there are 25 or 30 in every second. Such streams
are called periodic. Time does play a role of course in re-
alisations. Then, time-related notions such as throughput,
latency and jitter are important.
Events, in contrast with streams, rely heavily on a notion

of time. An event is unpredictable and whether it will arrive
and when it will arrive is significant, but unknown in ad-
vance. In many event-based models, the synchrony hypoth-
esis applies, which states that the response to an event can
be completed before the following event arrives or is taken
into account. A classical model for event based systems are
labelled transition systems. Prominent characteristics are
non-determinism and a total ordering of events. This total
ordering of all events introduces a global notion of qualita-
tive time and when mixed with explicit time related events
such as clock ticks or delays, even a quantitative notion of
time. Timing constraints on events in realisations are typi-
cally response time constraints, i.e. the duration between the
arrival of an event and the manifestation of the associated
effect.
The integration of events in stream based execution, im-

plicitly introduces a sense of time in the stream processing
that is not there originally. This has had a major impact on
the synchronisation constraints that govern the interaction
of events and streams.

3.2 Semantics of Process Networks

3.2.1 Denotational and operational semantics
There are two common ways to describe a network of

dataflow processes, namely denotational approaches and op-
erational approaches. Every process (or ‘actor’ in some mod-
els) realises a certain function, consuming input tokens and
computing a functional result which is then written to its
outputs. The denotational interpretation of the network as
a whole can then be derived from the composition of these
individual functions. If the network is recursive, i.e. if it
contains cycles, then the composition can be expressed us-
ing a (set of) fixed-point equation(s) over these functions [9].
Alternatively, a network can be characterised operationally.
Processes read tokens from channels or write tokens to chan-
nels and perform computations in the mean time. The chan-
nels that connect processes store tokens that are in transit
from one process to another. Denotational semantics is often
preferred to capture the intended functionality of a process
network or to define the functional semantics of a system
or programming language implementing process networks,
without specifying unnecessary implementation details. The
operational semantics on the other hand allows reasoning
about implementation details, such as artificial deadlocks
[6] or required buffer capacities [3, 1]. For KPNs, the rela-
tionship between both styles of semantics is known as the
Kahn Principle. Kahn predicted [9], and others later for-
mally proved [5, 14], that both semantics define the same
behaviour. The streams of tokens that are incrementally
produced on the channels in the operational model realise
the desired solution to the networks fixed-point equations.

3.2.2 Labelled Transition Systems
To formalise our reactive process networks, we use an op-

erational semantics in the form of labelled transition systems
(LTSs). A labelled transition system does not have, in gen-
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eral, a functional representation that matches the domain
of streams. Streams, on the other hand, can be modelled
by (a special class of) labelled transition systems, albeit at
a somewhat lower level of abstraction, introducing possibly
irrelevant details [14]. Causality information is explicit in
a dataflow representation, but becomes implicit in an LTS
representation. However, the discussion in Section 3.1 makes
clear that dealing explicitly with the timing or order of input
and output actions of the streams is necessary to describe
interactions between streams and events, which is possible
in an LTS-based approach.

3.2.3 Model of Streaming Applications
In this paper, we use Kahn Process Networks as the gen-

eral model of computation for stream based applications,
but it encapsulates also more restricted models such as SDF
for periodic streams. Traditionally, the behaviour of a KPN
is described by a function that maps a complete input his-
tory (all input up to some point in time) to all the corre-
sponding output. This formulation allows a KPN to base
output not only on the current input, but also on the his-
tory of inputs, i.e. to exploit this history as some notion
of memory or ‘state’. This is in contrast with SDF, which
does not have this kind of memory and for every actor fir-
ing, computed output tokens are a function of the consumed
input tokens. In an operational semantics of KPNs [5, 14],
this state is made explicit and also the reading of input and
the production of the corresponding output are decoupled.

3.2.4 Streaming and Time
We have further inspiration from comparing our idea of

transition systems of streaming process networks to mod-
els of timed reactive systems. The passing of time is anal-
ogous to the flow of the stream, with the difference that
time is usually assumed to pass synchronously in all compo-
nents and the flow of streams allows some local variation as
long as causality constraints are respected. Discrete changes
are interleaved with stable periods of streaming. Conceptu-
ally, a discrete change occurs at a well defined point within
the stream. Because of pipelining implementation of the
stream processing however, there is not necessarily a point
in time where the change can be applied instantaneously to
the whole network. Hence, an important aspect of dealing
with streaming computation and events will be to coordinate
their execution to implement a smooth transition.

3.2.5 Synchronising Events with Streams
There is a trade-off between predictability and synchroni-

sation overhead. Predictability of processing (non determin-
istic) events is improved by added control over the moment
when and the way in which the event is processed relative
to the streaming activities. We will see that increased pre-
dictability requires more synchronisation between processes
and hence additional overhead. Such overhead is undesir-
able, especially if events occur only sporadically.

3.2.6 Communicating Events
Processes or actors in data flow graphs communicate via

FIFO channels. We want to add communication of events
and we have to decide what communication mechanism is
used for events. It is often the case that what is perceived
by a lower level process as an event, is considered to be part
of streaming by higher level processes. For instance, a video
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Figure 3: An interactive 3D game

decoder is decoding a stream of video frames and header
information for every frame is an integral part of the data
stream. For the lower level frame decoder processes. The
frame header information is seen as an event that initialises
the component to deal with the specific parameters of the
following frame. For this reason, we use the same infras-
tructure for communicating streams also for events. For the
sending process, there is no difference at all; at the receiv-
ing side, we distinguish stream input ports and event input
ports. The former are used in ordinary streaming activity;
tokens arriving on the latter will trigger discrete events.

4. AN EXAMPLE
An example of the type of application we are considering

is shown in Figure 3. It depicts an imaginary game, which
includes modes of 3-dimensional game play with stream-
ing video based modes and (conceptually) how it is for-
malised. The rendering pipeline, used in the 3D mode, is
a dynamic streaming application. Characters or objects
may enter or leave the scene because of player interaction,
rendering parameters may be adapted to achieve the re-
quired frame rates. Overlayed graphics (for instance text
or scores) may change. This happens under control of the
event-driven game control logic. At the core of the appli-
cation, the streaming kernels, a lot of intensive pixel based
operations are required to perform the various texture map-
ping or video filtering operations. Special hardware or pro-
cessors may be available to execute these operations, which
can be scheduled off-line, very efficiently.
Figure 3 shows (part of) an RPN model of our game. The

model is organised around the two main modes (3D graph-
ics, video). In these modes, the game dynamics and mode
changes are influenced or initiated by user interaction, game
play and performance feedback. This is the control oriented
part of the game depicted as the automaton at the top of Fig-
ure 3. The self-loops on these states denote changes where
the streaming network essentially stays the same, but its
parameters may be changed. In the 3D graphics mode (en-
larged at the bottom of the figure), a scene graph, describing
all entities and their positions in 3D space, is rendered to
a 2-dimensional view on the scene on some output device.
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The first process communicates the scene graphs with ob-
jects to the rendering component. The rendering component
transforms the scene graphs into 2-dimensional frames. The
last process adds 2-dimensional video processing such as fil-
tering, overlays, and so forth. The output is shown by the
display device.
Notice that the game as a whole has different modes of

streaming (3D graphics, video), but similarly, components
in the stream processing part have different modes or states
of streaming execution. The object renderer for instance
can be reconfigured to different modes depending on the
number of objects that need to be rendered (using the event
channel nrObj controlled by the scene graph process). This
suggests the need for a hierarchical, compositional approach
to combining state/event based models with streaming and
data flow based models as realised by our model.

5. REACTIVE PROCESS NETWORKS AND
THEIR SEMANTICS

In this section, we formally define Reactive Process Net-
works and construct their operational semantics.

5.1 Preliminary Definitions
We start with some preliminary definitions and notations.

We assume a universal, countable, set Chans of channels
and for every channel c ∈ Chans a corresponding countable
channel alphabet Σc. From channels and their alphabets,
we build a universal set of actions Act = {c?a, c!a | c ∈
Chans , a ∈ Σc}, consisting of input actions (c?a) and output
actions (c!a). We use Σ to denote the union of all channel
alphabets, and A∗ (A∞) to denote the set of all finite (and
infinite) strings over alphabet A. � denotes the prefix re-
lation on strings (a complete partial order). If σ and τ are
strings, σ · τ denotes the usual concatenation of the strings
and σ − τ the string σ after removing the common prefix
with τ . In particular, if σ = τυ then σ − τ = υ.

Definition 5.1. (History) A history h of a set C ⊆
Chans of channels is a mapping from channels c ∈ C to
strings over Σc. The set of all histories of C is denoted as
H(C).

A history can be used to capture the data communicated
between two processes at some point in time or the data
that is still in transit. A history of the channels sg and
fr from our example, could for instance be the function
{(sg , sg1 · sg2); (fr , fr1 · fr2 · fr3)}, which assigns to chan-
nel sg the sequence sg1 · sg2 of scene graph data tokens and
to channel fr the sequence fr1 · fr2 · fr3 of three video frames.
If h1 is a history of C1 and h2 is a history of C2, we write

h1 � h2 if C1 ⊆ C2 and for every c ∈ C1, h1(c) � h2(c). If
h1, h2 ∈ H(C), then the concatenation h1 · h2 is the history
such that h1 · h2(c) = h1(c) · h2(c) for all c ∈ C. If h1 � h2,
then h2 − h1 denotes the history h3 such that h1 · h3 = h2.
We are going to give an operational semantics to RPNs in

the form of a labelled transition system (LTS). We use, more
specifically, an LTS with an initial state, with designated
streaming or event input actions and output actions in the
form of reads and writes of tokens on channels, as well as
internal actions.

Definition 5.2. (Lts) A labelled transition system is a
tuple (S, ŝ, I, O,A, ) consisting of a (countable) set S of

states, an initial state ŝ ∈ S, a set I ⊆ Chans of input chan-
nels, a set O ⊆ Chans (disjoint from I) of output channels,
a set A ⊆ Act∗ of sequences of actions consisting of in-
put actions {c?a | c ∈ I, a ∈ Σc} ⊆ Act, output actions
{c!a | c ∈ O, a ∈ Σc} ⊆ Act and (possibly) internal ac-
tions (all other actions), and a labelled transition relation

⊆ S × A× S.
Note that we allow labels of the LTS to be sequences of
read and write actions, because we will need to group such
sequences into single, atomic transitions for our semantics.
We write s1

α s2 if (s1, α, s2) ∈ , which denotes that
the LTS in state s1 can perform action(s) α which brings it to
state s2. Moreover, we write s1

α if there is some s2 ∈ S
such that s1

α s2. With a write operation to an output
channel, the token on the channel is determined by the LTS.
With a read operation on an input channel, the token that
appears on the channel is determined by the environment
of the LTS. Therefore, a read operation of the RPN needs
to be modelled with a set of input actions that provides a
transition for every possible token of the alphabet.

Definition 5.3. (Execution) An execution σ of a tran-

sition system is a sequence s0
α0 s1

α1 . . . of states

si ∈ S and actions αi ∈ Act, such that si
αi si+1 for all

i ≥ 0 (up to the length of the execution).

If σ is such an execution, then we use |σ| ∈ N ∪ {∞} to
denote the length of the execution. |σ| = ∞ if σ is infinite

and |σ| = n if σ = s0
α0 s1

α1 . . .
αn−1

sn. For
k ≤ |σ|, we use σk to denote the prefix of σ of length k.
From a given execution σ with actions α = α0 · α1 · . . .,

we extract the consumed input and the produced output on
a set C ⊆ Chans of channels as follows.

• For a channel c ∈ C, α?c is a (finite or infinite) string
over Σc that results from projecting α onto read ac-
tions on c;

• similarly, α!c is a (finite or infinite) string over Σc that
results from projecting α onto write actions on c;

• finally, input history α?C = {(c, α?c) | c ∈ C} and
output history α!C = {(c, α!c) | c ∈ C}.

Furthermore, we use the same notation for executions: σ?c =
α?c, σ!c = α!c, σ?C = α?C and σ!C = α!C. Thus σ?I de-
notes the input consumed by the network in execution σ
and σ!O denotes the output produced by the network. The
I/O-history h(σ) of an execution σ is σ?I ∪ σ!O; if α is the
string of actions executed in execution σ, h(α) = h(σ). To
reason about the input offered to the network (consumed
or not consumed), we say that σ is an execution with input
i : I → Σ∞ iff σ?I � i. Note that if σ is an execution with
input i and i � j then σ is also an execution with input j.
Executions in general may be only partially completed or

they may be unrealistic because certain actions are system-
atically being ignored. For process networks, that cannot
be tolerated and to be able to exclude such executions, we
next define the notions of maximality and fairness.

Definition 5.4. (Maximality) Let σ = s0
α0 s1

α1 . . . be an execution of the LTS. Execution σ with input
i is called maximal iff it is infinite or in its last configuration
only read actions on input channels from which all input of i
has been consumed are possible, i.e., if |σ| = n and sn

αn

then αn starts with c?a for some c ∈ I and σ?c = i(c).
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Figure 4: RPN Interface

Maximality states that the execution is complete, it has not
been stopped at some arbitrary state while there is more
input to be consumed or processed. Note that every finite
execution ρ with input i of an LTS can be extended to a
maximal execution with input i.
We can describe the externally observable behaviour of a

labelled transition system by relating the output actions the
LTS produces with the input provided to the network. In
general, this gives a relation between input histories and out-
put histories. One often restrict the attention to ‘proper’ ex-
ecutions in the sense that only maximal and fair executions
are taken into account. (Executions are fair if no enabled ac-
tions are systematically being ignored and never take place.)

Definition 5.5. (Input/Output Relation) The input
output relation IO of an LTS is the relation {(i, ρ!O) | ρ
is a maximal and fair execution with input i}.
As [4] argues, in general, the input/output relation is too ab-
stract to adequately characterise the behaviour of an LTS.
If it is non-deterministic, the order in which input is con-
sumed or output is produced can be relevant. For Kahn
process networks it is adequate, since the output only de-
pends on the input and not on the order in which operations
are executed. LTSs exhibiting such behaviour are called de-
terminate and their input/output relation is a (continuous)
function [6]. For our RPNs, the LTS cannot be determinate
because of the introduction of events. This is why we resort
to LTSs to define their semantics.

5.2 Reactive Process Networks
In this section, we present the details of what reactive

process networks are. To describe the state of an RPN, we
define a static part that remains the same during the life-
time of a network, and a dynamic part (configuration) that
describes what is going on in the network at some point in
time. Since RPNs have the ability to change their internal
structure, the precise structure is part of the dynamic con-
figuration. The static part of an RPN consists of its interface
to the outside world, i.e. the set of (types of) ports through
which it communicates. The input ports can be divided in
streaming input ports and event input ports.

Definition 5.6. (Interface) A (process network) inter-
face is a triple (SI ,EI , O) consisting of the disjoint sets
SI ⊆ Chans of streaming input channels, EI ⊆ Chans of
event input channels and O ⊆ Chans of output channels.

The interface of the rendering component in Figure 3 is
({sg}, {nrObj }, {fr}), graphically depicted in Figure 4.
To describe the dynamic configuration, we assume (to

simplify presentation) that there is a universal, fixed set
Procs of processes. With every process p ∈ Procs is as-
sociated an interface (SI p,EI p, Op) and a transition system

Channel contents ( )
Local process states ( )

Network structure ( )

sg fr

nrObj

sg fr

Figure 5: An RNP configuration

λp = (Sp, ŝp, Ip, Op,Act
∗, p), where Ip is partitioned into

the set SI p of stream input channels and the set EI p of event
input channels. These processes can be Kahn processes, but
they need not necessarily be.

Definition 5.7. (Configuration) A (process network)
configuration (ς, π, γ) consists of

• a network structure ς ∈ 2Procs × 2Chans that indicates
which processes and channels are present and active in
the current configuration; if ς = (R,C), then we use
Procs(ς) and Chans(ς) to denote active processes R
respectively the active channels C;

• a process configuration π : Procs(ς) → ⋃
p∈Procs(ς) Sp

is a function that assigns to every process p ∈ Procs(ς),
a state π(p) ∈ Sp;

• a channel configuration γ ∈ H(Chans(ς)) is a history
function that assigns to every channel c ∈ Chans(ς), a
finite string of tokens in Σc, representing the contents
of the channels.

Processes and channels are appropriately connected. This
means that for every channel c in Chans(ς), there is a pro-
cess p in Procs(ς) that writes to it, i.e. c ∈ Op and a process
q in Procs(ς) that reads from it, i.e. c ∈ Iq. The interface
(SI ,EI , O) of a structure consists of the set SI of stream
input ports of processes in ς for which there is no channel
in Chans(ς) connected to it, the set EI of event input ports
not connected to a channel and the set O of output ports not
connected to a channel. Two structures are called interface
compatible if they have the same interface.

The elements of a configuration are illustrated by Figure 5.
We use Confs to denote the set of all configurations. Having
interfaces and configurations, we can define what a reactive
process network is.

Definition 5.8. (RPN) A reactive process network (an
RPN) consists of

• an interface (SI ,EI , O);

• a set E ⊆ Confs → Confs of events; every event maps
configurations to (interface compatible) configurations;

• an initial configuration (ς̂ , π̂, γ̂) with interface (SI ,EI ,
O).

The interface is static. Events (may) cause a process net-
work configuration, which includes its structure, to change.
They roughly correspond to the transitions in the automata
of the RPNs. These events E arrive on the event input

142



channels EI . Finally, the process network needs some ini-
tial configuration (ς̂ , π̂, γ̂) to start from. Definition 5.8 is
very liberal. It allows any change that doesn’t affect the in-
terface. How the effect of an event can be defined in practice
is not elaborated in this paper. This may be small things
like a new gain factor or new filter coefficients in some signal
processing application, but it may also be a completely new
function with a new network structure. In a programming
system for RPNs, the latter type of event could correspond
to a method or procedure that can create or destroy pro-
cesses, channels or entire networks.
An example of such an RPN is the game application de-

picted in Figure 3 and discussed in Section 4. The streaming
structure at the bottom of the figure (in a some state of exe-
cution) is a particular configuration. The automaton at the
top is encoded in the event functions. Because they are func-
tions, it is possible to deal with information that is still in
the network (state information, or tokens in channels) in the
transition to a new configuration so that this information is
not lost. Hence, the configurations contain determine both
the state of the automaton of the RPN and the current state
of the processes of the current network. In the same way,
the object-based rendering component can be reconfigured
based on the number of objects that need to be rendered; an
event nrObj (2), for example, would reconfigure it to render
2 objects.

5.3 Operational Semantics
In this section, we define the operational semantics of a

reactive process network, by associating with it a corre-
sponding labelled transition system. An RPN consists of
processes, which may in turn be other RPNs, or ‘primi-
tive’ processes defined through other means. We construct a
compositional semantics in the sense that when the labelled
transition systems of the constituent processes are given,
we construct a new labelled transition system for the whole
RPN. This process is then repeated to inductively define the
semantics of the an entire RPN.
Two types of things may happen to the network: data

can be streaming through it, or it can encounter events that
need to be processed. The combination of streaming and
events will introduce non-determinism. The result however,
should be as predictable as possible. In particular, we want
to guarantee that input received before the arrival of a new
event will lead to the required output, also if the output has
not been completed when the event arrives. In implemen-
tations, this is achieved at the expense of a little extra syn-
chronisation. The added predictability of the network’s be-
haviour simplifies specifying the interaction between events
and streams in our semantics. In specific subclasses of the
RPN model, this synchronisation may be realised without
much overhead.
A typical operational semantics of KPNs [5, 14] models

streaming as a sequence of individual read and write actions
of the processes involved in the computation of the output.
Since, conceptually, the reaction of a process network to in-
coming data is immediate, it may not be disturbed by the
processing of events. To this end, in our RPN semantics,
these sequences of actions resulting from a data input are
grouped together and represented as single, atomic transi-
tions of the LTS. Effectively, this gives internal actions (i.e.
completing the reaction to already received input) priority
over processing of events. This leads us to the concept of
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Figure 6: Streaming transactions

sg?sg...fr!fr nrObj(2)
sg?sg sg?...3D 3D’ level_end Video

Figure 7: Execution of the 3D game RPN

so-called streaming transactions, as illustrated in Figure 6.
The picture on the left shows the states and transitions of
a process network performing individual input and output
actions. Because of pipelining, the network can perform sev-
eral input actions before the corresponding output actions
are produced. (In an actual implementation the amount of
pipelining may be restricted, but the semantics leaves all
options open.) These actions are grouped together to form
atomic transition, the streaming transactions, that end in
states where events can safely be processed. For example,
the sequence of transitions with thick arrows in the picture
forms a streaming transaction; from the end state, only read-
ing of new input is possible, all received input has been fully
processed. (These states correspond to maximal executions
and closely resemble the quiescent states of [16].) Some of
the other streaming transactions are shown in the picture
on the right.
The streaming transactions of an RPN are determined

in two steps. Individual streaming transactions of the con-
stituent processes are determined as well as the processing
of events by these processes. Executions of these actions
are then taken together to form maximal streaming trans-
actions of the network. Such streaming transactions may
not consume input events. However, they may include oc-
currences of internal events and hence they can be indeter-
minate. Figure 7 shows a part of a possible execution of
the 3D game example. The first transition is a streaming
transaction, consisting of streaming actions of the processes,
but also internals events (nrObj (2)). Note that we have ab-
stracted from internal actions of for instance the rendering
component, which would also be visible in these transac-
tions. The second transitions is an event, the player has
reached the end of a level, and the game is reconfigured
from 3D mode to the video mode. Such event transitions of
an RPN are directly determined by the reception of input
events, followed by the corresponding network transforma-
tion. The behaviour of the network as a whole is formed
by interleaving transitions of both kinds as in the example.
Events may lead to changes in the structure of a process
network.
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To make these concepts precise, the semantics of an RPN
is described by (the maximal executions of) a labelled tran-
sition system:

(Confs, ĉ,SI ∪ EI , O,Act∗, )

The initial configuration ĉ = (ς̂ , π̂, γ̂) is the initial configu-
ration of the RPN.
As a first step to defining the transition relation , we

define the transition relation

⊆ Confs × Act∗ × Confs

which defines all internal streaming activity in terms of sin-
gle transactions of its components. This transition relation
is defined by the following induction rule in SOS (Structured
Operational Semantics) notation.

π(p) α
ps, α ∈ Act∗, α?Chans(ς) � γ

(ς, π, γ) α (ς, π{s/p}, (γ − α?Chans(ς)) · α!Chans(ς))

If process p can perform action(s) α from its current state
π(p), bringing it to state s, and the read actions of α match
with the contents of the channels (α?Chans(ς) � γ), then
the network as a whole can perform action(s) α and in the
configuration, local state of p (π{s/p}) and channel contents
((γ − α?Chans(ς)) · α!Chans(ς)) are updated accordingly.
Note that α can be a stream (α ∈ Act∗, which may include
actions internal to process p) or an event (α = c?e, with
c ∈ EI p). This also means that internal action of the con-
stituent processes are not abstracted and remain visible in
the executions of the RPN. Such an abstraction would how-
ever be easy to add. In Figure 6, the internal actions of the
rendering component are not shown.
A sequence of -transitions is called maximal if it is

maximal with the input it has already consumed, i.e., c0
α0 c1

α1 c2
α2 . . . cn is maximal if for all αn and

cn+1 such that cn
αn cn+1, αn starts with input actions

from SI or EI .
Based on , we can now define the transition relation
of the RPN by grouping together individual transac-

tions of constituent processes into maximal streaming trans-
actions of the RPN and defining the event transitions. First,
the streaming actions.

c0
α0 c1

α1 c2
α2 . . . cn is maximal

c0
α0·α1·α2·...·αn−1

cn

The transitions correspond to the individual transitions
in the left side picture of Figure 6. The atomic transitions
to the transitions in the right side picture.
Next, we define the event transitions. External events

result in a global transformation of the network structure
and configuration.

e ∈ E, c ∈ EI

(ς, π, γ) c?e e(ς, π, γ)

The semantics identifies events with functions that trans-
form the configurations of the RPN. This leaves it open how
these functions are specified or implemented in practice. It
is unlikely that in an implementation, actual functions are
being communicated. It is not hard to imagine, however,
how an event can for instance be linked to a C/C++ func-
tion, associated with a specific event input port, that can

sg?sgfr!fr sg?sgfr!fr

n
rO
b j(2)

n
rO
bj(2 )

sg?sgfr!fr’

sg?sgfr!fr

n
rO
b j(2)

sg?sgfr!fr’ sg?sgfr!fr’

Figure 8: Prioritising actions

make the necessary modifications to the process network,
possibly dependent on parameters communicated with the
event. [Remark: Refer to example with reconfiguration of
rendering component.]
Together, the presented rules define the transition system

that formally captures the behaviour of Reactive Process
Networks. The intention is that this transition system de-
fines the boundaries of how an RPN can be implemented.
For specific implementations it may be desirable to impose
further restrictions for more predictability, better perfor-
mance or better timing behaviour.

5.4 Prioritising Events
The fact that the streaming transactions take arbitrary

amounts of input can be interpreted as freedom to choose
between processing events and processing new streaming
input. In principle, this allows the execution to postpone
processing of events for arbitrary periods of time. For the
object-based renderer, if an event arrives indicating the re-
quirement for extra processing elements for new objects, this
event should be processed before any new scene graphs ar-
rive which have more objects. If such a prioritisation of con-
trol messages is desired, it can be achieved by prioritising
processing of events over the consumption of new stream-
ing input. This is illustrated by Figure 8. The presented
semantics allows for states that can both process an event
(nrObj (2)) or continue processing of data (the streaming
transitions labelled ‘sg?sgnfr !frn’). Prioritisation of pro-
cessing events can be taken care of by removing the stream-
ing transitions for states where events are enabled. (In fact,
disabling the transition has to be taken care of at the level
of the process network in which this process is used, since
the presence of the event transition merely denotes that the
process can process the event if there is an event available.
The latter can only be checked on the level of the process
network.)

5.5 The Kahn Principle
A characteristic property of KPNs is known as the Kahn

Principle [5, 14]. This principle states that the simple oper-
ational model of KPNs as processes reading tokens from and
writing tokens to FIFO channels adheres to the denotational
semantics of KPNs formulated as fixed-point equations on
functions on strings of tokens communicated between pro-
cesses. Essential to this property is that processes compute
continuous functions on strings of tokens.
The extension of process networks with events makes that

the individual processes no longer realise such continuous
functions. It is well known [4] that a(n intuitive) denota-
tional semantics for this case does not exist and hence, a
principle similar to the Kahn Principle cannot be formu-
lated. One can still prove though along the lines of [14] that
as long as no events are being processed, the Kahn Principle
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still holds. This informally translates to the idea that when
there are no event activated, execution of the network can
continue, unsynchronised as for KPNs, without disturbing
the functional behaviour.

6. IMPLEMENTATION ISSUES
The operational semantics presented in this paper defined

the boundaries of the behaviour that correct implementa-
tions of RPNs should adhere to. Within these boundaries
there is still some room for making specific implementation
decisions, depending on the application and the context. In
this section, we briefly discuss some of these considerations
as well as a prototype implementation we made.

6.1 Coordinating Streaming and Events
One of the most powerful aspects of KPNs is that exe-

cution can take place fully asynchronously. Processes need
not synchronise and determinacy of the output is automat-
ically guaranteed. The (accepted) drawback of our gener-
alisation is that this advantage is (partially) lost. Before
processing an input event, the streaming input to the net-
work –conceptually– needs to be frozen and all data must
be processed internally. Only when all data has been pro-
cessed, the event can be applied and the data flow can be
continued. If implemented in this way, the pipelining of the
data flow may be disrupted and deadlines could potentially
be missed because of this disruption if the nature of the ap-
plication doesn’t allow this. In practice, one can do better
for many classes of systems. Instead of processing an event
for the whole process network at once, it may in some cases
be possible to make the changes along with the ‘information
flow’. In particular, if the response of a network to an event
is the forwarding of the event to one or more of its subpro-
cesses, then this forwarding can be synchronised with the
flow of data such that pipelining need not be interrupted.
The presented operational semantics suggests that events

must always be accepted by any process. In practice, it
can be useful to allow a process some control w.r.t. the mo-
ment when events are accepted. For example, to allow it
to accept events only at moments when the corresponding
transformation is most easy to do, because the process is in a
well-defined state, e.g. frame boundaries. Such an approach
can for example be easily implemented if the underlying pro-
cess network is an SDF graph and can hence be statically
scheduled. It is then possible to define a cyclic schedule in
such a way that one iteration of the cycle constitutes a sin-
gle streaming transaction. Then, a test for newly arrived
events can be inserted at the beginning of the cycle and
event transitions can be safely executed.

6.2 Deadlock Detection and Resolution
The correct execution of KPNs using bounded FIFO im-

plementations depends on the run-time environment to deal
with artificial deadlock situations [17, 6]. Processes may be
blocking because they are trying to write to a channel that
does not have the space available to accept another token.
If this situation turns into a cyclic dependency of processes,
the capacity of one of the blocking channels needs to be in-
creased. The same situation may arise in reactive process
networks. We expect that we can deal with these artifi-
cial deadlocks in a similar manner as for ordinary KPNs [6].
Solving an artificial deadlock may be needed for completing
the maximal transaction before processing an event.

class VideoFilter : public Process {
public:

VideoFilter(const Id& n, In<Frame>& frp,
In<AlphaFrame>& ovlp, Out<Frame>& ofrp);

/* streaming behaviour */
void main();

/* event handler */
void newOverlay(AlphaFrame new_ovl);

private:
/* ports */
InPort<Frame> fr;
EventInPort<AlphaFrame> ovl;
OutPort<Frame> ofr;

AlphaFrame current_ovl;

VideoFilter::VideoFilter(const Id& n,
In<Frame>& frp, In<AlphaFrame>& ovlp, Out<Frame>& ofrp):

Process(n),
fr(id("fr"), frp),
ovl(id("ovl"), ovlp, (void (Process::*)(AlphaFrame))

&VideoFilter::setNewOverlay),
ofr(id("ofr"), ofrp),
current_ovl(new AlphaFrame)

{ }

void VideoFilter::main() {
Frame processing_frame;

while(true){
fr.read(processing_frame);
applyOverlay(processing_frame, current_ovl)
out.write(processing_frame);

}
}

void VideoFilter::newOverlay(AlphaFrame new_ovl) {
current_ovl = new_ovl;

}

Figure 9: Fragment of Yapi specification with event
processing

6.3 Experimental Implementation
In an experimental implementation, we have extended

the Yapi [10] programming environment for implementing
KPNs according to the presented semantics. Process net-
works, the hierarchical entities in Yapi, as well as the basic
processes may receive events. We have chosen to use the pri-
ority model where further consumption of streaming input is
stalled as soon as some event arrives to stimulate a quick re-
sponse to events. All further internal actions are completed
and after the process or network has been flushed in this
way, the event is processed. After that, all input channels
will be enabled again and streaming input can resume.
The functions that are associated with events in our se-

mantics are implemented by member functions of the classes
that implement the network or process receiving the event.
This function is then linked to the event input port. Figure
9 shows, for instance, part of the definition of a video fil-
ter applying an overlay frame to all incoming video frames.
The overlay frame can be adapted through events. The class
definition defines the class VideoFilter as a process having
a streaming input port fr for incoming frames, a streaming
output port ofr for the output frames and an event input
port ovl. The member function main() deals with streaming
behaviour and the function newOverlay() is executed when-
ever a token arrives on the event input. The link between
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the port and the event handler is defined with the construc-
tion of the port. The streaming behaviour of the filter is
now a simple loop reading frames filtering the frame and
writing the output frame. Independently, the event han-
dler can update the current overlay frame. The run-time
environment will automatically manage the synchronisation
between streaming and even handling.
Because the behaviour of KPNs in Yapi cannot be anal-

ysed statically, a separate thread of execution is introduced
to monitor all event inputs. The run-time environment then
coordinates the execution of the streaming thread with the
events thread. If we would introduce event handling in stat-
ically analysable applications, such as SDF graphs, then the
event processing can be incorporated in the static schedule
resulting in an efficient implementation.

7. CONCLUSIONS
In this paper, we have introduced Reactive Process Net-

works as a formal model of computation for stream-based
applications with additional reactive behaviour. The model
intends to cover the behaviour of streaming kernels as well as
more dynamic, irregular streams and the enclosing control
components. The formal model provides a sound basis for
the construction of analysis tools as well as programming en-
vironments and APIs or synthesis tools for dynamic stream-
ing systems. A semantics is given in terms of a labelled tran-
sition system that prescribes the possible orderings of read
and write actions of the network. We have implemented an
extension of Yapi, a programming environment for Kahn
Process Networks originally developed at Philips Research,
along the lines of the presented model.
Future work includes analysis and synthesis methods and

tools that build upon this semantics. Attention should also
be focussed on subsets of the model that allow for efficient
implementation, such as Synchronous Data Flow models.
Furthermore, implementation aspects such as the run-time
deadlock detection and resolution mechanism have to be
adapted to the RPN model. Important will also be tim-
ing analysis of RPNs. Response times for events need to
be predictable, as well as throughput and latency of the
streaming.
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