
Improving the Efficiency of Run Time Reconfigurable Devices by Configuration
Locking

Yang Qu1, Juha-Pekka Soininen1 and Jari Nurmi2
1Technical Research Centre of Finland (VTT), Kaitoväylä 1, FIN-90571 Oulu, Finland

Yang.Qu@vtt.fi
2 Tampere University of Technology, Korkeakoulunkatu 1, FIN-33720 Tampere, Finland

Abstract

Run-time reconfigurable logic is a very attractive
alterative in the design of SoC. However, configuration
overhead can largely decrease the system performance. In
this work, we present a novel configuration locking
technique to reduce the effect of the overhead. The idea is
to at run-time lock a number of the most frequently used
tasks on the configuration memory so that they cannot be
evicted by other tasks. With real applications in
validation, the results show that using proper amount of
resources to lock tasks can significantly outperform
simply using more resources. In addition, an algorithm
has been developed for estimating the lock ratio.
Experimental results show that the estimates are close to
optimal results and the measured computer runtime is less
than 4 us in a commercial embedded processor.

1. Introduction
Embedded systems require high performance and low

cost, as well as flexibility and adaptability. Using
reconfigurable logic can help designers to deal with the
issue since it is designed to be flexible and can provide
much higher performance than software-programmable
processors. Reconfigurable logic is usually implemented
using SRAM-based technology. Functions of the circuit
are determined by the data stored in the configuration
SRAM. By dynamically modifying the content in the
configuration SRAM, such systems can achieve run-time
reconfiguration (RTR). Devices with such features are
referred to as dynamically reconfigurable hardware
(DRHW). With RTR, multitasking is possible. This can
significantly improve the efficiency, but RTR results in
configuration overhead (latency and power consumption),
which can largely degrade the performance.

There are different approaches to reduce configuration
overhead. One important technique is configuration
caching [1], which is similar to data/instruction caching in
general memory system. The principle is to reduce the
amount of data transferred from external memories to
DRHW by retaining the configuration data on the chip. In
[2], Panainte et al. present an instruction scheduler that
can reduce the number of required configurations by
moving the configuration instruction out of the loop,

which is equivalent to caching the loop body. In the
hybrid task scheduler [3], configuration caching is also
applied. When a task is ready, a reuse module starts to
check if any previously configured part can be reused. If
so, the task starts immediately. Otherwise, loading the
task is needed. In memory system, one way to improve
the caching efficiency is to use cache locking [4], which
loads the cache contents with some frequently used values
and locks it to ensure that the contents remain unchanged.

In this paper, we extend the cache locking technique to
configuration locking. The basic idea is to track at run-
time the number of times that tasks are executed and
always lock a number of the most frequently used tasks on
DRHW to prevent them from being evicted by the less
frequently used tasks. However, reserving too much space
on DRHW (locking too many most frequently used tasks)
will reduce the amount of resources that could be shared.
This might result in more reconfigurations and eventually
degrade the system performance. To avoid this over-
locking behavior, we developed an efficient algorithm
that can be used at run-time to estimate the cache lock
ratio (how many tiles should be used to lock tasks).

The next section describes the device and task model.
The configuration locking technique and the locking-ratio
selection algorithm are described in section 3. Results of
case studies are discussed in section 4, and conclusions
are presented in section 5.
2. Device model and task model

Our target platform is a heterogeneous reconfigurable
SoC. It consists of different kinds of components, which
are connected through a network-based communication
infrastructure, as in Figure 1. In general, the platform can
be divided into a DRHW region and a static region
consisting of other types of processing units and storage
units. Reconfigurable logic is grouped into a number of
homogeneous tiles, and each tile can be separately
configured. A task can be mapped onto any of the tiles.

The system runs a number of independent real-time
applications. In the following context, we use “process” to
represent one run of an application. We assume that each
application consists of a number of dependent tasks,
which can be modeled as a directed-acyclic graph (DAG).
In a DAG, nodes represent tasks, and edges represent

978-3-9810801-3-1/DATE08 © 2008 EDAA

locked

runningidle

configuration of a taski is started

the running taski is finished &
order(taski) > Nlock

the running taski is finished &
order(taski) < Nlock

a running taskk is finished on another tile &
order(taskk) < Nlock < order(taski) &
taski is running

(1)

(2)

(3)
(5)

(1)

(2)

(3)

(4)
(4)

a running taskk is finished on another tile &
order(taskk) < Nlock < order(taski)
taski is not running

(5)

Figure 2. Tile state transition diagram

Parallel reconfiguration
architecture

processors
processors

processor
accelerator

accelerator
accelerator

accelerator
accelerator

RAM

communication network

in/out
memory

local
memory

local
memory

tile 3
tile 4

tile M

configuration
controller

tile 1
tile 2

memory
crossbar

configuration
manager

co
nf

ig
ur

at
io

n
po

rt

controlstatus

control controlstatus

da
ta

m
em

or
y

logic

configuration
S

R
AM

control
port

mem
port

control
status

data

Figure 1. run-time reconfigurable system model
dependence of the tasks. Applications can be non-periodic
or periodic with soft deadlines. A soft deadline means that
a process should but need not necessarily finish its
execution by the deadline. For a periodic application,
tasks from the current period cannot start before all tasks
from the previous period have finished. At run-time,
applications are triggered either periodically or sparsely
without a pre-defined order. A task is ready to run when it
meets one of the two following conditions: 1) the task is a
root node and the application is set to start; 2) all the
predecessors of this task have finished.
3. The Configuration Locking Technique

The configuration locking technique is embedded into
a run-time task scheduler. It uses state diagrams to control
how tiles can be used. Each tile has its own state diagram,
and a tile can be in one of three states: idle, running and
locked. The state idle means that any task can be assigned
to the tile. If an idle tile has been used before, the tile still
holds the configuration data of the last task that has been
assigned on this tile. The state running means that a task
is assigned to this tile and this task has not finished. If the
task requires to be configured, the configuration process
is also included in the running state. The state locked
means that a task has finished on this tile and in the future
only this task can be assigned to this tile. The state
transition diagram is shown in Figure 2. The function
order(taski) returns the position of taski in a count list,
which is sorted with decreasing order based on the
number of times that tasks are executed. Thus,
order(taski) ≤ Nlock means that taski is now one of the Nlock
most frequently used tasks.

When a task is ready to run, the run-time scheduler
checks if any locked tile or idle tile currently holds the
configuration data of this task. If so, the task starts to run
immediately, and the selected tile changes its state to
running by transition 4 or transition 1 depending on the
current state of the tile. Otherwise, the scheduler checks if
there is any tile in the idle state now. If so, the
configuration of this task on an idle tile is started, and the
task starts to run immediately after the configuration is
finished. The state of this tile is changed to running as in

transition 1. Otherwise, the task is put into a waiting
queue, and tasks in this queue are checked when a tile
becomes idle. This happens when transition 2 happens to
a running tile or transition 5 happens to a locked tile.
When a task is finished, its execution count is updated and
the count list for all tasks is sorted, which might then
change the states of some tiles. For example, if the task
now becomes one of the most frequently used tasks, the
tile that is allocated to this task then changes its state to
locked, as in transition 3, otherwise the tile becomes idle,
as in transition 2. At the same time, the scheduler checks
for each locked tile that if the task that the tile holds is still
one of the Nlock most frequently used tasks. If not, the
locked tile is changed to idle, as in transition 5.
3.1. The lock ratio selection algorithm

An important parameter in the locking technique is the
number of tiles that are used to lock tasks, Nlock. It is
difficult to decide Nlock at design time, because system
behavior very much depends on users and the surrounding
environment. We present a heuristic algorithm that is
efficient enough to be used at run-time to decide the value
of Nlock. The pseudo code of the algorithm is shown in
Figure 3. It starts to iterate from the application that has
the shortest period, estimates how many tasks from this
application could be locked to achieve optimal results and
stops when it finds an application that not all of its tasks
need to be locked. The reason to not check the rest
applications is because they have longer periods and
locking theirs tasks is therefore not beneficial.

A brief explanation of the algorithm is as follows.
Initially, Nlock is set to zero, and the number of free tiles
(on which no task is assigned) is set to the total number of
tiles, as in (1) and (2). Then, a quick sort is performed for
the current running applications, as shown in (3). The one
with a shorter period is put into the front. The algorithm
then iterates through the sorted application list and
estimates Nlock, as in (4)-(25). In each iteration, the
application with the shortest period (the first application
of the sorted list) is selected, as in (5). Then, the algorithm
decides ub_locked_tile, the maximal number of tiles that
could be possibly used to lock tasks for the selected
application, as in (6)-(11). This is done as follows. If the
number of free tiles is more than the number of tasks of

N lock = 0 ;
free_ tile = N tile ;
Q L is t = qu ickso rt(app lica tions);
w h ile Q Lis t d o
 app = pop _ firs t(Q L is t);
 num _task = num _of_ tasks(app);
 if free_ tile > num _task th en
 ub_ locked_ tile = num _ task;
 e lse
 ub_ locked_ tile = free_ tile – 1 ;
 en d if;
 m in_ u til = in fin ite ;
 fo r tm p_ locked fro m 0 to ub _ locked_ tile d o
 cu r_u til = ge t_u til(app ,free_ tile ,tm p_ locked);
 if cu r_u til < m in_u til th en
 m in_ u til = cu r_ u til;
 locked_ tile = tm p_ locked ;
 en d if;
 en d fo r;
 N lock + = locked_tile ;
 if locked_ tile < num _task th en
 b reak ;
 en d if;
 free_ tile – = num _task;
en d w h ile ;

≠ φ

(1) --
(2) --
(3) --
(4) --
(5) --
(6) --
(7) --
(8) --
(9) --
(10) --
(11) --
(12) --
(13) --
(14) --
(15) --
(16) --
(17) –
(18) –
(19) –
(20) –
(21) –
(22) –
(23) –
(24) –
(25) –

Figure 3. Lock ratio selection algorithm
this application, then it is possible to lock all the tasks,
and ub_locked_tile is set to the number of tasks.
Otherwise, at least one tile has to be set to free so tasks
from other applications can be mapped onto the DRHW.

The next phase, as in (12)-(19), is to decide
locked_tile, the number of tiles that could be used to lock
tasks for this selected application. The procedure is to
tentatively set locked_tile from 0 to the upper bound,
ub_locked_tile, check the estimated resource utilization,
and choose the setting that results in the smallest
utilization. The idea is that using less resources for this
application will give other applications better chances to
finish before their deadlines. Once locked_tile is decided,
we check if it is less than the amount of tasks of this
application. If so, it means that not all the tasks are
locked, and from the intuitive assumption that we made
earlier it is then not necessary to check all the following
applications that have longer periods. Therefore, we can
stop the iteration, as in (21)-(23). Otherwise, it must be
the case that all the tasks are locked, and the value of
free_tile needs to be updated, as in (24).

One important function that has not been discussed is
get_util(), which returns the estimated resource utilization
of an application under the setting of the number of free
tiles, free_tile, and the number of tiles used to lock its
tasks, tmp_locked. The function does not perform run-
time scheduling to derive resource estimates. Instead, it is
used as a look-up table, and the values of the table are
deterministically decided at design time. When we
estimate the resource utilization of an application, we
ignore the effect of other applications, because we
consider that the utilization is mainly related to the tasks
of this application and the dependence between its tasks.
Thus, the utilization can be derived by scheduling a single
iteration of the application only once at design time.

The utilization is the sum of four parts. The first part is
for the configuration controller. It is calculated as:

u1=(num_of_cfg*cfg_lat + overhead)/app_prd,
where num_of_cfg is the number of required
configurations, cfg_lat is the configuration latency,
app_prd is the period of this application and overhead is
for the gap between two consecutive configurations. If the
gap is less than configuration latency, then no other
configuration can be performed within this period and it
should be considered as utilized period. Otherwise, an
integer number of cfg_lat is subtracted and the rest is
included in the utilized period. The second part is for tiles
that are used to lock tasks. The utilization is 100% for
each such tile. The third part is for tiles that are allocated
to these tasks. The amount of such tiles is referred to as
num_used. The utilized period of a tile is calculated as:
 u3,j=(max(end_exe_tilej,end_cfg)–beg_app+1)/app_prd,
where end_exe_tilej is the end execution time of the last
task assigned on the tile j, end_cfg is the end
configuration time of the last scheduled task of this
application and beg_app is the beginning execution time
of the application. The reason to include end_cfg is to
consider the case that when end_cfg > end_exe_tile, the
gap, end_cfg – end_exe_tile, cannot be utilized because
running any other task requires a configuration but the
configuration controller is busy during this gap period.
Therefore, the gap should be also included in the utilized
period. The last part is for the tiles that are not allocated to
any task. The amount of such tiles is noted as
num_unused. This is to take into account the effect of this
application to other application. For tasks from other
application, in the worst case their configurations cannot
start before all the tasks of this application have been
configured, which means that at most only (1– u1) fraction
of an unused tile could be utilized. To take this into
account, for each unused tile we add a penalty utilization,
which equals to u1. Finally, the total utilization is:

unusednumuulockedtmpuu usednumj
j j _*_ 1

_
1 ,31 +∑++= =
= .

4. Experimental Results
We used four real applications (Sobel image

sharpening, JPEG encoder, MPEG encoder, part of a
WCDMA decoder) to validate the locking technique. For
each application, a number of tasks were identified and
manually implemented in VHDL. Each application has its
own period. The execution times were derived from
simulation results. The run-time scheduler with the
configuration locking technique is implemented in C++.
Our previously developed static task scheduler [5] is
extended to support configuration caching, and it is used
to generate the resource utilization table that is required in
the function gen_util(). All these applications were set to
run periodically, and communication overhead was
ignored during simulation. Devices ranging from Ntile = 6

Table 1. Lock ratio estimates.
Percentage of processes
finished before deadline Ntile

Run
time
(us)

Nlock
Estimate

best Nlock
(Simulated) at Nlock

Estimate
at best Nlock
(Simulated)

6 2.24 3 3 0.3% 0.3%
7 2.99 4 3 6.2% 10.7%
8 3.12 4 4 28% 28%
9 3.24 4 4 33% 33%

10 3.43 4 4 54% 54%
11 3.60 4 5 56.2% 57.9%
12 3.74 4 4 66% 66%
13 3.74 4 5 68.5% 73%
14 3.74 5 6 73.1% 76.4%

0

100

200

300

400

500

600

700

12345 6789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

percentage of processes finished before their deadline
number of task reuse

(100%)

(6,0) – (6,5) (8,0) – (8,7) (10,0) – (10,9) (12,0) – (12,11) (14,0) – (14,13) device
setting

Figure 4. Effects of configuration locking

to Ntile = 14 were explored. The Ntile represents the total
number of tiles on DRHW. To study the effect of the lock
ratio, in the first test we set Nlock to sweep from 0 to Ntile -
1. The setting, Nlock = 0, means that no tile is used to lock
tasks. In the following context, we use the notation (Ntile,
Nlock) to represent the device that has Ntile tiles and uses
Nlock tiles to lock tasks. The locking-ratio selection
algorithm was evaluated in the second test.
4.1. Effectiveness of configuration locking

For each setting, we randomly generated the starting
time of each application and performed 10 simulations
with a different initial seed each time. Each simulation ran
for 106 simulation cycles. Results of the 10 simulations
are averaged and shown in Figure 4. It can be seen that
when more tiles are available more processes can finish
before deadline. However, without configuration locking
the improvements are very limited. For example, at (10,0),
about 10% of the total triggered processes can finish
before deadline, but with preserving 4 tiles about 54% of
the total triggered processes can finish before deadline.
This is mainly because more tasks are reused, 430
compared to 325. In addition, the result at (10,4) is much
better than that at (14,0), which shows that simply using
more computation resources is not as efficient as
preserving resources for dedicated purpose. Another
observation is that locking either too many or too few tiles
is not beneficial. This shows the importance to have a run-
time algorithm to estimate the proper value of Nlock.
4.2. Evaluation of the locking-ratio algorithm

The previous case study shows that it is very important
to have a good knowledge of Ntile in order to make the
locking technique effective. In this case study, we use the
same set of applications to evaluate the locking ratio
selection algorithm. The algorithm was implemented in C
and ported onto an OMAP 2430 [6] platform, in which
there was an ARM1136 processor running at 333 MHz.
To avoid floating point calculation, all the utilization
values are magnified 104 times and rounded to integers.
For each setting of Ntile, the algorithm was carried out to
estimate the optimal number of tiles that could be used to

lock tasks. The performance results are shown in Table 1.
It can be seen that in 5 out of 9 cases, the estimated Ntile is
in line with the best Ntile that are derived from simulation
results. In addition, the estimates are very close to the
optimal ones in other cases. When we check from the
simulation results, the percentage of finished processes at
estimated Ntile is in average only 1.4% away from that at
the optimal Ntile. In all cases, the measured computer
runtime of the algorithm is less than 4 us. This shows that
our locking ratio selection algorithm can be efficiently
used at run-time with guaranteed performance.
5. Conclusions

We present a configuration locking technique that can
effectively improve the system performance. The idea is
to use a number of tiles to always lock the most frequently
used tasks on the device so that they have better chances
to be reused. An algorithm is developed to at run-time
decide the lock ratio. The experimental results have
shown that the estimates are very close to the optimal
ones that are derived from simulation results. The
measured computer runtime shows that our lock ratio
selection algorithm is very efficient. In the future,
techniques to embed the approach in a real-time OS for
reconfigurable systems will be developed.
6. References
[1] Z. Li, K. Compton, and S. Hauck, “Configuration caching
techniques for FPGA”, FCCM, pp. 22-38, 2000.
[2] E. M. Panainte, et al., “Instruction scheduling for dynamic
hardware reconfiguration”, DATE, pp. 100-105, 2005.
[3] J. Resano, et al., “A hybrid prefetch scheduling heuristic to
minimize at run-time the reconfiguration overhead of DRHW”,
DATE, pp. 106-111, 2005.
[4] I. Puaut and C. Pais, “Scratchpad memories vs locked caches
in hard real-time systems: a quantitative comparison”, DATE,
pp. 1484-1489, 2007.
[5] Y. Qu, et al., “Static scheduling techniques for dependent
tasks on dynamically reconfigurable devices”, Journal of
Systems Architecture, Vol. 53, Issue. 11, pp. 861-876.
[6] Texas Instruments, “Software development platform for
OMAP2430”, focus.ti.com/pdfs/wtbu/TI_sdp_omap2430.pdf

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

