
A Mapping Framework
for Guided Design Space Exploration of Heterogeneous MP-SoCs

Bastian Ristau, Torsten Limberg, and Gerhard Fettweis
Vodafone Chair Mobile Communications Systems, TU Dresden, Germany

{ristau,limberg,fettweis}@ifn.et.tu-dresden.de

Abstract

When designing heterogeneous MP-SoCs designers have
to take into account various objectives such as power, die
size, flexibility, performance or programmability. But to be
able to evaluate a given system according to these objec-
tives, it is necessary to know how applications will behave
on that system. Since time-to-market is one key factor in
chip design, it is important to be able to evaluate these sys-
tems at a very early design stage. Today this is usually done
with simulations in languages such as Simulink or SystemC.
We will show how the behavior of such systems can be ana-
lyzed without the need for time-consuming implementations
of simulation models. This enables fast evaluation and mod-
ification of a given system at a very early design stage al-
lowing efficient pruning of the design space.

1. Introduction

Today heterogeneous multi-processor systems seem to
be one answer to the continuously rising computing de-
mands of modern applications. But the question is how the
system inherent parallelism can be exploited. Thus, it is vi-
tally important to know at a very early design stage, how
applications will behave on the system with respect to run-
time, power consumption, etc. Only with this information it
is possible to evaluate a given system.

This challenge is usually tackled with simulation mod-
els written in languages such as Simulink or SystemC. But
simulation models usually implicate a lot of implementation
effort. Furthermore explicit spatial mapping of tasks to pro-
cessors or at least mapping to a processor type is required.
As a result only one of the available implementations is cov-
ered within a single simulation and each corner-case of the
application has to be determined and simulated separately.
Therefore identifying worst-case execution times is time-
consuming and error prone.

In this paper we present a framework for automatic tem-
poral and spatial mapping based on abstract models of algo-

rithms and architecture. The mapping process is guided by
programmer provided side information. This circumvents
the downsides adherent to simulation models.

We will show that system refinement based on mapping
results can lead to significant performance improvements.

2. Related Work

There are a lot of frameworks for modeling and simulat-
ing MP-SoCs like Simulink, SystemC, Sesame [9], Ptolemy
[6], Casse [10], just to mention a few. These frameworks
are well suited for their purpose of functional simulation
and evaluation of systems, but they require the system to
be described in on their own modeling language. In most
cases also a manual mapping of applications to architecture
is required.

In [4] a methodology using multi-objective optimization
(MOO) is presented, that is producing an initial mapping
for the Sesame framework, but the results have to be refined
and checked with simulations. In [1] an automatic mapping
approach for the Cell BE architecture is introduced requir-
ing an a priori selection of processor types for each task.
In [8] an approach is outlined that uses neural networks to
determine a suitable processor type for a given part of the
application targeted at instruction level.

Our framework in contrast is extensible for reading vari-
ous modeling languages and provides the possibility to test
different mapping strategies. It supports simultaneous tem-
poral and spatial mapping of all tasks not only to processors,
but also to processor types. The framework is not intended
to be a replacement for the mentioned modeling languages.
In fact it is intended to be used for finding a candidate sys-
tem that can be simulated more detailed with existing mod-
eling tools and languages.

3. The Mapping Framework

The mapping framework basically follows the Y-Chart
approach [5], but is extended with an additional guidance

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



step allowing the utilization of available expert knowledge
(Fig. 1).

The mapping is performed on graph-based descrip-
tions of architecture and application and based on side-
information provided by the system designer. The frame-
work provides several algorithms for automatic temporal
and spatial mapping. Analysis of the mapping result is used
to identify potentials for system refinement.

Application
Modeling

Guidance

Automatic 
Mapping

Evaluation

Architecture
Modeling

Model Outline Model Outline

Feedback

Block 
Diagrams

Knowledge

Results

Feedback

Control & Data
Flow Graphs

Figure 1. Framework structure overview.

3.1. Application and Architecture Modeling

Due to the variety of approaches to exploit inherent par-
allelism there is a variety of languages available, too. Some
are designed for plain modeling (e.g. UML), some for sim-
ulations (e.g. SystemC) and some for concurrent program-
ming (e.g. OpenMP).

Since our framework does not perform functional sim-
ulations we designed it to be independent of the modeling
language. This is possible because:

1. Our mapping methodology does not use concrete im-
plementations but only abstract information such as
cycle counts and other data provided within the guid-
ance step. This enables mapping and system evalua-
tion without having to implement functional behavior
at this design stage.

2. A lot of languages roughly implement the concept of
nodes communicating over ports via edges with some
additional control flow between the nodes. In case
of applications this defines the control and data flow
graph (CDFG) in case of architectures it represents the
block diagram of the system.

This concept of nodes communicating over ports via
edges is implemented as a C++ library providing easy ac-
cess to common graph properties. The library supports mul-
tiple levels of abstraction within one model. During the

modeling phase each node may be refined to get more de-
tailed results. Refinement results in nodes representing sub-
graphs at a lower level of abstraction.

Right now we have implemented front-ends for process-
ing UML activity diagrams (Fig. 2), applications and archi-
tectures given in the Y-Chart markup language (YML) [2]
and some internally developed representations of applica-
tions and architectures. Front-ends for C and C++ are cur-
rently under development, Matlab and FDL [13] front-ends
are planned for the near future and interfaces for other lan-
guages can be integrated at any time enabling fast reactions
to evolving standards in modeling at any level of abstrac-
tion.

Function

Data 
Definition

Data 
FlowControl 

Flow

Figure 2. Example for a CDFG of a part of
802.11a modeled with UML activity diagrams.

3.2. Guidance

The guidance data base contains implementation spe-
cific information like cycle counts or energy consumption
for mappings of an algorithm to target architectures. These
numbers are known from previous designs or have to be
estimated by an experienced system designer. To reduce
the design space, numbers are only provided for reasonable
mappings. E.g. it is not a good idea to map a Viterbi imme-
diate to a RISC processor.

Simple HTML or Excel tables contain the guidance in-
formation for the mapping. Figure 3 shows an example with
modules of an IEEE 802.11a receiver where the third to fifth
column represent cycle counts on different processor types.
Mappings to non-suitable processor types are excluded by
simply leaving the respective cell blank.

3.3. Automatic Mapping

The automatic mapping step forms the central part of our
framework. During the mapping process, an algorithm as-
signs elements of the application graph to elements of the
architecture graph and adds properties such as starting time
and latency (Fig. 4).



Figure 3. Cycle count annotation of 802.11a
for the NXP Jeome Testbed.

T1

T2

T3

Ap
pl

ica
tio

n

P1

P2

Ar
ch

ite
ct

ur
e

start

Figure 4. Task mapping.

There are several objectives such as performance or
power consumption when designing MP-SoCs. Against
todays trend toward multi-objective optimization (MOO)
techniques we selected a lexicographic optimization, be-
cause given n objectives MOO generates a n-dim. pareto-
optimal front. Since people tend to think sequentially, se-
lection of one of the solution is done usually by looking
successively at one dimension at a time. A step-wise lex-
icographic optimization which reduces the feasible set of
solutions successively exactly reflects this behavior.

As many applications in the signal processing domain
have at least semi-hard real-time constraints, performance
is a binary criterion. Hence the first objective should be
minimum latency to check if the system can meet real-time
requirements. Moreover mapping for latency gives valu-
able hints about bottlenecks and capacity utilization lacks in
your system leading to more significant improvement hints
than mapping for other objectives would do.

In the first run we perform a mapping for an architec-
ture with given kinds of processors, but unlimited number
of processors using a slightly modified Dijkstra algorithm
[3]. Within this we implemented an as soon as possible
(ASAP) as well as an as late as possible (ALAP) scheduler.

After this step further mapping strategies for the desired
objectives are applied. This process is split into task, data
and data transfer mapping. To evaluate different task map-
ping strategies for the optimization of schedules with real-
time constraints we implemented a mapper based on list
scheduling supporting earliest deadline first (EDF), ASAP

and least laxity (LL) modes and a mapper based on 2-dim.
strip packing [11]. Further strategies such as dynamic se-
quence clustering [12] to exploit data locality are under de-
velopment.

Note that within our framework each corner-case of the
application is treated simultaneously. Worst-cases are iden-
tified automatically. This is accomplished as follows: If two
tasks are mutually exclusive, the mapping algorithms are al-
lowed to schedule these tasks on the same resource.

The ability to plug in different mappers at each stage al-
lows evaluation and modification of the real-time operating
systems mapping algorithms that will be executed on the
designed system.

3.4. Evaluation and System Refinement

The mapping result is very similar to a project plan.
Therefore we generate a mapping report in MS Project
XML format (Fig. 5). This allows for convenient analy-
sis of the mapping results. Bottlenecks of applications and
architecture can be identified easily. Based on this informa-
tion the system can be improved and reevaluated with the
mapping framework.

Figure 5. Mapping result analysis with MS
Project.

4. Example

To give an example how refinement can improve sys-
tem performance we applied load analysis (Fig. 6) of dif-
ferent signal processing algorithms on the SAMIRA vector
DSP [7]. Although the framework is designed to deal with
tasks on function level and processors within a heteroge-
neous MP-SoC, the methodology can be applied to proces-
sor instructions of a VLIW processor accordingly. In this
example we will treat the vector DSP as MP-SoC and its
instructions as tasks. This allows us to test our method-
ology with rather large CDFGs and a ”MP-SoC” with 21
processors, 5 memories and a sophisticated interconnection
network.

As shown in Fig 6, the immediate has a very high load.
Therefore, the idea is to improve the system by adding a sec-
ond immediate. Due to the separate and abstract description



0,0

0,2

0,4
0,6

0,8

1,0
im

m
ed

iat
e

sa
lu1

sa
lu4

sa
lu2

sm
em

ss
hif

t

sa
lu3

vm
em

sm
ul

vf
pu

1

functional unit

lo
ad

subgraphs w / latency > theor. min. all subgraphs

Figure 6. Load analysis of a set of signal pro-
cessing algorithms on the vector DSP.

of applications and architecture this can be accomplished
easily. Figure 7 shows the result for the improved system.
When optimizing for other objectives such as energy con-
sumption or die size the idea would be to eliminate one of
the salus.

0,5
0,6
0,7
0,8
0,9
1,0

co
nv

se
ria

l

dc
t2

d8
8

dc
t2

d1
68

fft
64

8

fft
12

88

fft
25

68

fir
se

ria
l

fir
pa

ra
lle

l

iirs
er

ial

iirp
ar

all
el

lm
ss

er
ial

application

no
rm

ed
 la

te
nc

y

given arch architecture w / 2nd imm. theor. min.

Figure 7. Result for system improvement in-
duced by mapping result analysis.

For further refinement of the system the automatic map-
ping can be applied again to evaluate and refine the im-
proved system.

5. Conclusion

This paper gave a brief overview over our mapping
framework for guided design space exploration of hetero-
geneous MP-SoCs. The framework enables a fast and effi-
cient evaluation of a given MP-SoC at a very early design
stage via automatic mapping without the need for simula-
tions or implementations. We showed exemplary, how the
result of this automatic mapping can be utilized for system
evaluation and directed improvement.

6. Acknowledgment

This research is supported by NXP within the project
MxMobile Multi-Standard Mobile Platform of the German
Federal Ministry of Education and Research (BMBF).

References

[1] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. CellSs:
a programming model for the Cell BE architecture. In Proc.
ACM/IEEE Conference on Supercomputing (SC’06), pages
86–96, 2006.

[2] J. Coffland. YML Users Guide. Univ. of Amsterdam, 2006.
[3] E. W. Dijkstra. A note on two problems in connexion with

graphs. Numerische Mathematik, 1(1):269–271, 1959.
[4] C. Erbas, S. C. Erbas, and A. D. Pimentel. A multiobjec-

tive optimization model for exploring multiprocessor map-
pings of process networks. In Proc. IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS’03), pages 182–187, 2003.

[5] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf.
An approach for quantitative analysis of application-specific
dataflow architectures. In Proc. IEEE International Con-
ference on Application-Specific Systems, Architectures and
Processors (ASAP’97), pages 338–349, 1997.

[6] E. A. Lee. Overview of the Ptolemy project. Technical
memorandum UCB/ERL M03/25, University of California,
Berkeley, CA, 94720, USA., 2003.

[7] E. Matúš, H. Seidel, T. Limberg, P. Robelly, and G. Fet-
tweis. A GFLOPS vector-DSP for broadband wireless ap-
plications. In Proc. IEEE Custom Integrated Circuits Con-
ference (CICC’06), pages 543–546, 2006.

[8] M. Oyamada, F. Wagner, M. Bonaciu, W. Cesario, and
A. Jerraya. Software performance estimation in MPSoC de-
sign. In Proc. Asia and South Pacific Design Automation
Conference (ASP-DAC’07), pages 38–43, 2007.

[9] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic ap-
proach to exploring embedded system architectures at mul-
tiple abstraction levels. IEEE Transactions on Computers,
55(2):99–112, 2006.

[10] V. Reyes, W. Kruijtzer, T. Bautista, G. Alkadi, and A. Núñez.
A unified system-level modeling and simulation environ-
ment for MPSoC design: MPEG-4 decoder case study. In
Proc. Design, Automation and Test in Europe (DATE’06),
pages 474–479, 2006.

[11] B. Ristau and G. Fettweis. Mapping and performance evalu-
ation for heterogeneous MP-SoCs via packing. In Proc. In-
ternational Workshop on Systems, Architectures, Modeling,
and Simulation (SAMOS’07), pages 117–126, 2007.

[12] T. Yang and A. Gerasoulis. A fast static scheduling algo-
rithm for DAGs on an unbounded number of processors. In
Proc. ACM/IEEE Conference on Supercomputing (SC’91),
pages 633–642, 1991.

[13] S. Zhong, C. Dolwin, B. Steinke, and A. Dröge. A OMA
DM based software defined radio proof-of-concept demon-
stration platform. In Proc. IEEE International Symposium
on Personal, Indoor and Mobile Radio Communications
(PIMRC’07), 2007.


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




