

Dynamic Round-Robin Task Scheduling

to Reduce Cache Misses for Embedded Systems

Ken W. Batcher
Kent State University, Cisco Systems

batcher@cisco.com

Robert A. Walker
Kent State University
walker@cs.kent.edu

Abstract

Modern embedded CPU systems rely on a growing number of
software features, but this growth increases the memory footprint
and increases the need for efficient instruction and data caches.
The embedded operating system will often juggle a changing set
tasks in a round-robin fashion, which inevitably results in cache
misses due to conflicts between different tasks. Our technique
reduces cache misses by continuously monitoring CPU cache
misses to grade the performance of running tasks. Through a
series of step-wise refinements, our software system tunes the
round-robin ordering to find a better temporal sequence for the
tasks. This tuning is done dynamically during program execution
and hence can adapt to changes in work load or external input
stimulus. The benefits of this technique are illustrated using an
ARM processor running application benchmarks with different
cache organizations and round-robin scheduling techniques.

1. Introduction
A classic method for scheduling tasks in a multi-tasking

embedded system is to use a round–robin CPU scheduler. This is
especially true in low-cost systems that lack an operating system
(OS) or use a very simple OS. While a full-featured OS such as
Linux may use more complex techniques, a round-robin scheduler
offers a simple and straightforward way to balance different tasks
and share the CPU fairly in a low cost embedded system [5].

In many of these systems, commercial processor cores using
instruction and data caches are common. These cores typically
keep the cache sizes small (e.g. 4KB or 16KB) to reduce cost and
power in the embedded environment. As a result, cache misses are
common in these environments, a problem that is exacerbated by
the limited memory bandwidth in these embedded systems.
Further, even if the cache performs well when a single task is
running, the situation is more challenging in a multi-tasking
environment. Here the previously running tasks leave memory
“footprints” in the cache, so as new programs displace the ones
currently in the cache, they can cause a set of conflict misses that
degrade the performance of newly scheduled tasks [8].

In many embedded systems, predictability is also very
important — since embedded software is generally stable for the
life of the application, such systems are expected to have stable
performance as well. Unfortunately, embedded systems are often
more sensitive to performance disturbances than general purpose
systems, making predictability and stable performance a
challenge. Further, real time processing constraints are common

in embedded systems where some or all tasks have processing
deadlines, adding to this challenge.

Fortunately, it is possible to address these embedded system
challenges by tuning the OS. Our technique adaptively adjusts the
round robin scheduler’s task sequence order to reduce cache
misses and improve the processor performance.

2. Related Work
There are many ways to organize the software in an embedded

system. How does one determine what code structure is best to
avoid cache misses in a multi-tasking environment? Researchers
have developed both hardware and software techniques to address
this problem. Our work relies on live execution profiling of the
software as it runs. Profiling — a classic method introduced by
Knuth — allows the behavior of the running program to be
analyzed and used for feedback to optimize the performance [6].

Pettis and Hansen created an effective software technique for
reordering code at the basic block level, branch alignment and
procedure reordering [2]. This can be used as a compile time
optimization to effectively reduce cache misses. Procedure
placement using temporal ordering was improved upon by Gloy
and Smith [3], using profile-driven code-placement with a
weighted call graph to derive an improved procedure ordering.

Kalamatianos and Kaeli introduced Temporal Based
Procedure Reordering [13] which involves constructing a conflict
miss graph and coloring algorithm to produce an improved code
reordering for instruction caches. As input to their algorithm they
use code analysis and trace driven simulation to discover an
improved layout of a program in the available memory space.
Ghosh uses cache miss equations to drive compiler optimization
decisions for improving cache performance [12]. Samples uses
profile driven compilation in his work to help optimize code
layout [4]. He describes how the software is instrumented to
collect profile data, which is used to create a more optimized
layout to avoid cache misses.

These software techniques all improve code performance by
code analysis and evaluation of memory access patterns. The
software is physically recompiled and / or linked to create a more
optimal memory layout to avoid cache misses.

Hardware methods include creating cache structures more
suited for reducing cache conflicts. Lee, et. al. use a temporal and
spatial cache system based on time interval to optimize
performance [1]. Their technique uses a small block size direct-
mapped cache more suited for temporal locality and a fully
associative buffer with large block size to address spatial locality.

978-3-9810801-3-1/DATE08 © 2008 EDAA

Xia and Torrellas also use a clever means of improving cache
performance by leaving software hints in the compiled code to
help guide the hardware prefetching [7]. They create a code
layout more suited for locality based on dataflow analysis, address
traces, and frequency of routine invocation.

After an embedded system’s software or firmware is compiled
and linked, instruction addresses remain static unless the program
is upgraded in the field. As a result, the methods described above
can be used to organize the code in order to avoid cache misses.

3. Dynamic Round-Robin Scheduling
Our technique, which we call Dynamic Round-Robin

Scheduling (DRRS), complements the techniques described in the
previous section by monitoring and then improving the
performance of a system that uses round-robin task scheduling.
DRRS simply reorders the round-robin scheduler’s task execution
sequence. This reordering is done dynamically during program
execution, and hence is a run-time improvement done in software,
with no special hardware required. Further, DRRS uses live
execution profiling of cache miss information, so no post
processing of data is required and the system can adapt
dynamically as it runs.

Note that the goal of this task reordering is not to find the
optimal schedule. DRRS simply tries to find a schedule that
reduces the cache misses below a user-specified level. The goal
of our work was to find a low-overhead technique to provide
moderate improvement, not a high-overhead technique that
provides the best possible improvement. Like Gloy, we also
realized that even small changes can make a difference in
performance [9].

Thus DRRS is a software technique to directly support the
hardware. No changes are required to the code layout, which
remains as generated by the compiler. However the round-robin
schedule sequence is modified to reduce the cache misses
experienced.

For example, consider a round-robin schedule consisting of
six tasks where the round-robin scheduler proceeds in task
execution order A,B,C,D,E,F, and then repeats continuously in
that sequence. During execution, each task replaces cache data,
and a series of cache misses occur, harming performance.

Now suppose the execution order of tasks B and C are
swapped. Using a classic round-robin scheduler, the order in
which the tasks are processed in each round does not matter to the
scheduler — all that is required of the scheduler is that all tasks be
given an equal time slice in each round.

However, the new execution order (A,C,B,D,E,F) results in a
different cache usage, potentially a reduction in the number of
cache misses, and if so, overall better performance. This is the
key to DRSS — simply changing the execution order of the tasks
in the round-robin CPU scheduler to improve cache performance.
It is also important to understand that we are not physically
changing the location of the tasks in memory, which are still
fixed at compile and link time.

Changes can be common at run-time with many systems that
can disturb the state of the instruction and data caches, leading to
periods of cache misses. For example, activities such the data
processed by the embedded CPU or interrupts experienced can
alter the execution paths of a collection of tasks, even if the
software is fixed. Without a dynamic method, one cannot adapt to
such changes. Thus our problem statement is as follows:

Given a set of N tasks scheduled by a round-robin CPU
scheduler, find a schedule order that reduces the number of cache
misses below some user-specified threshold. Adapt to system
changes by adjusting the schedule order dynamically during run-
time to keep the number of cache misses below this threshold.

3.1 Implementation

Dynamic Round-Robin Scheduling (DRRS) begins in the
running state with some initial round-robin task ordering. This
initial ordering can be arbitrary, or based on static analysis or
some other profiling technique. In the running state, there is no
difference in activity compared to a regular system, except that the
amount of cache misses experienced are monitored at regular
intervals. Thus after a set number of round robins have
completed, a checkpoint is triggered to see if the number of cache
misses have increased above some user-defined threshold. If so,
the system enters tuning state as described below and the round-
robin ordering is changed to reduce the number of cache misses.

This threshold sets a user-defined bound on the number of
cache misses experienced, resulting in more predictable
performance. Thresholds can be set by any one of a variety of
methods, such as performance profiling of the running system (as
described later in Section 4), or trace analysis of system execution
under various data sets. For real time systems, it might be
desirable to set the threshold when the round-robin performance
degrades to a point where deadlines risk getting missed.

During tuning state, a new round-robin task order is selected
by the software. This is done by reconfiguring the contents of a
scheduling array, which contains an ID number for each active
task and represents a trial ordering of the tasks to be executed in a
round robin. The scheduler will reference this array each time
before a task is selected for CPU execution. By using a jump table
indexed by the array, DRRS can be implemented with a low
instruction count overhead.

The system then uses the new round-robin schedule over the
same checkpoint interval and compares the new performance
measure to the previous best value. If there is an improvement in
performance, this becomes the new best performance value and
the new round-robin schedule ordering is selected. This new
performance value is also compared to the threshold, and when the
threshold is reached, the system moves to the running state and
the new round-robin sequence is used until the next tuning cycle.
The new threshold is also stored as the result of the tuning
operation. Figure 1 summarizes the activities of the tuning phase.

DRRS is a run-time heuristic that attempts to iteratively
improve system performance by altering the round-robin schedule
order and then grading the effect of this alteration. Through a
series of stepwise refinements, the number of cache misses is
eventually reduced and the overall performance improves. This
method is similar to many hill climbing / branch and bound
heuristics; so if a change to the round-robin schedule is selected
that does NOT improve performance, the change is rejected.

During the tuning phase, a new schedule order must be
selected to test. We used a simple swapping of the schedule array
elements or randomly juggling the array to accomplish this task
with little execution overhead. We found in our sample
experiments (see Section 4) that after a dozen or so trials, the
performance usually improved enough to dip below the threshold
and get back into the running state, and the main additional code
overhead (the ~40 instruction cycles to run a pass of the
rescheduling algorithm, executed once per interval) did not

significantly harm the performance. As in any hill-climbing
algorithm, performance occasionally got worse during a test but
those effects were temporary and the performance quickly
improved. Overall, we met our goal of developing a low-
overhead algorithm that could make minor changes to the round-
robin schedule and yet give a worthwhile performance
improvement.

4. Experimental Validation
In order to explore our DRRS technique, we created a test

workload consisting of the Dhrystone benchmark and 5 tasks
selected from Mibench, an embedded systems benchmark [11].
These tasks (see Table 1) were arranged in a classic round-robin
schedule where each would be selected to run for one time interval
in turn. The tasks had different total run-times, and hence required
a different amount of CPU time to complete. The total executable
code size including shared libraries was 40KB.

Table 2 shows the summary of 10 simulations created by
swapping array elements in a sequential fashion for two different
cache sizes. It shows the task ordering when the tuning phase is
entered (above the threshold), the starting number of cache misses,
the average number of cache misses experienced during the
tuning, the ending task ordering and number of cache misses, and
the improvement.

We ran our experiments on simulations of the commercially
popular ARM11 series CPU core. We used this CPU with two
different cache sizes for instruction and data (4K and 16K), and
with 4-way set associativity and a selectable random or LRU
replacement policy. We performed simulations using all
combinations of these cache options on a cycle accurate hardware
simulator. Our software code was compiled with default
optimizations using the ARM Realview TM compiler tools [10].

We began our experiments by running our system using
various arbitrary schedule orderings, and studied the number of
cache misses experienced. Based on these initial tests, we selected
a checkpoint interval of 10 round-robins and accumulated the
cache miss information for both data and instruction caches.
Since this was a test system without real requirements, we
arbitrary set the high threshold at the worst case observed cache
misses, and the low threshold at 15% below this number, for both
4K and 16K cache sizes.

With our 6 tasks, we ran many simulations using arbitrary
starting points that resulted in a high degree of cache misses above
the threshold. Compulsory misses were screened out by delaying
the cache miss counts until a few round-robin iterations have
elapsed. In this way, the effect of the cache footprint due to the
previous running combinations and due to cold start misses was
largely flushed out before measurements were taken.

 As can be seen in Table 2, the number of instruction cache
misses was reduced by just changing the task ordering. The end
result was achieved after running the indicated number of
rescheduling intervals. However, this was not the case for data
cache misses — there seemed to be no pattern of data cache miss
that was influenced by our positional rescheduling. Overall, our
test system was clearly dominated by instruction cache misses,
which accounted for >95% of all cache misses. Of course, this
consequence could have been due to the benchmark programs
being tested, so further experimentation is needed to confirm
whether or not this is a general effect.

The table shows the average number of cache misses, which is
important because it constitutes the cost of tuning phase.
However, one can see that the cost of the rescheduling can easily
be outweighed by the reduction in cache misses experienced.

Table 1. Test Simulation Software

Name Exec.Time % Description
1 bitcounts 2% Count bits in a vector
2 Djikstra 4% Shortest path
3 Dhystone 21% Popular Benchmark
4 aes 23% Encryption of data
5 fft 40% Fourier Transform
6 qsort 10% Sort a set of numbers

“ Reschedule ” :
Select a New

Schedule to Test

Initialize
Performance

Counters

Run RR
Schedule to
Checkpoint

Compare Counter Value to
Current Best Value

Performance
Improved?

Record Schedule
Order and Threshold
as New Best Values

Threshold
Reached?

N

N Y

Y

Go Back to “ running ”
State, Use New
Schedule Order

“ running ” State Lower Threshold
Reached

Figure 1. Tuning the System’s Schedule

Table 2. Simulation Results

Start/End
Order

Start
End

Avg Imp-
rove

Inter
-vals

Cache
Size

1 1,2,3,4,5,6
4,2,3,1,5,6

8600
7542

7979 13% 4 16K

2 6,1,3,4,5,2
2,5,1,4,3,6

8878
7572

8072 15% 16 16K

3 4,2,6,1,5,3
2,4,5,1,6,3

8360
7533

7989 10% 7 16K

4 1,5,2,3,4,6
3,2,5,1,4,6

8614
7658

8086 11% 12 16K

5 6,5,4,3,2,1
1,4,3,5,2,6

9003
7663

8081 15% 20 16K

6 1,2,3,4,5,6
3,2,1,4,5,6

28850
26532

27625 8% 3 4K

7 6,5,4,3,2,1
4,3,5,6,2,1

27934
26695

27907 4.5% 19 4K

8 4,1,6,2,5,3
1,4,6,2,5,3

27691
26380

27470 5% 2 4K

9 2,5,3,6,4,1
4,5,3,6,2,1

27686
26575

27769 4% 15 4K

10 4,2,1,5,6,3
2,4,1,5,3,6

27983
26837

27586 4% 2 4K

Since on entry to the rescheduling, the system is already in a bad
state, changes are likely to help get below the threshold

Our random rescheduling experiments arbitrarily juggled the
elements in the scheduling array during each trial. This allowed a
new round-robin schedule to be derived during each trial period
with low instruction count overhead. With this trial, instead of
using a threshold, all runs consisted of 20 intervals using an
arbitrary random start point. The best/worst/average results
achieved are shown in Tables 3 and 4. These tables show the
variation in performance that one can expect just by changing the
task ordering. By selecting the best out of 20 fixed runs, we could
achieve as much as a 10% improvement in cache miss reduction
compared to the worst case.

With 4K caches, the performance improvement was less
dramatic compared to 16K caches. Most likely this difference was
due to the high degree of capacity conflicts which involved
frequent line flushes. This saturated the affect of cache conflict
misses. The 16K caches thus represented a more reasonable
choice for our application, so the task rescheduling resulted in
more obvious results showing cache conflict avoidance.

5. Conclusion
This paper has introduced Dynamic Round-Robin Scheduling

(DRRS) as a flexible framework for improving the run-time
performance of multi-tasking embedded systems. Continuous
monitoring of the system performance is used to monitor the
effect of the task rescheduling. With our limited experimentation,

we were able to achieve a 4% to 15% improvement in the
reduction of instruction cache misses between tasks in the round-
robin schedule, with low enough overhead to justify the algorithm.

 Our results indicate that even small changes in the task
ordering can result in dramatic changes in the cache performance.
This can be important for multi-tasking embedded or real-time
systems with delicate performance criteria. The code overhead is
low and the implementation technique is flexible; which can be
efficiently implemented using a task ordering array. Techniques
such as DRRS can be helpful at augmenting other techniques for
code layout improvements used in embedded systems.

Much research has already been done to optimize code layouts
at compile and compile time to minimize cache conflict. However
this improved layout may only be suitable for a given static
workload, while systems follow different execution paths and
workloads in the field. So, without a dynamic technique, one must
live with what the compiler provides. The DRRS technique in
contrast, monitors the cache misses and dynamically adjusts the
task schedule to incrementally improve performance under
changing system conditions.

6. References
[1] Lee, J., Lee, J., Kim, Selective temporal and aggressive

spatial cache system based on time interval. International
Conference on Computer Design; Sept. 2000. pp. 287-293.

[2] Pettis, K., Hansen, R. Profile Guided Code Positioning.
Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, pp. 16-27, June 1990.

[3] Gloy, N., Smith, M. 1999. Procedure placement using
temporal-ordering information. ACM Trans. Program. Lang.
Syst. 21, 5 (Sep. 1999), pp. 977-1027.

[4] Alan Dain Samples. Profile Driven Compilation. PhD thesis,
U.C. Berkeley, April 1991. U.C. Berkeley CSD-91-627.

[5] Ramos, J., Rego, V., Sang. An Improved Computational
Algorithm for Round-Robin Service. in Proceedings of
Winter Simulation Conference, December, 2003.

[6] Knuth. D. The Art of Computer Programming -- Vol. 1,
Fundamental Algorithms. Addison Wesley, 1973.

[7] Torrellas, J., Xia, C., Daigle, R. Optimizing Instruction
Cache Performance for Operating System Intensive
Workloads. Symposium on High-Perf. Computer Arch., pp.
360-369, Jan 1995.

[8] Stone, H. High Performance Computer Architecture, 3rd
Edition. Addison Wesley. 1992. pp. 76-84.

[9] Gloy, N. Code Placement using Temporal Profile
Information. PhD thesis, Harvard University, September
1998. Cambridge, MA.

[10] Lennard, C., Mista, D. Taking Design to the System Level.
http://www.arm.com/pdfs/ARM_ESL_20_3_JC.pdf. ARM
LTD, April 2005.

[11] Guthaus, M., et al. MiBench: A free, commercially
representative embedded benchmark suite. IEEE 4th Annual
Workshop on Workload Characterization, pp. 1-12. Austin,
TX, December 2001.

[12] Ghosh, S., Martonosi, M., Malik, S. Automated Cache
Optimizations using CME Driven Diagnosis. Proc. of the
2000 Int. Conference on Supercomputing. pp. 316-326.

[13] Kalamatianos, J., Kaeli, D. Temporal Based Procedure
Reording for Imporved Instruction Cache Performance.
Proceedings of HPCA, Febuary 1998.

Table 3. Random Rescheduling 16k Cache

Table 4. Random Rescheduling 4k Cache

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

