
Compiler-Assisted Demand Paging for Embedded
Systems with Flash Memory ∗ †

Chanik Park‡ Junghee Lim§ Kiwon Kwon§ Jaejin Lee§ Sang Lyul Min§

§School of Computer Science and Engineering
Seoul National University, Seoul 151-744, Korea

{junghee,kiwon,jlee}@aces.snu.ac.kr, symin@dandelion.snu.ac.kr

‡Memory Division, Samsung Electronics Co., Ltd.
Hwasung-City, Gyeonggi-Do 445-701, Korea

ci.park@samsung.com

ABSTRACT
In this paper, we propose a novel, application specific de-
mand paging mechanism for low-end embedded systems
with flash memory as secondary storage. These systems
are not equipped with virtual memory. A small memory
space called an execution buffer is allocated to page an
application. An application-specific page manager man-
ages the buffer. The manager is generated by a compiler
post-pass and combined with the application image. Our
compiler post-pass analyzes the ELF executable image of
an application and transforms function call/return instruc-
tions into calls to the page manager. As a result, each
function of the code can be loaded into memory on de-
mand at run time. To minimize the overhead of demand
paging, code clustering algorithms are also presented. We
evaluate our techniques with five embedded applications.
We show that our approach can reduce the code mem-
ory size by 33% on average with reasonable performance
degradation (8-20%) and energy consumption (10% more
on average) for low-end embedded systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies; D.3.4

∗This work was supported in part by the Ministry of Educa-
tion under the Brain Korea 21 Project in 2004, by the Ministry
of Science and Technology under the National Research Lab-
oratory program, by the Institute of Computer Technology at
Seoul National Universy, and by the IT SoC Promotion Group
of the Korean IT Industry Promotion Agency under the Human
Resource Development Project for IT SoC Key Architects.
†
Correspondence to jlee@aces.snu.ac.kr.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04,September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

[Programming Languages]: Processors—code gener-
ation, compilers, optimization; D.4.2 [Operating Sys-
tems]: Storage Management—secondary storage, storage
hierarchies, virtual Memory

General Terms
Algorithms, Management, Measurement, Performance,
Design, Experimentation

Keywords
Compilers, Post-pass optimization, Clustering, Paging,
Heterogeneous memory, SRAM, Flash memory, Embedded
systems.

1. INTRODUCTION
Flash memory is widening its user base in mobile em-

bedded systems not only for data storage but also for code
storage due to its non-volatility, solid-state reliability, and
low power consumption. Typically, flash memory is cate-
gorized into two types: NOR and NAND. NOR type is par-
ticularly well suited to code storage and execute-in-place
(XIP) applications that require high-speed random access
[9]. While NAND flash does not lend itself to XIP applica-
tions due to its sequential access and long access latency,
it is good for data storage due to its lower cost per bit and
smaller cell organization (i.e., high density) [9]. As a re-
sult, NAND flash memory has been widely used in cellular
phones and portable memory cards in consumer electron-
ics.

A typical memory architecture for low-end embedded
systems, such as low-end cellular phones and memory card
controllers, consists of code storage (i.e., NOR flash mem-
ory, EEPROM, or Mask ROM), for bootstrapping and
firmware execution, and low-power SRAM for working
memory and data storage. To design such a low-end em-
bedded system, reducing the size of SRAM has been a
major concern because SRAM is a cost and power bottle-
neck. Another important design consideration is that the
firmware code should be easy to update because bug fixes

114

code data

SRAM

CPU

NAND

secondary
storage
(data) NOR

(a)

code data

SRAM

CPU

Mask
ROM

secondary
storage
(data)

NAND

(b)

code

data

CPU

SRAM

secondary
storage

& data)
(code

NAND

(c)

Figure 1: Different memory architectures.
(a) NOR+SRAM (b) Mask ROM+SRAM (c)
NAND+SRAM (shadowing)

or specification changes should be reflected to the system
in a timely manner at a low cost.

Recently, the size of the firmware is increasing from tens
of KB to hundreds of KB as new features, such as secu-
rity functions, are added to the system. As a result, an
efficient memory management for code has become a key
consideration in designing this type of embedded system.

Figure 1 shows the current trends of memory archi-
tectures in embedded systems with NAND flash mem-
ory. Figure 1(a) shows an architecture that uses NOR
flash memory for code storage and SRAM for working
memory (NOR+SRAM). This architecture gives mod-
erate performance and power consumption with ease of
firmware update. However, its cost is high due to the
NOR flash memory. The second architecture in Figure 1(b)
(MROM+SRAM) reduces the system cost by replac-
ing the NOR flash memory with cheaper mask ROM, but
its difficulty of update may cause nonrecurring engineer-
ing costs in the case of firmware bugs or functionality up-
grades. The more advanced solution (NAND+SRAM)
is shown in Figure 1(c). Neither NOR flash memory nor
mask ROM is used in this architecture. It uses NAND flash
memory for code storage with a shadowing technique[19].
Copying the whole firmware code into SRAM offers the
best performance possible at run time, but slows down
the boot process. Even though NAND+SRAM seems
to meet performance requirements and it is easy to update
firmware, additional SRAM is necessary to store both data
and code. This is not desirable because it increases cost
and power consumption. Among others, the most criti-
cal problem in existing memory architectures is that they
cannot accommodate the increasing code size without re-
designing existing systems. This is a big hurdle to time-
to-market delivery.

To solve the problems occurring in NAND+SRAM
architectures, we propose a novel demand paging technique
that can be implemented in a compiler post-pass (i.e., at
link time or on binary images). Our technique targets low-
end embedded systems without virtual memory or MMU
hardware support.

In our demand paging, a small size of SRAM space is
reserved to execute code. The application is divided into
multiple segments. Each code segment in the application
is loaded on demand into the reserved space and runs when
it is needed during execution. Intuitively, in order to uti-
lize the limited memory space, we can take advantage of
dynamic loading techniques such as overlays[14]. However,
this requires manual efforts by programmers to reorganize

the structure of the application. Moreover, restructuring
the application is impossible when the maximum size of
the call chain in the application is bigger than the mem-
ory space.

The proposed technique is implemented in our post-
pass optimizer, SNACK-pop (Seoul National university
Advanced Compiler tool Kit - post-pass optimizer).
SNACK-pop transforms each function call/return instruc-
tion in an application’s ELF binary to a call to the small
page manager that then becomes part of the application it-
self. The page manager always resides in SRAM. It checks
if the target segment of the branch instruction resides in
SRAM. If so, it just passes control to the target in SRAM.
Otherwise, the page manager loads the code segment from
the NAND flash memory to SRAM and passes control to
the target in SRAM.

With our compiler-assisted demand paging technique,
code memory size can be significantly reduced with rea-
sonable performance degradation and energy consumption.
As a result, we can build a cost-effective memory system
for low-end embedded systems with limited resources.

The rest of this paper is organized as follows. Section 2
describes the overall framework of our approach. Section 3,
presents our approach in detail. Section 4 describes the
evaluation environment. Section 5 discusses the experi-
mental results obtained. Section 6 lists related work. Fi-
nally, Section 7 concludes the paper.

2. OVERALL FRAMEWORK
In this section, we describe the basic idea of our demand

paging technique implemented in the compiler’s post-pass.
Before we get to this issue, we look into the organization
and basic operations of the NAND flash memory.

2.1 Background: NAND Flash Memory
NAND flash memory consists of a fixed number of

blocks, where each block has 32 pages and each page con-
sists of 512 or 2048 bytes of main data and 16 or 64 bytes
of spare data (Figure 2).

Main data Spare data

Spare registerData register

512/2048 bytes 16/64 bytes

1 Block=32/64 pages

10−25us/page

50ns/wordCommand

Address

I/O bus

Figure 2: The organization of NAND flash
memory.

Read/write operations are performed on a page basis. In
order to read a page, a read command and an address are
fed into NAND flash memory through I/O pins. After 10-
25us of delay, the requested page is loaded into data and
spare registers. Thereafter, 8 or 16-bit data is sequentially

115

fetched from data and spare registers every 50ns. Conse-
quently, an efficient random access to the data is impossi-
ble. This is partly why shadowing is required to store code
in NAND flash memory, and why it is not commonly used
for code storage.

In order to support primitive operations of NAND flash
memory, such as reset, read, write, and erase, a software
driver (flash driver) is needed. Each flash operation con-
sists of a sequence of commands and addresses. The flash
driver always resides in SRAM due to its criticality. Our
demand paging technique extensively uses the page-based
flash read operation.

Disassemble

Dependence,
Control−flow,

and
Escape

Analyses

Call Graph
Generation

Clustering
and

Segmentation

Branch Expansion

Profile
Information

ELF binary
Page

Manager

Image

Binary

Segmented

Application
Image

SNACK−pop

(a)

NAND

Memory
Flash

page 0

page 1

page 2

page 3

Region
for

Page
Manager

SRAM

Data

Area

Execution

Buffer

page 0

page 1

page 2

page 3

page n

(b)

Figure 3: Our framework. (a) SNACK post-
pass optimizer. (b) SRAM memory layout.

2.2 The Framework
Figure 3(a) shows the overall framework of our approach.

An ELF binary with symbolic information is fed into the
SNACK post-pass optimizer. It performs conservative
data-dependence, control-flow, and escape analysis using
the information provided by the ELF executable format[1].

In the escape analysis phase, it detects addresses of con-
stant data in the code section that are passed as an argu-
ment to a function. The constant data in the code section
will be copied and clustered together with the function
that receives the addresses, or they will be moved to a fixed
region in the page manager later. Then, SNACK-pop gen-
erates a static call graph for the application. The static
call graph can be annotated with additional profiling in-
formation. The functions in the application are clustered
together into segments using the call graph information.
The size of each segment is a multiple of 512B or 2KB
that is the same as the page size in the NAND flash mem-
ory. Finally, SNACK-pop converts function calls/returns
in the image to the calls to the page manager. The page
manager code and the segmented code together become
the final executable image.

Every control transfer instruction between functions in
the original image is transformed into a call to the page
manager. The page manager checks if the target function
is found in the execution buffer. The execution buffer is
the region in the SRAM where paging occurs. The SRAM
memory layout is shown in Figure 3(b). If the target func-
tion is not in the execution buffer, the manager invokes the
flash driver to load the target code from the NAND flash
memory to the execution buffer. The execution buffer con-
sists of multiple pages. Its page size is equal to the page
size of the NAND flash memory. The size of the execu-
tion buffer varies as performance requirements vary. The
page manager resides in SRAM to handle page faults. It
contains page fault handling routines and the flash driver.
Data area in the SRAM is for the program stack and heap.
Its size is known at link time.

Our approach focuses on reducing the code space size
in the SRAM. The entire segmented image resides in the
NAND flash memory before it runs.

3. COMPILER – ASSISTED DEMAND
PAGING

In this section, we elaborate on our compiler assisted
demand paging techniques.

3.1 Segmentation
The compiler post-pass transforms the binary image of

an application into an executable form that is suitable for
demand paging. Code sections in the image are divided
into segments. Each segment consists of single or multiple
pages. The page size is the same as the page size of the
NAND flash memory. Each segment satisfies the following:

• Its size is a multiple of the page size, and it contains
at least one page.

• It contains at least one function. A function cannot
be contained across different segments.

For example, the binary image as shown in Figure 4(a)
consists of 7 functions A, B, C, D, E, and F. This image
can be segmented into the image shown in Figure 4(b).
Note that the size of the segmented image is bigger than
the original because of the internal fragmentation caused
by segmentation.

116

A

D
C
B

E

F

(a)

���

���

���

���

������������������

���������
���������
���������
���������

���������
���������
���������
���������

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�����������������
�����������������
��������
��������

A

D

page 0

page 1

page 2

page 3

page 4

page 5

page 6

segment 0

segment 1

segment 2

segment 3

C
B

E

F

(b)

Figure 4: The original image and the image
after segmentation. (a) The original image.
(b) The image after segmentation.

3.2 Page Manager and Execution Buffer
The page manager contains a page table, a buffer page

table, and a segment table. The tables for the application
in Figure 4 are shown in Figure 5.

A page table entry consists of two fields, a segment in-
dex and a buffer page index. The segment index field is
the index of the segment to which an image page belongs.
The buffer page index field is set to -1 if the image page
does not reside in the execution buffer. If the image page
exists in the buffer, the field is set to the corresponding
buffer page index. Because the image after segmentation
contains 7 pages, there are total 7 entries in the page table
in Figure 5(a).

A buffer page table entry contains the image page index
that has been loaded in the corresponding buffer page. In
Figure 5(b), there are a total of 4 SRAM pages allocated
in the execution buffer for paging.

A segment table entry consists of three fields, the indexes
of beginning and ending image pages of the segment and
the number of pages in the segment. Because the image
after segmentation contains 4 segments, there are total 4
entries in the segment table in Figure 5(c).

The execution buffer is shown in Figure 6. It consists
of the physical pages allocated in SRAM and a pointer
to the next available page (PNAP) in the buffer. PNAP
contains the index of the first buffer page available for
paging. We assume a round-robin page replacement policy.
The smallest replacement unit for paging is a segment. If
buffer pages are needed for loading a new segment, and
if PNAP points to the end of the execution buffer or the
number of pages from PNAP to the end of the buffer is less
than the number of pages in the segment, then PNAP is
wrapped around and points to the first page of the buffer.
Then, the pages from the first buffer page are overwritten
with the segment, and PNAP is set to the index of the
page next to the loaded segment.

Page Table

Index Segment Buffer
Index Page Index

0 0 0
1 0 1
2 0 2
3 1 3
4 2 -1
5 2 -1
6 3 -1

(a)

Buffer Page Table

Index Page Index

0 0
1 1
2 2
3 3

(b)

Segment Table

Index Start End Size

0 0 3 3
1 3 4 1
2 4 6 2
3 6 7 1

(c)

Figure 5: Tables maintained by the page man-
ager. (a) Page Table. (b) Buffer Page Table.
(c) Segment Table.

��

��

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Available

Pointer
Page

segment 0

segment 1

page 0

page 1

page 3

A

B C

A

Apage 2

Figure 6: The execution buffer.

3.3 Page Management
Whenever the page manager receives the target address

a of a function call/return, which is an absolute address in
the segmented image, it does the following (Figure 7):

1. If there is a return address rbuffer in the linkage reg-
ister, it converts rbuffer to the corresponding abso-
lute address r in the segmented image and saves it
to the linkage register. Note that the return address
rbuffer is a physical address in the buffer (SRAM).

2. It computes the corresponding absolute page index p
using a,

p = (a− base) >> log2P

where base is the starting address of the image, and
P is the page size.

3. It accesses the page table with p. If the value b of
the buffer page index field is less than 0 (this means
that a page miss occurs),

(a) With the value s of the segment index field of
the page table entry p, it accesses the segment

117

Segmented
image

p
s

p
s ls+ −1

ls

Execution
buffer

a
buffer

p
s

a− *P

base
buffer

n
buffer

−1

segment s

p

PNAP*P

a−(base+p*P)

base

b

PNAP

b*P

a

Figure 7: Converting the target address in
the image to the address in the buffer.

table. It obtains the starting absolute page in-
dex ps and the length ls of the segment s.

(b) If PNAP + ls > nbuffer, PNAP is set to the
first buffer page index (i.e., 0), where nbuffer is
the number of buffer pages.

(c) It accesses the buffer page table to obtain the
page table indexes of the image pages residing in
the buffer pages from PNAP to PNAP + ls−1.
It sets to -1 the buffer page index fields in the
page table using the indexes (i.e., the corre-
sponding pages are invalidated).

(d) The segment s is loaded from the flash mem-
ory to the execution buffer pages PNAP to
PNAP + ls − 1. The page table entries from
ps to ps + ls − 1 and the corresponding buffer
page table entries are updated.

(e) The buffer address abuffer that corresponds to
the absolute address a is obtained by,

abuffer = (a−ps∗P)+(basebuffer+PNAP ∗P),

where (a−ps∗P) is the offset of the target in the
segment, and basebuffer is the starting address
of the first buffer page.

(f) PNAP is updated to point to the next available
buffer page PNAP + ls.

(g) Set pc to abuffer (i.e., a jump to the target oc-
curs).

4. Otherwise (if a page hit occurs, b ≥ 0), it computes
the corresponding buffer address abuffer.

(a) abuffer = (a−(base+p∗P))+(basebuffer+b∗P),
where a−(base+p∗P) is the offset of the target
in the image page p, and basebuffer +b∗P is the
physical address of the buffer page that contains
the image page p.

(b) Set pc to abuffer (i.e., a jump to the target oc-
curs).

3.4 Call/Return Translation
When the segment to which the target address of a

function call/return belongs has been paged out from the
buffer, it is impossible to jump to the target address. Con-
sequently, each function call/return that has the target
address in another segment must be translated into a call
to the page manager. The absolute target address in the
image is passed to the page manager. The page manager
loads the segment that contains the target address to the
execution buffer.

...
BL foo
...

⇒

...
BL L foo
...

L foo: STMFD sp!, {r0, lr}
MOV r0, function addr
LDR pc, manager func BL

(a)

...
B foo
...

⇒

...
B L foo
...

L foo: STR r0, [sp, #-4]
MOV r0, function addr
LDR pc, manager func B

(b)

...
MOV pc, lr
...

⇒

...
B L lr
...

L lr: LDR pc, manager func lr

(c)

...
MOV pc, rx
...

⇒

...
B L rx
...

L rx: STR rx, [sp, #-4]!
LDR pc, manager func rx

(d)

Figure 8: Branch translation. (a) When the
call uses the linkage register lr for return. (b)
When the call does not use the linkage regis-
ter lr for return. (c) Return (d) The pattern
of the function calls that use function point-
ers.

However, there are some exceptions. The post-pass op-
timizer divides the calls into two categories depending on
their types.

The target of the call is in the same segment.
In this case, we do not need to translate the function call
into a call to the page manager. Whenever the function
call of this type occurs, the page that contains the target
address resides in the execution buffer. However, before
the call occurs, the return address must be translated into
the absolute address in the image and saved in the linkage
register. The extra code for this translation can be located
in the space due to internal fragmentation in the segment,
or the page manager can handle the translation. Whenever
a return occurs, the page manager uses the absolute ad-
dress saved in the linkage register to find the corresponding
location in the execution buffer.

118

The target of the call is not in the same seg-
ment. Each call of this type is translated into a call to
the page manager. The target address is passed to the
page manager. The page manager takes an appropriate
action described in Section 3.2. The extra code generated
by the translation is located in the space due to internal
fragmentation in the segment.

Figure 8(a) and (b) show the translation when the tar-
get is not in the same segment. When the call is of type
“BL foo”, the register r0 and the linkage register lr are
saved on the stack (Figure 8(a)) before the page manager
is called. The register r0 is used to pass the address of
the function “foo”. After the page manager is called, it
retrieves the saved value of lr from the stack and converts
the physical return address to the absolute address in the
image. After r0 is restored from the stack, lr is set to
the absolute address. Then, control is transferred to the
function “foo” from the page manager. When the call is
of type “B foo” (Figure 8(b)), its translation is similar to
the case of “BL foo”, but it does not modify lr.

Function returns. When the callee returns control
to the caller, it is not guaranteed that the caller resides
in the execution buffer. This means that the post-pass
optimizer always needs to translate a function return to a
page manager call. Figure 8(c) shows the translation. The
page manager loads the target segment in the execution
buffer using the value of lr, and control is passed to the
target address in the buffer.

Function pointers. Figure 8(d) shows call patterns
using function pointers (i.e., pc is set to the value of some
register rx, not lr). Before the page manager is called, rx is
saved on the stack. The page manager retrieves the value
of rx (the physical target address) from the stack, con-
verts it to an absolute address, and then loads the target
segment in the execution buffer using the absolute target
address. Then, control is passed to the target in the buffer
(see Section 3.2 for more detail).

3.5 Constant Data
When a chunk of constant data in the code section is

accessed by multiple functions in different segments, the
chunk is copied into a space at the end of the page manager
(i.e., the data chunk is pinned in the page manager region
in the execution buffer). This is because the constant data
chunk must be in the execution buffer whenever one of the
functions accesses the data. There are two cases when we
pin a chunk of constant data.
Different functions directly access the data. In this
case, we just copy the chunk to the pinned region in the
page manager.
Different functions indirectly access the data. When
this occurs, the address of the data is passed to the func-
tion. The post-pass optimizer performs a conservative es-
cape analysis to detect such a case. Then, it copies the
escaping constant data to the pinned region in the page
manager.

3.6 Optimization by Pinning Segments
There are two significant forms of overhead in our seg-

mented paging mechanism. One is extra branching and
computation due to the page manager calls. The other

B
652

512
A

212
D E

316

F
160

C
256

G
248

H
128

I
416

(a)

B
652

512
A

E
316212

D H
128

C
256

I
612

(b)

384
CH

864
DB

E
316

I
612

512
A

(c)

864
DB

E
316

I
612

CHA
896

(d)

Figure 9: Clustering of functions using a
static call graph. (a) The original static call
graph. (b) After determining the functions to
be pinned in the resident segment. (c) After
merging each single-parent leaf node to their
parent node. (d) After merging a node n that
has no parents and its child whose only parent
is n.

is page misses that occur when the segment requested is
not in the execution buffer. If we pin some segments in
the execution buffer and make them never page out, these
types of overhead will be reduced significantly. Since res-
ident segments are never paged in and out, the function
call/return targets in the resident segments do not need
to be translated into calls to the page manager, which re-
duces the branching overhead. Moreover, if the resident
segments are frequently accessed, the total number of page
misses will be significantly reduced. To determine the seg-
ments to be pinned, we use static call graph information,
dynamic profiling information, or user hints in the case of
time-critical code.

3.7 Clustering Techniques
In this section, we describe function clustering tech-

niques used in our segmented paging. We can think of
a variety of clustering techniques to improve the locality
of segments in the execution buffer. We use three different
clustering techniques in this paper.

3.7.1 Basic Clustering(Base)

We cluster functions in order of their occurrence in the
original image. Each segment contains exactly one func-
tion. However, if internal fragmentation of the segment is
big enough for the next adjacent function, we include it in
the current segment. Note that the size of a segment is a
multiple of the page size.

119

3.7.2 Static Clustering(Static)

We cluster functions into segments using the static
call graph generated from the original image. Let
max seg size be the maximum segment size allowed for
clustering and max res func size be the maximum size
of a function that can be pinned in the resident segment.

1. Each leaf node whose size is less than
max res func size and whose number of par-
ents is greater than one is clustered into the resident
segment in some order until the resident segment is
full. We remove the leaf node from the call graph.

2. Each single-parent leaf node is merged to its par-
ent if the size of the parent plus its size is less than
max seg size. Repeat this step until there is no
change in the call graph.

3. Starting from the root node of the call graph, if a
node n has no parents, merge its child c whose only
parent is n to n itself. The children of c becomes
the children of n and n becomes a parent of them.
Repeat this step until there is no change in the call
graph.

4. Each node in the call graph becomes a segment.

For example, we have a static call graph shown in Fig-
ure 9(a). The labels in each node represent the names
of the functions contained in the node and the size of
the node in bytes. Let max seg size be 1024 bytes and
max res seg size be 512 bytes. In the first step, the func-
tions F and G are placed in the resident segment (Fig-
ure 9(b)). In the second step, D is merged to B and H is
merged to C (Figure 9(c)). Finally, CH is merged to A
in the third step (Figure 9(d)). The nodes BD, ACH, E,
and I in the final call graph become three segments in the
segmented image.

If a function (called a header function) and all its de-
scendants are in the same segment, and there is no call to
the descendants from outside the segment, the calls from
the header function to the descendants do not need to be
translated to the page manager calls. The same is true for
the returns from the descendants.

3.7.3 Clustering with Profiling Information(Profile)

Functions can be clustered with segments based on pro-
filing information (i.e., using the dynamic number of calls
to each function). After profiling, functions are sorted ac-
cording to the number of calls to them in decreasing order
and placed in a list. Let max res seg size be the size of
the resident segment. The function with the highest num-
ber of calls and all its descendants in the call graph are
clustered to the resident segment if their total size is less
than max res seg size. Then, they are removed from the
sorted list. The same process goes on with the next high-
est function in the list until there is no room left in the
resident segment. For the remaining functions in the list,
we use the basic clustering technique (Base).

Application Source Code Size (SRAM)
Description

(Quicksort) MIBench 3544B (4KB)
A quick sort implementation.

(Dijkstra) MIBench 3586B (4KB)
An implementation of Dijkstra’s
shortest path algorithm.

(Sha) MIBench 2432B (3KB)
An implementation of the secure hash
algorithm that produces a 160-bit
message digest.

(ADPCM-enc) MediaBench 1624B (2KB)
An implementation of the speech com-
pression algorithm for adaptive differ-
ential pulse code modulation.

(ADPCM-dec) MediaBench 1624B (2KB)
A decompresser of ADPCM-enc.

(Bitcount) MIBench 12420B (12KB)
Tests bit manipulation capabilities of
a processor by counting the number of
bits in an array of integers.

Combine Synthetic 13684B (14KB)
A multi-function program in which
Quicksort, Dijkstra, Sha, ADPCM-
enc, ADPCM-dec, and Bitcount are
combined together.

FFT MIBench 15776B (16KB)
An implementation of discrete Fourier
transformation.

Epic MediaBench 32196B (32KB)
An image data compression util-
ity based on the bi-orthogonal
critically-sampled dyadic wavelet
decomposition and a combined
run-length/Huffman entropy coder.

Unepic MediaBench 23268B (23KB)
A decompresser ofEpic.

MP3 (Mad) MIBench 36912B (37KB)
A decoder for the MP3 audio data for-
mat.

Table 1: Applications used. Combine is
a combination of quicksort, dijkstra, sha,
ADPCM-enc, ADPCM-dec, and bitcount.

4. EVALUATION ENVIRONMENT

4.1 Applications
We evaluate our scheme using 10 embedded applications

from MI bench [6] and Media bench [8]. The descriptions
of the applications are summarized in Table 1. To reflect
the situation of realistic embedded mobile applications to
our evaluation, we converted the file I/O routines in the
applications to the routines that access memory.

Since Quicksort,Dijkstra, Sha, ADPCM-enc, ADPCM-
dec, and Bitcount have code size that is too small to eval-
uate our demand paging schemes, we combined them and
made one synthetic application, Combine. In Combine,
each of these 6 applications is executed (called) once. Com-
bine represents multi-function embedded applications that
execute one function at a time.

120

4.2 Simulation Environment
The evaluation is done using simulation. Our simulation

environment is ARMulator[2]. The architecture modeled
is ARM7 without caches. For the ARM7 architecture, AR-
Mulator gives 100% cycle accurate simulation results. The
clock is 20Mhz and the SRAM access time is 50ns in the
simulation runs. The NAND flash read latency in Sec-
tion 2.1 is fully considered in the simulation. The latency
to read one page (512 bytes) from NAND cell to page reg-
ister is 10us. Reading 256 16-bit words from the page
register to SRAM takes 256 × 50ns = 12.8us.

5. EXPERIMENTAL RESULTS

5.1 Performance
Figure 10 compares the execution time of each applica-

tion under different paging schemes with various SRAM
sizes: basic demand paging (Base), demand paging with
static clustering (Static), and demand paging with pro-
filing information (Profile). The SRAM size varies from
(page manager size + resident segment size + the max-
imum non-resident segment size) to the code size in the
original image. For each application, the bars represent
the execution time under specific SRAM size. No bar for
one of the clustering schemes means that we cannot run
the segmented image under the scheme due to the code
size. The bars are normalized to the execution time of the
application when the entire image fits in the SRAM (i.e.,
without paging). Figure 10 also shows the page hit rate of
each application under different clustering schemes.

Base slows down each application significantly. It suf-
fers from many page misses and indirect page manager call
overhead. However, it reduces the SRAM size by about
50% compared to the size required by the original image.
In particular, Base is very effective for MP3. This is be-
cause MP3 has well divided phases in its running sequence.

Static performs very well for all but FFT. Except for
FFT, its performance degradation is less than 20%. For
Epic and Unepic, performance degradation is less than
10%. We see that the static clustering technique signif-
icantly reduces the number of indirect page manager calls
and page misses. Profile performs almost equally well with
Static. This is also due to the reduction of the number of
indirect page manager calls and page misses by pinning
some segments the area in SRAM.

Our paging schemes degrade the performance of FFT a
lot because of page misses. Many page misses occur be-
cause FFT’s working set requires that the SRAM size be
equal to the original image size. This type of application
is not well suited to our demand paging scheme. However,
for applications with well divided phases, such as Com-
bine, Epic, Unepic, and MP3, our paging scheme is very
effective.

Table 2 summarizes the smallest SRAM size with
less than 20% slow down for each application with our
compiler-assisted demand paging techniques. For FFT, we
choose an SRAM size equal to the original image size and
we do not apply demand paging.

Original SRAM size with
Application Code Size demand paging

(ratio to the original)

Combine 14KB 10KB (71%)
FFT 16KB 16KB (100%)
Epic 32KB 16KB (50%)
Unepic 23KB 18KB (78%)
MP3 37KB 22KB (59%)
Average 24.4KB 16.4KB (67%)

Table 2: The smallest SRAM size with less
than 20% slow down.

5.2 Effects of Page Manager Calls
Figure 11 shows the number of page manager calls exe-

cuted for each application for each scheme. The number is
normalized to the number in Base. Static has the smallest
number due to clustering related functions together in a
segment and pinning the functions with multiple parents
in the resident segment. This is why Static often performs
better than Profile. Profile is able to reduce the number
of page manager calls significantly by pinning some func-
tions in the resident segment. Note that control does not
need to go through the page manager if the target is in the
resident segment.

Application Normalized Energy Consumption

Combine 1.16
FFT 11.77
Epic 1.08
Unepic 1.02
MP3 1.14

Table 3: Energy consumed by each applica-
tion at the SRAM size specified in Table 2.

5.3 Energy Consumption
In this paper, we focus on the energy consumed by the

CPU and memory components: SRAM and NAND flash
memory. In addition, we consider only the energy con-
sumed by the CPU and memory when they are active
because energy-aware embedded systems can selectively
place idle components into lower power states[16, 15].

In the case of memory components, the number of mem-
ory accesses is directly proportional to the active power
specified in the data sheet provided by the vendor[4, 13].
Thus, we can estimate the energy consumption E using
the following:

E = Ecpu + Ememory

Ecpu = tactive × Pcpu

Ememory = Naccess × Eactive

where tactive is the total amount of time when it executes
instructions, and Pcpu is the average power consumed by

121

0.0

0.2
0.4

0.6
0.8

1.0

1.2
1.4

1.6
1.8

2.0

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5
SRAM size (KB)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

Base Static Profile Base Hit Rate Static Hit Rate Profile Hit Rate

(a) Combine

0
2
4
6
8

10
12
14
16
18
20

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0
SRAM size (KB)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0Base Static Profile Base Hit Rate Static Hit Rate Profile Hit Rate

(b) FFT

0

1

2

3

4

5

6

11
.0

11
.5

12
.0

12
.5

13
.0

13
.5

14
.0

14
.5

15
.0

15
.5

16
.0

16
.5

17
.0

17
.5

18
.0

18
.5

19
.0

19
.5

20
.0

20
.5

21
.0

21
.5

22
.0

22
.5

23
.0

23
.5

24
.0

24
.5

25
.0

25
.5

26
.0

26
.5

27
.0

27
.5

28
.0

28
.5

29
.0

29
.5

30
.0

30
.5

31
.0

31
.5

SRAM size (KB)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Base Static Profile Base Hit Rate Static Hit Rate Profile Hit Rate

(c) Epic

0.0

0.5

1.0
1.5

2.0

2.5

3.0

3.5
4.0

4.5

5.0

13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0
SRAM size (KB)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

0%

10%

20%
30%

40%

50%

60%

70%
80%

90%

100%

Base Static Profile Base Hit Rate Static Hit Rate Profile Hit Rate

(d) Unepic

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

18
.5

19
.0

19
.5

20
.0

20
.5

21
.0

21
.5

22
.0

22
.5

23
.0

23
.5

24
.0

24
.5

25
.0

25
.5

26
.0

26
.5

27
.0

27
.5

28
.0

28
.5

29
.0

29
.5

30
.0

30
.5

31
.0

31
.5

32
.0

32
.5

33
.0

33
.5

34
.0

34
.5

35
.0

35
.5

36
.0

36
.5

37
.0

SRAM size (KB)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Base Static Profile Base Hit Rate Static Hit Rate Profile Hit Rate

(e) MP3

Figure 10: Execution time and page hit rates for different clustering schemes.

122

0.0

0.2

0.4

0.6

0.8

1.0

Combine FFT Epic Unepic MP3N
or

m
al

iz
ed

 N
um

be
r o

f P
ag

e
M

an
ag

er
 C

al
ls

Base Static Profile

Figure 11: The number of page manager calls executed.

the CPU in this period. Eactive is the average energy con-
sumed by one memory access, and Naccess is the number
of read and write operations to memory. Pcpu and Eactive

are obtained by the data sheet provided by the vendor[4,
13]. Naccess and tactive can be obtained from simulation
runs with ARMulator for each application.

Table 3 shows the estimated energy consumption us-
ing the formula. To compute the numbers, we used the
SRAM size shown in Table 2 with our best demand pag-
ing schemes. The energy consumption is normalized to
the case of the entire original image running on SRAM.
The energy consumption of FFT is high with our demand
paging schemes. This is due to prolonged execution time
caused by the demand paging. The system designer can
run this type of application without applying demand pag-
ing and with the SRAM of the original code size when it is
necessary. Other than that, our demand paging consumes
about 10% more energy, on average, than without paging.

5.4 Real-Time Constraints
It is not easy to distinguish time-critical code from the

given binary image. A straightforward solution is to make
programmers provide the post-pass optimizer with some
hints or pinning information of the time-critical code sec-
tions. The sections are locked in SRAM and not to be
paged when the application is running. On the other
hand, the system designer can choose the SRAM size and
the paging schemes depending on their cost, energy, and
real-time requirements using the performance data in Fig-
ure 10.

Overall, we see that, with compiler-assisted demand pag-
ing, we can reduce the SRAM size by 33% on average for
most of the applications, with 8-20% of performance degra-
dation and 10% of more energy consumption compared
with no demand paging. This shows that our demand
paging is very effective at reducing the code memory size
in low-end embedded systems.

6. RELATED WORK
To obtain better code memory space utilization, much

work has been done and the results have been used prac-
tically. The idea of code overlay techniques is to load code
and data in memory when needed[14]. The user needs
to explicitly implement the overlay structure in the appli-
cation. It may be very difficult for users to obtain deep
knowledge of the application program structure. More-
over, if the function call depth is large and exceeds the
amount of memory allocated to the application, it is im-
possible to run the application with the conventional over-

lays. Our compiler-assisted demand paging is automatic
and can run large programs in limited physical memory.
It does not depend on the call depth of the application.

Virtual memory management in a typical operating sys-
tem is an automatic technique that allows code to execute
in the physical memory smaller than the code size. The
main advantage of virtual memory is that programs can
be much larger than the physical memory. However, this
technique requires operating system or hardware (MMU)
support for efficient implementation. This approach may
not be suitable for low-end embedded systems with limited
resources.

Park et al. [12] proposed NAND execute-in-place (XIP)
to allow direct code execution from NAND flash memory
with cache controller support. In this approach the addi-
tional cost incurred by the hardware cache controller may
not be acceptable to low-end embedded systems. Park
et al. [11] characterized conventional paging mechanisms
for energy consumption when paging was applied to em-
bedded applications stored in NAND flash memory. They
proposed an energy-aware page replacement policy for the
applications stored in NAND flash memory. Their ap-
proach requires virtual memory or hardware (MMU) sup-
port. Tomiyama and Yasuura [18] proposed code place-
ment techniques that reduce instruction cache miss rate.
They used integer linear programming and profiling infor-
mation (traces) to place code in main memory in such a
way that the instruction cache misses are minimized. Our
code clustering techniques use both static and dynamic
call-graph information and pin some code sections in mem-
ory.

Recently, compiler techniques that exploit software-
exposed speed-differentiated memory (a.k.a. scratch-pad
memory) were proposed[3, 17, 20, 7, 10, 5]. Scratch-pad
memory is part of heterogeneous memory in the system.
Avissar and Barua [3] proposed an automatic data par-
titioning algorithm between heterogeneous memory units
to improve performance. Steinke et al. [17] proposed a
selection algorithm using a compiler. The algorithm se-
lects beneficial program parts and variables when they are
placed in scratch-pad memory to save energy. Verma et
al. [20] proposed an algorithm that can be applied to
embedded systems with caches in addition to scratch-pad
memory in order to reduce energy consumed by instruction
memory. Jain et al. [7] introduced methods to improve
cache predictability and performance using application-
specific cache replacement mechanisms based on the infor-
mation obtained by software assistance. Panda et al. [10]
introduced techniques to partition on-chip memory into

123

scratch-pad memory and cache. They assign critical data
in the program into the scratch-pad memory to improve
performance. Francesco et al. [5] proposed a mechanism
that exploits direct memory access (DMA) engines and ap-
plication programmer’s interfaces (APIs) to reduce mem-
ory copy cost occurred in transferring data between hetero-
geneous memory units. Our approach is similar to theirs
in that we focus on embedded systems with heterogeneous
memory. However, our goal is to run code that is bigger
than the available memory without significant performance
degradation and with comparable energy consumption.

7. CONCLUSIONS
This paper introduced a compiler-assisted demand pag-

ing technique for low-end embedded systems. This tech-
nique is essential to low-end embedded systems with lim-
ited memory and no operating system or hardware sup-
port.

Our experimental results showed that the proposed ap-
proach is cost-effective and promising. Our approach re-
duces code memory size by 33% on average for most of
the applications with 8-20% performance degradation and
10% more energy consumption on average. The embedded
system designer can choose the SRAM size and the paging
schemes we proposed depending on their cost, energy, and
real-time requirements.

In the near future, we plan to extend our work to sup-
port demand paging in embedded systems with memory
management units or a real time operating system that
does not have virtual memory. Also, we plan to investigate
more sophisticated code clustering techniques for demand
paging.

8. REFERENCES
[1] Andrew W. Appel. Modern Compiler Implementation in

Java. Cambridge University Press, 2002.

[2] ARM. ARM Developer Suite Version 1.2: ARM Debug

Target Guide. ARM Limited, 2001.

[3] Oren Avissar and Rajeev Barua. An Optimal Memory

Allocation Scheme for Scratchpad-Based Embedded

Systems. IEEE Transactions on Embedded Computing

Systems, 1(1):6–26, 2002.

[4] Samsung Electronics Co. NAND Flash Memory and

SmartMedia Data Book. 2002.

[5] Poletti Francesco, Paul Marchal, David Atienza, Luca

Benini, Francky Catthoor, and Jose M. Mendias. An

Integrated Hardware/Software Approach for Run-Time

Scratchpad Management. In The 41st Design Automation

Conference (DAC 2004), pages 238–243, June 2004.

[6] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,

Todd M. Austin, Trevor Mudge, and Richard B. Brown.

MiBench: A Free, Aommercially Representative

Embedded Benchmark Suite. In Proceedings of the 4th

Annual Workshop on Workload Characterization,

December 1998.

[7] Prabhat Jain, Srinivas Devadas, Daniel Engels, and Larry

Rudolph. Software-assisted Cache Replacement

Mechanisms for Embedded Systems. In Proceedings of the

2001 IEEE/ACM International Conference on Computer

Aided Design, pages 119–126, 2001.

[8] Chunho Lee, Miograg Potkonjak, and William H.

Mangione-Smith. MediaBench: A Tool for Evaluating and

Synthesizing Multimedia and Communications Systems.

In Proceedings of the 30th International Symposium on

Microarchitecture, December 1997.

[9] M-Systems. Two Technologies Compared: NOR vs.

NAND. White Paper, 91-SR-012-04-8L, Rev 1.1, July

2003.

[10] P. R. Panda, N. Dutt, and A. Nicolau. Memory Issues in

Embedded Systems-on-Chip: Optimizations and

Exploration. Kluwer Academic Publishers, 1999.

[11] Chanik Park, Jeong-Uk Kang, Seon-Yeong Park, and

Jin-Soo Kim. Energy-Aware Demand Paging on NAND

Flash-based Embedded Storages. In Proceedings of the

International Symposium on Low Power Electronics and

Design (ISLPED 2004), August 2004.

[12] Chanik Park, Jaeyu Seo, Sunghwan Bae, Hyojun Kim,

Shinhan Kim, and Bumsoo Kim. A Low-Cost Memory

Architecture with NAND XIP for Mobile Embedded

Systems. In ISSS+CODES 2003: First IEEE/ACM/IFIP

International Conference on Hardware/Software

Codesign and System Synthesis, October 2003.

[13] Samsung Electronics Co.

http://www.samsung.com/products/semiconductor/asic.

2004.

[14] Abraham Silberschatz, Peter Galvin, and Greg Gagne.

Applied Operating System Concepts. John Wiley and

Sons, Inc., 2003.

[15] Tajana Simunic, Luca Benini, Peter Glynn, and

Giovanni De Micheli. Dynamic Power Management for

Portable Systems. In Proceedings of the 6th International

Conference on Mobile Computing and Networking, pages

22–32, 2000.

[16] Tajana Simunic, Luca Benini, and Giovanni De Micheli.

Energy-Efficient Design of Battery-Powered Embedded

Systems. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 9(1):15–28, 2001.

[17] Stefen Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter

Marwedel. Assigning Program and Data Objects to

Scratchpad for Energy Reduction. In Design, Automation

and Test in Europ Conference and Exposition (DATE

2002), pages 409–417, Feb 2002.

[18] Hiroyuki Tomiyama and Hiroto Yasuura. Code Placement

Techniques for Cache Miss Rate Reduction. IEEE

Transactions on Design Automation of Electronic

Systems, 2(4):410–429, October 1997.

[19] Toshiba America Electronic Components, Inc. Cost

Savings with NAND Shadowing Reference Design with

Motorola MPC8260 and Toshiba CompactFlash. 2002.

[20] Manish Verma, Lars Wehmeyer, and Peter Marwedel.

Cache-Aware Scratchpad Allocation Algorithm. In

Design, Automation and Test in Europ Conference and

Exposition (DATE 2004), pages 1264–1269, Feb 2004.

124

