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Abstract 

Modern embedded CPU systems rely on a growing number of 
software features, but this growth increases the memory footprint 
and increases the need for efficient instruction and data caches. 
The embedded operating system will often juggle a changing set 
tasks in a round-robin fashion, which inevitably results in cache 
misses due to conflicts between different tasks. Our technique 
reduces cache misses by continuously monitoring CPU cache 
misses to grade the performance of running tasks.  Through a 
series of step-wise refinements, our software system tunes the 
round-robin ordering to find a better temporal sequence for the 
tasks.  This tuning is done dynamically during program execution 
and hence can adapt to changes in work load or external input 
stimulus.  The benefits of this technique are illustrated using an 
ARM processor running application benchmarks with different 
cache organizations and round-robin scheduling techniques.   

 

1. Introduction 
A classic method for scheduling tasks in a multi-tasking 

embedded system is to use a round–robin CPU scheduler.   This is 
especially true in low-cost systems that lack an operating system 
(OS) or use a very simple OS.  While a full-featured OS such as 
Linux may use more complex techniques, a round-robin scheduler 
offers a simple and straightforward way to balance different tasks 
and share the CPU fairly in a low cost embedded system [5].  

In many of these systems, commercial processor cores using 
instruction and data caches are common. These cores typically 
keep the cache sizes small (e.g. 4KB or 16KB) to reduce cost and 
power in the embedded environment. As a result, cache misses are 
common in these environments, a problem that is exacerbated by 
the limited memory bandwidth in these embedded systems.  
Further, even if the cache performs well when a single task is 
running, the situation is more challenging in a multi-tasking 
environment.  Here the previously running tasks leave memory 
“footprints” in the cache, so as new programs displace the ones 
currently in the cache, they can cause a set of conflict misses that 
degrade the performance of newly scheduled tasks [8].    

In many embedded systems, predictability is also very 
important — since embedded software is generally stable for the 
life of the application, such systems are expected to have stable 
performance as well.  Unfortunately, embedded systems are often 
more sensitive to performance disturbances than general purpose 
systems, making predictability and stable performance a 
challenge.  Further, real time processing constraints are common 

in embedded systems where some or all tasks have processing 
deadlines, adding to this challenge. 

Fortunately, it is possible to address these embedded system 
challenges by tuning the OS.  Our technique adaptively adjusts the 
round robin scheduler’s task sequence order to reduce cache 
misses and improve the processor performance.  

 

2. Related Work 
There are many ways to organize the software in an embedded 

system.  How does one determine what code structure is best to 
avoid cache misses in a multi-tasking environment?  Researchers 
have developed both hardware and software techniques to address 
this problem.  Our work relies on live execution profiling of the 
software as it runs. Profiling — a classic method introduced by 
Knuth — allows the behavior of the running program to be 
analyzed and used for feedback to optimize the performance [6].  

Pettis and Hansen created an effective software technique for 
reordering code at the basic block level, branch alignment and 
procedure reordering [2].  This can be used as a compile time 
optimization to effectively reduce cache misses.  Procedure 
placement using temporal ordering was improved upon by Gloy 
and Smith [3], using profile-driven code-placement with a 
weighted call graph to derive an improved procedure ordering.   

Kalamatianos and Kaeli introduced Temporal Based 
Procedure Reordering [13] which involves constructing a conflict 
miss graph and coloring algorithm to produce an improved code 
reordering for instruction caches.  As input to their algorithm they 
use code analysis and trace driven simulation to discover an 
improved layout of a program in the available memory space. 
Ghosh uses cache miss equations to drive compiler optimization 
decisions for improving cache performance [12].  Samples uses 
profile driven compilation in his work to help optimize code 
layout [4]. He describes how the software is instrumented to 
collect profile data, which is used to create a more optimized 
layout to avoid cache misses.    

These software techniques all improve code performance by 
code analysis and evaluation of memory access patterns.  The 
software is physically recompiled and / or linked to create a more 
optimal memory layout to avoid cache misses.   

Hardware methods include creating cache structures more 
suited for reducing cache conflicts.  Lee, et. al. use a temporal and 
spatial cache system based on time interval to optimize 
performance [1].  Their technique uses a small block size direct-
mapped cache more suited for temporal locality and a fully 
associative buffer with large block size to address spatial locality.     
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Xia and Torrellas also use a clever means of improving cache 
performance by leaving software hints in the compiled code to 
help guide the hardware prefetching [7].  They create a code 
layout more suited for locality based on dataflow analysis, address 
traces, and frequency of routine invocation.     

After an embedded system’s software or firmware is compiled 
and linked, instruction addresses remain static unless the program 
is upgraded in the field.  As a result, the methods described above 
can be used to organize the code in order to avoid cache misses.  

 

3. Dynamic Round-Robin Scheduling 
Our technique, which we call Dynamic Round-Robin 

Scheduling (DRRS), complements the techniques described in the 
previous section by monitoring and then improving the 
performance of a system that uses round-robin task scheduling. 
DRRS simply reorders the round-robin scheduler’s task execution 
sequence.  This reordering is done dynamically during program 
execution, and hence is a run-time improvement done in software, 
with no special hardware required. Further, DRRS uses live 
execution profiling of cache miss information, so no post 
processing of data is required and the system can adapt 
dynamically as it runs.  

Note that the goal of this task reordering is not to find the 
optimal schedule.  DRRS simply tries to find a schedule that 
reduces the cache misses below a user-specified level.  The goal 
of our work was to find a low-overhead technique to provide 
moderate improvement, not a high-overhead technique that 
provides the best possible improvement.  Like Gloy, we also 
realized that even small changes can make a difference in 
performance [9]. 

Thus DRRS is a software technique to directly support the 
hardware. No changes are required to the code layout, which 
remains as generated by the compiler.  However the round-robin 
schedule sequence is modified to reduce the cache misses 
experienced. 

For example, consider a round-robin schedule consisting of 
six tasks where the round-robin scheduler proceeds in task 
execution order A,B,C,D,E,F, and then repeats continuously in 
that sequence.  During execution, each task replaces cache data, 
and a series of cache misses occur, harming performance.  

Now suppose the execution order of tasks B and C are 
swapped.  Using a classic round-robin scheduler, the order in 
which the tasks are processed in each round does not matter to the 
scheduler — all that is required of the scheduler is that all tasks be 
given an equal time slice in each round. 

However, the new execution order (A,C,B,D,E,F) results in a 
different cache usage, potentially a reduction in the number of 
cache misses, and if so, overall better performance.  This is the 
key to DRSS — simply changing the execution order of the tasks 
in the round-robin CPU scheduler to improve cache performance. 
It is also important to understand that we are not physically 
changing the location of the tasks in memory, which are still 
fixed at compile and link time.   

Changes can be common at run-time with many systems that 
can disturb the state of the instruction and data caches, leading to 
periods of cache misses.  For example, activities such the data 
processed by the embedded CPU or interrupts experienced can 
alter the execution paths of a collection of tasks, even if the 
software is fixed. Without a dynamic method, one cannot adapt to 
such changes. Thus our problem statement is as follows:  

Given a set of N tasks scheduled by a round-robin CPU 
scheduler, find a schedule order that reduces the number of cache 
misses below some user-specified threshold.  Adapt to system 
changes by adjusting the schedule order dynamically during run-
time to keep the number of cache misses below this threshold.  

 
3.1 Implementation    

Dynamic Round-Robin Scheduling (DRRS) begins in the 
running state with some initial round-robin task ordering.  This 
initial ordering can be arbitrary, or based on static analysis or 
some other profiling technique.  In the running state, there is no 
difference in activity compared to a regular system, except that the 
amount of cache misses experienced are monitored at regular 
intervals.   Thus after a set number of round robins have 
completed, a checkpoint is triggered to see if the number of cache 
misses have increased above some user-defined threshold.  If so, 
the system enters tuning state as described below and the round-
robin ordering is changed to reduce the number of cache misses.  

This threshold sets a user-defined bound on the number of 
cache misses experienced, resulting in more predictable 
performance. Thresholds can be set by any one of a variety of 
methods, such as performance profiling of the running system (as 
described later in Section 4), or trace analysis of system execution 
under various data sets. For real time systems, it might be 
desirable to set the threshold when the round-robin performance 
degrades to a point where deadlines risk getting missed.       

During tuning state, a new round-robin task order is selected 
by the software. This is done by reconfiguring the contents of a 
scheduling array, which contains an ID number for each active 
task and represents a trial ordering of the tasks to be executed in a 
round robin. The scheduler will reference this array each time 
before a task is selected for CPU execution. By using a jump table 
indexed by the array, DRRS can be implemented with a low 
instruction count overhead. 

The system then uses the new round-robin schedule over the 
same checkpoint interval and compares the new performance 
measure to the previous best value. If there is an improvement in 
performance, this becomes the new best performance value and 
the new round-robin schedule ordering is selected. This new 
performance value is also compared to the threshold, and when the 
threshold is reached, the system moves to the running state and 
the new round-robin sequence is used until the next tuning cycle.  
The new threshold is also stored as the result of the tuning 
operation.  Figure 1 summarizes the activities of the tuning phase.   

DRRS is a run-time heuristic that attempts to iteratively 
improve system performance by altering the round-robin schedule 
order and then grading the effect of this alteration.  Through a 
series of stepwise refinements, the number of cache misses is 
eventually reduced and the overall performance improves.  This 
method is similar to many hill climbing / branch and bound 
heuristics; so if a change to the round-robin schedule is selected 
that does NOT improve performance, the change is rejected. 

During the tuning phase, a new schedule order must be 
selected to test.   We used a simple swapping of the schedule array 
elements or randomly juggling the array to accomplish this task 
with little execution overhead. We found in our sample 
experiments (see Section 4) that after a dozen or so trials, the 
performance usually improved enough to dip below the threshold 
and get back into the running state, and the main additional code 
overhead (the ~40 instruction cycles to run a pass of the 
rescheduling algorithm, executed once per interval) did not 



significantly harm the performance. As in any hill-climbing 
algorithm, performance occasionally got worse during a test but 
those effects were temporary and the performance quickly 
improved.  Overall, we met our goal of developing a low-
overhead algorithm that could make minor changes to the round-
robin schedule and yet give a worthwhile performance 
improvement.  
 

4. Experimental Validation 
In order to explore our DRRS technique, we created a test 

workload consisting of the Dhrystone benchmark and 5 tasks 
selected from Mibench, an embedded systems benchmark [11].   
These tasks (see Table 1) were arranged in a classic round-robin 
schedule where each would be selected to run for one time interval 
in turn. The tasks had different total run-times, and hence required 
a different amount of CPU time to complete. The total executable 
code size including shared libraries was 40KB.  

Table 2 shows the summary of 10 simulations created by 
swapping array elements in a sequential fashion for two different 
cache sizes.  It shows the task ordering when the tuning phase is 
entered (above the threshold), the starting number of cache misses, 
the average number of cache misses experienced during the 
tuning, the ending task ordering and number of cache misses, and 
the improvement.  

We ran our experiments on simulations of the commercially 
popular ARM11 series CPU core. We used this CPU with two 
different cache sizes for instruction and data (4K and 16K), and 
with 4-way set associativity and a selectable random or LRU 
replacement policy. We performed simulations using all 
combinations of these cache options on a cycle accurate hardware 
simulator. Our software code was compiled with default 
optimizations using the ARM Realview TM compiler tools [10].  

We began our experiments by running our system using 
various arbitrary schedule orderings, and studied the number of 
cache misses experienced. Based on these initial tests, we selected 
a checkpoint interval of 10 round-robins and accumulated the 
cache miss information for both data and instruction caches.  
Since this was a test system without real requirements, we 
arbitrary set the high threshold at the worst case observed cache 
misses, and the low threshold at 15% below this number, for both 
4K and 16K cache sizes.  

With our 6 tasks, we ran many simulations using arbitrary 
starting points that resulted in a high degree of cache misses above 
the threshold. Compulsory misses were screened out by delaying 
the cache miss counts until a few round-robin iterations have 
elapsed.  In this way, the effect of the cache footprint due to the 
previous running combinations and due to cold start misses was 
largely flushed out before measurements were taken. 

  As can be seen in Table 2, the number of instruction cache 
misses was reduced by just changing the task ordering. The end 
result was achieved after running the indicated number of 
rescheduling intervals. However, this was not the case for data 
cache misses — there seemed to be no pattern of data cache miss 
that was influenced by our positional rescheduling. Overall, our 
test system was clearly dominated by instruction cache misses, 
which accounted for >95% of all cache misses. Of course, this 
consequence could have been due to the benchmark programs 
being tested, so further experimentation is needed to confirm 
whether or not this is a general effect. 

The table shows the average number of cache misses, which is 
important because it constitutes the cost of tuning phase. 
However, one can see that the cost of the rescheduling can easily 
be outweighed by the reduction in cache misses experienced. 

Table 1.  Test Simulation Software 

# Name Exec.Time % Description 
1 bitcounts 2% Count bits in a vector 
2 Djikstra  4% Shortest path 
3 Dhystone  21% Popular Benchmark 
4 aes 23% Encryption of data 
5 fft 40% Fourier Transform 
6 qsort 10% Sort a set of numbers 
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Figure 1.  Tuning the System’s Schedule 

Table 2.   Simulation   Results 
 

# Start/End 
Order 

Start 
End 

Avg Imp-
rove 

Inter
-vals 

Cache 
Size 

1  1,2,3,4,5,6     
4,2,3,1,5,6  

8600  
7542 

7979 13% 4 16K 

2 6,1,3,4,5,2 
2,5,1,4,3,6 

8878 
7572 

8072 15% 16 16K 

3 4,2,6,1,5,3 
2,4,5,1,6,3 

8360 
7533 

7989 10% 7 16K 

4 1,5,2,3,4,6 
3,2,5,1,4,6 

8614 
7658 

8086 11% 12 16K 

5 6,5,4,3,2,1 
1,4,3,5,2,6 

9003 
7663 

8081 15% 20 16K 

6 1,2,3,4,5,6 
3,2,1,4,5,6 

28850 
26532 

27625 8% 3 4K 

7 6,5,4,3,2,1 
4,3,5,6,2,1 

27934 
26695 

27907 4.5% 19 4K 

8 4,1,6,2,5,3 
1,4,6,2,5,3 

27691 
26380 

27470 5% 2 4K 

9 2,5,3,6,4,1 
4,5,3,6,2,1 

27686 
26575 

27769 4% 15 4K 

10 4,2,1,5,6,3 
2,4,1,5,3,6 

27983 
26837 

27586 4% 2 4K 

 

 



Since on entry to the rescheduling, the system is already in a bad 
state, changes are likely to help get below the threshold  

Our random rescheduling experiments arbitrarily juggled the 
elements in the scheduling array during each trial.  This allowed a 
new round-robin schedule to be derived during each trial period 
with low instruction count overhead. With this trial, instead of 
using a threshold, all runs consisted of 20 intervals using an 
arbitrary random start point. The best/worst/average results 
achieved are shown in Tables 3 and 4.  These tables show the 
variation in performance that one can expect just by changing the 
task ordering. By selecting the best out of 20 fixed runs, we could 
achieve as much as a 10% improvement in cache miss reduction 
compared to the worst case. 

With 4K caches, the performance improvement was less 
dramatic compared to 16K caches. Most likely this difference was 
due to the high degree of capacity conflicts which involved 
frequent line flushes. This saturated the affect of cache conflict 
misses.  The 16K caches thus represented a more reasonable 
choice for our application, so the task rescheduling resulted in 
more obvious results showing cache conflict avoidance.  

5. Conclusion 
This paper has introduced Dynamic Round-Robin Scheduling 

(DRRS) as a flexible framework for improving the run-time 
performance of multi-tasking embedded systems. Continuous 
monitoring of the system performance is used to monitor the 
effect of the task rescheduling. With our limited experimentation, 

we were able to achieve a 4% to 15% improvement in the 
reduction of instruction cache misses between tasks in the round-
robin schedule, with low enough overhead to justify the algorithm.   

 Our results indicate that even small changes in the task 
ordering can result in dramatic changes in the cache performance. 
This can be important for multi-tasking embedded or real-time 
systems with delicate performance criteria. The code overhead is 
low and the implementation technique is flexible; which can be 
efficiently implemented using a task ordering array.  Techniques 
such as DRRS can be helpful at augmenting other techniques for 
code layout improvements used in embedded systems.  

Much research has already been done to optimize code layouts 
at compile and compile time to minimize cache conflict.  However 
this improved layout may only be suitable for a given static 
workload, while systems follow different execution paths and 
workloads in the field. So, without a dynamic technique, one must 
live with what the compiler provides. The DRRS technique in 
contrast, monitors the cache misses and dynamically adjusts the 
task schedule to incrementally improve performance under 
changing system conditions.   
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