
High-level Modelling and Exploration of Coarse-grained Re-configurable
Architectures

Anupam Chattopadhyay, Xiaolin Chen, Harold Ishebabi, Rainer Leupers, Gerd Ascheid, Heinrich Meyr

Integrated Signal Processing Systems, RWTH Aachen University 52056 Aachen, Germany

anupam@iss.rwth-aachen.de

Abstract
The increasing complexity of today’s multimedia and wireless ap-

plications is motivating the system designers to innovate continu-
ously. With the challenge to keep various performance metrics in
a tight balance while designing a complex system, an entire range
of components are now being offered as choices for system build-
ing blocks. Coarse-Grained Re-configurable Architecture (CGRA), a
strongly emerging class, is currently receiving due attention for of-
fering excellent performance as well as flexibility post fabrication.
Compared to the programmable and flexible microprocessors these
architectures are shown to yield stronger performance, especially in
case of regular and data-driven applications. A variety of system
designs are proposed of late, with CGRA as one of the key build-
ing blocks. Most of the research initiatives taken in this area have
resorted to a template-based approach, where the structure of the re-
configurable architecture is partially fixed with several tunable pa-
rameters. In this paper, we present a language-driven modelling and
exploration framework for CGRAs. In the domain of CGRAs, this
framework attempts to bring modelling ease, genericity, early explo-
ration and path to implementation together. The modelling formal-
ism proposed in this paper as well as the exploration capabilities are
demonstrated via experiments with several algorithmic kernels.

1. Introduction
Increasing complexity of wireless and multimedia applications are

driving the system designers to innovate continuously over the last

years. A fundamental trade-off between flexibility and the traditional

performance metrics (energy-area-timing) is being deemed more im-

portant than ever. In such a scenario, the building blocks of mod-

ern System-on-Chip (SoC) - under critical review - are those with a

tunable balance of performance and flexibility. Coarse-Grained Re-

configurable Architecture (CGRA), with strong performance advan-

tage as well as ability to be flexed post fabrication, is one such key

building block. A flurry of recent design proposals, both academic

and commercial, include CGRAs as accelerators [1] [2] [3] or are

completely based upon CGRAs [4] [5].

Since the traditional usage of FPGAs is mostly restricted to pro-

totyping and emulation, design methodology of CGRAs is still a

nascent field. As the defining roles of CGRAs in modern systems are

getting clearer, more and more design flows are being proposed. Re-

gardless of the approach followed by these design flows, the central

challenges of design remain the same. In the following, an overview

of the CGRA-based research efforts are outlined.

1.1 Modelling
Most of the research in the field of CGRA design are focussed

on parameterized design space exploration [2] [6] [7] rather than on

high-level modelling. The physical implementation, in most cases,

is done beforehand due to the limitation of aggressive automatic

physical optimization and/or lack of retargetable CGRA mapping-

placement-routing tools. Commercial FPGA vendors have suggested

RTL abstraction as a level of modelling, albeit only for simulation

purposes [8]. As a result, the modelling platforms either provide lim-

ited flexibility of modelling or are completely devoid of implementa-

tion aspects [6]. The recently proposed ADRES [9] architecture from

IMEC, for example, allows to change the parameters like - number

and size of register file associated with each basic functional unit, op-

eration set supported by the functional units and interconnect topol-

ogy - of its re-configurable array. Similar architectural parameters are

also found in [10] and [11]. The limitation of such a parameterized

approach is that, the introduction of a new design parameter might

lead to serious modification in the associated tool-chain.

1.2 Mapping, Placement and Routing
Mapping, placement and routing (referred together as CGRA syn-

thesis henceforth) are three important phases of porting a datapath

onto an CGRA. In several attempts to perform CGRA synthesis, the

architecture is partially or completely fixed. However, that may not

affect the genericity of synthesis algorithms.

A completely generic approach for exploring the functional units

of a mesh-based CGRA with corresponding mapping algorithm is

presented at [6]. For different grid configurations, interconnect

topologies and functional units inside the processing elements - map-

ping is performed. The mapping algorithm is selected from a set of

different topology traversal options, optimality of which is not stud-

ied. In a recent effort to generate mapping solutions for CGRAs [12],

an approach based on Integer Linear Programming (ILP) is outlined

for mesh-like topologies. The extension of this approach to different

routing topologies and/or different basic functional units are not spec-

ified. A memory-aware mapping algorithm is proposed at [13]. Here,

the CGRA is fed into the algorithm in form of an undirected graph.

The input datapath is modelled as a data-dependence graph, where

each node of the graph is assigned with its priority. The mapping

algorithm works on the principle of list scheduling, where the nodes

residing on the critical path are mapped first and so on. For each node,

a list of mapping-cum-placement choices are first determined. On the

basis of available routing resources, the best choice is selected. In

a notable attempt, Mei et al. [2] proposed to merge the scheduling

part of a C compiler to take the CGRA structural constraints into ac-

count via modulo scheduling algorithm. The common feature among

all these CGRA synthesis algorithms are that those start from some

form of data-dependence of the input graph and consequently finds

the best mapping, placement and routing. Often, these phases are

merged together.

A datapath synthesis system for coarse-grained FPGA is presented

at [14]. This allows the FPGA users to write the input datapath in a

language called ALE-X (which is oriented to C). The FPGA structural

details, though can be altered by the designer, is strongly embedded

in the mapping, placement and routing algorithms. Post routing, a

scheduling is performed to optimally sequence the I/O operations in

view of limited bus resources. An interesting approach is adopted

for mapping applications to the GARP architecture [15]. By recog-

nizing that both synthesis and compilation are actually solving the

same problem, in [15] the FPGA synthesis is performed using similar

techniques as found in the domain of high-level compilers. The input

data-flow graph is split into trees and then tree covering algorithm is

applied for mapping. Furthermore, noting that the placement deci-

sions seriously affect the mapping results, a dynamic programming-

based placement is performed simultaneously with the mapping. A

drawback of the synthesis algorithm in [15] is that, it requires split-

978-3-9810801-3-1/DATE08 © 2008 EDAA

ting of input graphs into trees, which comes with sub-optimal result

in the global context. In [16], tiles of coarse-grained FPGA named

Montium are used. For Montium, a set of template operators are first

created. Thereafter, for each node, all possible template matches are

outlined. From these matches a conflict graph is created and a heuris-

tic to determine maximum non-overlapping match set is employed.

This method, though good for area constraints, does not address the

delay element.

1.3 Implementation
Compared to the volume of research in the field of CGRA syn-

thesis, relatively fewer attempts are made to automatically derive an

implementation from high-level CGRA specification. In one of the

CGRA exploration tools [14], automatic HDL is generated from an

intermediate architectural abstraction. The initial architectural pa-

rameters are estimated from the input datapath (to be mapped) and

then can be fine-tuned via a graphical editor. For the parameteriz-

able CGRA design flows the RTL generation is often used for sim-

ulation [17] [2] but, not for the final implementation. In keeping

tune with the parameterized modelling approach, a parameterizable

CGRA template using VHDL is described in [10].

In contrast, it is interesting to take a view in the realm of fine-

grained FPGAs. The architectures of fine-grained commercial FP-

GAs are always tuned with physical optimizations. Therefore, high-

level modelling is relevant only to the extent of allowing the FPGA

synthesis tools to encompass a variety of FPGAs. On the FPGA mod-

elling and automated implementation, fine-grained FPGA research

have limited results. On the FPGA synthesis aspect, expectedly, sig-

nificant research contribution is made over years. Optimal synthesis

algorithms for LUT-based FPGA architectures are proposed [18] [19]

and the interplay between synthesis phases are extensively studied

[20].

Contribution : In this paper, the aforementioned challenges are

confronted as following. Firstly, a high-level description formal-
ism is conceived to model CGRAs in a completely generic way,

thereby avoiding restricted parameterized design approach. This re-

quires powerful tooling support, which will allow optimized synthe-

sis/implementation for all the design points. For CGRA synthesis,

a different course of path than outlined in existing CGRA literature

is taken. The CGRA structure is viewed as a homogeneous one with

clustering. A cluster is a collection of one or more Logic Elements

(LEs). Each LE may consist of multiple varied functions. A CGRA

structure is termed homogeneous if the same cluster (possibly with

heterogeneous LEs inside) is repeated to build the overall CGRA. On

that basis, best-in-class synthesis algorithms from the domain of fine-

grained FPGAs are applied with necessary adaptation. Furthermore,

it is shown that certain form of homogeneity can be established in

the so-called non-clustered heterogeneous CGRAs. Therefore, the

same algorithms can be applied with little bit of tuning. Thirdly, to

obtain the CGRA implementation, RTL description (VHDL, Ver-

ilog) is automatically generated from the high-level language. The

RTL description serves the important purpose of providing simula-

tion environment as well as early estimation of the performance. The

RTL description can be conveniently integrated with a commercial

physical synthesis flow. Finally, the complete CGRA design flow

is integrated to an existing ADL-driven processor design frame-
work [21] to allow complete design space exploration of partially

re-configurable processors.

The rest of the paper is organized as follows. The following sec-

tion 2 points the scope of current CGRA design flow. The section 3

presents an overview of the CGRA modelling formalism. In section 4

and in section 5, the CGRA synthesis flow and the RTL implemen-

tation are described respectively. Section 6 reports our experiments

with the tool-flow outlined in this paper. The paper is concluded and

future directions are mentioned in section 7.

2. Integration with Processor Design Framework
The integration of a commercial ADL-driven processor design

framework (CoWare/LISATek) [21] with the CGRA synthesis and

implementation flow is captured graphically using the figure 1. The

software tool suite as well as the processor RTL description are au-

tomatically generated from the extended ADL description. The pro-

posed CGRA description is conceived as a part of the ADL LISA.

For RTL implementation, recent advances in LISA-based tools also

allow partitioning of the processor datapath to indicate if some part

is going to be synthesized on to the CGRA. The partitioning results

into a DFG description (of processor’s partial datapath), which is fed

directly as input to the CGRA synthesis tools. The CGRA synthe-

sis flow generates configuration bitstream, which can be simulated on

the HDL implementation of the CGRA. The simulation can be done

stand-alone or together with the processor.

RTL
Implementation

Partition &
DFG Generation

Simulator

Mapping,
Clustering
Placement,

Routing

application
(C)

Software
Tool suite

Generation

Base
Processor

(HDL)

Linker

Assembler

Compiler
CGRA Description

Config.
Bitstream

CGRA
Description

(HDL)

Profiling

RTL
Implementation

ExtendedExtended ADL DescriptionADL Description
(LISA 3.0)(LISA 3.0)

Figure 1. Integrated Processor Design Flow

3. CGRA Modelling
In this section, an overview of the proposed modelling formalism

is provided. The CGRA description is organized in three interrelated

parts. First, the logic elements, which defines the basic functional ele-

ments. The logic elements are arranged hierarchically in the topology
part. Finally, the interconnect part organizes the connections.

3.1 Logic Element
A logic element can be written using the ELEMENT keyword.

Within an element, the I/O ports are defined. For each I/O port,

attributes can be specified. An attribute can be either REGISTER
or BYPASS indicating that particular port can be held or bypassed

while connecting. The behavior of the element is captured within

BEHAVIOR section of element in form of a subset of C language

(without e.g. pointers, structures, arrays). In order to specify a wide

number of possible operators, configurable statically or dynamically,

the keyword OPERATOR LIST is used. An exemplary element def-

inition and corresponding hardware representation can be observed

in the figure 2. From the OPERATOR LIST and the ATTRIBUTE
definition, configuration bits are automatically inferred during RTL

implementation. Note that, the logic elements can be used for the

purpose of routing, too. This is exemplified with the outport z in the

figure 2. The logic element may also include some control structure

like multiplexing, which can be used to cover applications in form of

Control Data Flow Graph (CDFG).

ELEMENT alu {
PORT{

IN unsigned<16> a,b;
OUT unsigned<16> y,z;

}
ATTRIBUTES {

REGISTER(y);
BYPASS(y);

}
BEHAVIOR {

OPERATOR_LIST op = {<<,>>,+};
y = a op b;
z = a;

}
}

register
<<

>>
+

a

b
y

configuration

z

Figure 2. Logic Element Definition

3.2 Topology
The TOPOLOGY section contains several CLUSTERs. Similar to

the logic element, I/O ports and corresponding attributes can be de-

fined inside these clusters. Within the LAYOUT part of cluster, the

previously defined elements can be put together in a ROW. Several

rows can be then defined consecutively, building a 2-dimensional

structure. A cluster can be formed using elements and/or clusters. By

this process, a hierarchical structure can be designed. An exemplary

topology definition is shown in the figure 3. Using this hierarchical

modelling style, grid-like structures can be easily described.

TOPOLOGY {
CLUSTER cluster1 {

PORT{ IN unsigned<16> inport;
OUT unsigned<16> outport; }

ATTRIBUTES { ... }
LAYOUT{

ROW row0 = {alu, alu};
ROW row1 = {alu, clb};

}
}

CLUSTER cgra {
PORT{ IN unsigned<16> g_in;

OUT unsigned<16> g_out; }
ATTRIBUTES { ... }
LAYOUT{

ROW row0 = {cluster1, cluster1, cluster1, cluster1};
...

}
}

}

Figure 3. Topology Definition

3.3 Interconnect
The interconnects between the clusters and the elements can be

specified in CONNECTIVITY section. For each cluster, a set of

BASIC rules are described. Within one cluster’s context several such

rules connect the I/O ports of the cluster and its children entities. Fur-

thermore, the rules are bound by a definite STYLE e.g. mesh, point-

to-point, nearest neighbor. In case of several connectivity rules imply-

ing multiple inputs to a single port, a multiplexer is inferred, which is

connected to the global configuration control bitstream. The connec-

tivity style is associated with a parameter to indicate the hop-length of

the connections. The default parameter is 1. The connectivity stride

decides the number of hops the interconnect makes to establish a di-

rect connection. By this way, a wide range of different connectivity

styles at different hops can be established. As shown in the figure

4, multiple overlapping connectivity styles can be modelled. This

enables the CGRA designer to decompose a complex routing archi-

tecture into several styles. For clarity, the effect of local and global

connections are shown separately.

CONNECTIVITY{
RULE cgra {
STYLE(NEARESTNEIGHBOUR,1);
STYLE(MESH, 2);

BASIC (cluster1,cluster1) {inport TO outport;}
BASIC (cgra, cluster1) {g_in TO inport;}
BASIC (cluster1, cgra) {outport TO g_out;}

}

g_in

cluster1

g_out

shared bus

cgra

Figure 4. Connectivity Definition
Together, the three parts of the CGRA modelling is able to de-

scribe a wide range of architectures. All of those architectures can

be processed with the CGRA implementation flow. The CGRA syn-

thesis flow can also, in principle, handle each of those. However, for

a large cluster size or for a complicated connectivity network - the

synthesis runtime will be much too long with the current algorithm

implementation. Even then, the proposed language provides more

freedom in describing arbitrary logic element functionalities, inter-

connects and topologies, which cannot be expressed in a pre-defined

parameterizable architectural template.

4. Synthesis of Datapath onto CGRA
For CGRA synthesis, the first input is the application’s DFG-

based representation. The second input is the CGRA description. The

output is the configuration bitstream for simulating the application on

CGRA’s RTL implementation. The various phases of CGRA synthe-

sis flow are discussed below.

4.1 Mapping and Clustering
On the assumption of general delay model [22], delay-optimal Si-

multaneous Mapping And Clustering (SMAC) algorithm for Look-

Up Table (LUT)-based FPGAs is proposed in [18]. In the current

work, SMAC is extended to fit the coarse-grained scenario. Our ex-

tended algorithm, dubbed as CG-SMAC (Coarse-Grained SMAC),

is distinguished by several features. Firstly, for each node of the

input dataflow graph, SMAC generates a new possible cluster en-

try or checks if it can be fit into already existing cluster entries.

CG-SMAC, in addition, checks all possible graph-matching options

rooted at the current node. Accordingly, new or existing entries are

created/modified. This guarantees a delay-optimal clustering deci-

sion even in presence of varied possible library patterns. Secondly, in

CGRA several diverse logic blocks can be grouped together to form

a cluster unlike more homogeneous structure of the fine-grained FP-

GAs. To account for such an heterogenous structure as well as the

designer-defined connectivity constraints - in-cluster placement and

routing are done during CG-SMAC. Finally, a first-fit heuristic for ob-

taining area-optimized mapping solutions is integrated in CG-SMAC,

too. The synthesis steps are presented in the following.

The inputs to the CG-SMAC algorithm are (i) the input datapath

(Id), (ii) the CGRA connectivity constraints, (iii) the CGRA pattern

library, which is automatically generated out of the elements’ behav-

ior description. The output of the CG-SMAC is the mapping and

clustering decisions. The input datapath is represented in Data Flow

Graph (DFG) format, which is generated automatically by parsing a

C description (either from an application or from a processor’s data-

path description). The CG-SMAC algorithm can be decomposed into

two subsequent phases. The labelling phase and the cluster realiza-
tion phase. The labelling phase traverses the input datapath from the

Primary Input (PI) nodes to the Primary Output (PO) nodes in topo-

logical order and computes the possible arrival times given that node’s

possible allocation in a cluster. In the second phase of CG-SMAC i.e.

the cluster realization phase, the nodes are traversed from PO to PI

and allocated into the cluster with minimum arrival time possible for

that node. The overall algorithm is based on dynamic programming

i.e. for each node of the input datapath, all the possible clustering

solutions are outlined to avoid locally optimal results.

Labelling : During the labelling phase, it is first necessary to enu-

merate all possible mapping solutions rooted at a particular node n
for the given library patterns. This step can be considered similar to

the K-feasible cut generation of SMAC (for a K-LUT). The mapping

solutions are generated via graph mapping against the pattern library.

An exemplary graph mapping flow is illustrated with the figure 5.

In this example, the node n6 of the input graph is matched against

the available patterns. A node is first matched with the root node of

the pattern graph. A node-to-node matching is done by checking the

operator (size, type) and the number of inputs. In the following iter-

ations, the matched pattern graphs are traversed from root node up-

wards level-wise to check if those can completely cover a sub-graph

of (Id). Only in the case of complete cover, a pattern is considered to

be a match for the current node. In the figure, several such matches

(within rectangular boxes) are shown for pattern graphs P1, P2 and

P3 whereas no match is found for P4.

+ +
+

+

Pattern Library

*

*

*

<<

<< <<>>

*

Input Datapath

P1 P2 P3

Iteration 1 : n6 � g2 n6 � g1 n6 � g4

n6

n5

n3

n4

n1
n2

g1

g2

g1
g2

g1

g4

Iteration 2 : {n6 � g2, n4 � g1} - {n6 � g4, n4 � g2 , n5 � g3}

Iteration 3 : - - {n6 � g4, n4 � g2 , n5 � g3 , n2 � g1 , n2 � g1}

Matches : P1 Matches : P2 Matches : P3

+

P4

g1

+ g3

{n6 � g2, n5 � g1} {n6 � g4, n4 � g 3, n5 � g2}

{n6 � g4, n4 � g 2, n5 � g3 , n3 � g1 , n2 � g1}
{n6 � g4, n4 � g 3, n5 � g2 , n2 � g1 , n2 � g1}
{n6 � g4, n4 � g 3, n5 � g2 , n3 � g1 , n2 � g1}

Figure 5. Graph Mapping during Labelling
For each of the graph-mapping results, at a node nodecurr an

empty clustering solution clusternew is created (which does not

require placement and routing checks) or the clustering solution

clusteri from its predecessor nodes are checked if it can accommo-

date mapping solution of nodecurr . The predecessor node has to

be considered on the basis of mapping solution currently being con-

sidered. The check with accommodation within predecessor nodes’

clustering solutions actually resembles the clustering capacity check

done in LUT-based FPGA synthesis. A marked difference is that, for

CGRA, the clustering capacity can be defined in terms of the vari-

ous elements available within the cluster as well as the connectivity

constraints allowed. To address this problem, an in-cluster place-and-

route is performed to check if the clustering capacity is met (algo-

rithm 1). The algorithm is run over each mapping solution of the

current node. The key part of the algorithm is to decide if a prede-

cessor node’s existing clustering solution do have capacity to take the

current node’s mapping solution. This is done first by checking if

the cluster has an unfilled logic block corresponding to the mapping

solution. In that case, the mapping solution is added to form a new

cluster. However, this is not sufficient. Given the existing cluster’s

connectivity restrictions the newly added mapping solutions may not

be routable. This is checked via generating all possible placement

combinations within the scope of clusterpred and performing rout-

ing. Out of the various possible placements, the one with minimum

routing cost is added to the current node’s possible clustering solu-

tions. For each clustering solution, an arrival time is calculated on the

basis of a delay model and the parent nodes’ arrival times.

Algorithm 1: In Cluster PlaceAndRoute
begin

clusternew = nodecurr .newCluster (mapping solution);
nodecurr .appendClusterSolution(clusternew);
pred node list = getParentNodes(mapping solution);
foreach nodep ∈ pred node list do

cluster list = getClusterSolutions(nodep);
foreach clusteri ∈ cluster list do

if clusteri can take mapping solution then
clusterpred =
addMapping(clusteri,mapping solution);
min cost = infinity;
possible placements =
getAllPlacements(clusterpred);
foreach placed i ∈ possible placements do

routedi = route(placed i, routable);
routing cost = computeCost();
if routable == true and routing cost <
min cost then

min cost = routing cost;
routedbest = routedi;

nodecurr .appendClusterSolution(routedbest);

end
Cluster Realization : Using the graph mapping and in-cluster

placement and routing, the complete labelling (arrival time calcula-

tion) of input DFG is done. This is followed by the cluster real-

ization phase, where the algorithm traverses from the PO to the PI

nodes and at each node selects the optimum clustering decision. In

this work, delay-optimal clustering decision is chosen as in original

SMAC. During cluster realization conflicting clustering requirements

may exist at nodes with multiple fan-outs [18]. In such cases, nodes

are duplicated.

Area Optimization : To obtain an area-optimized version of CG-

SMAC, we resorted to a variant of first-fit heuristic. During the la-

belling phase, each node is annotated with the number of clusters it

currently consumes along the path from PI. During cluster realization,

the clustering decisions with least cluster count are chosen.

4.2 Placement and Routing
To solve the non-trivial placement problem (NP-hard), several ef-

fective heuristics are proposed in literature. As the routing strategy

is strongly influenced by the FPGA placement, it is customary to in-

clude a routing validation [6] or even the complete routing [23] inside

each iteration of placement algorithm. For this work, a simulated an-

nealing based placement heuristic is applied, with each iteration per-

forming a state-of-the-art negotiation-based routing algorithm [19]

internally. At the end of placement and routing, clusters are placed

in the CGRA with definite routing paths. The routing is done either

via direct connections between neighbouring elements/clusters or via

an empty element/cluster. During the placement and routing imple-

mentation, the routing resources are modelled as per the connectivity

specifications. Exemplarily, for every dedicated connection between

two clusters, an intermediate routing resource is assumed, which can

be shared among the cluster’s internal elements for porting data. This

is a notable extension in our implementation since, it follows a di-

verse set of topology and connectivity constraints directly from the

CGRA description. After the placement and routing, the configura-

tion information from each port is loaded from the CGRA description

and configuration bitstream is generated automatically.

4.3 Synthesis on Non-clustered Heterogeneous CGRA

H-CGRA-1 H-CGRA-2

ALU
MUL

pseudo cluster boundaries

Figure 6. Heterogeneous CGRAs
The proposed description style permits modelling of a heteroge-

neous CGRA by allowing various elements to be grouped in a clus-

ter and various different clusters forming the complete CGRA. How-

ever, adapting CG-SMAC and the placement-and-routing algorithm

for heterogeneous CGRA is a major challenge as those are designed

with clustered LUT-based FPGAs in view. One possible alternative is

to model the entire heterogeneous CGRA as one single large cluster.

This will pose difficulty to the in-cluster placement and routing phase,

which permutes over all possible placement positions. The chosen

alternative is to determine some form of homogeneity within the het-

erogeneous CGRAs and thereby, impose pseudo cluster boundaries.

In this case, the inter-cluster routing cost is considered equal to the

intra-cluster one. This enables the entire CGRA synthesis flow pre-

sented in this section to be applied to heterogeneous CGRAs. Two

CGRAs, with pseudo cluster boundaries are shown in the figure 6.

It must be noted that the CGRA synthesis flow presented here is

not dependent on the proposed modelling formalism or vice-versa.

A different compilation approach (e.g. [6]) can be applied here, too.

The reason for selecting the SMAC [18] as basis for CGRA synthe-

sis is that, it proposed delay-optimal mapping and clustering unless

any of the known CGRA synthesis solutions. Furthermore, dealing

the CGRA synthesis independently from the processor’s C Compiler

(unlike [2]) allows the designer the freedom to map the application

directly or via the intermediate ADL structure.

5. Implementation Flow

Algorithm 2: CGRA RTL Implementation
begin

E top = parse(CGRA Description);
connectPaths(E top);
connectConfiguration(E top);
HDL Description = generateHDL(E top);

end

The CGRA description is subjected to a tool-flow developed for

this work in order to generate synthesizable RTL description. The

major phases of the RTL implementation is presented in form of

pseudo code in algorithm 2. At the beginning, the CGRA descrip-

tion is parsed. Followed by parsing, the module hierarchy is es-

tablished, returning the top-level module. Then, the connectivity

section is accessed to establish the link between the ports of dif-

ferent modules via connectPaths function. This function also

infers the necessary multiplexer modules locally. The function

connectConfiguration traverses the entire module hierarchy

to determine the multiplexing points, thereby creating configuration

bits for each of those. The configuration bits are hierarchically ac-

cumulated and connected to a global configuration port. The entire

data-structure, built so far, is then subjected to HDL back-end in or-

der to generate an RTL description.

6. Case Study
The algorithm kernels selected for our experiments are FFT But-

terfly (BFLY), FIR (8-tap), DES and IDCT. FFT and FIR are well-

known algorithm kernels widely used in communication and digi-

tal signal processing. DES is a block cipher algorithm with 64-bit

block size. DES consists of 16 identical processing stages, referred

as rounds. The block targeted for CGRA exploration is one such

DES-round. IDCT is a fourier-related transformation, often used for

signal and image processing applications, especially for lossy data

compression. It has two components reflecting similar traits, namely

IDCT-row operations and IDCT-column operations. For the experi-

mentation described in the following, IDCT-row function is taken.

Delay Model : In the entire case study section, a cycle-based cost

model with inter-cluster routing delay set to 2 cycles and intra-cluster

routing delay set to 1 cycle is used (DM1 cost model in [6]). Only in

the case of heterogeneous CGRAs, where pseudo cluster boundaries
are set up, the inter-cluster routing delay is set to be same as the intra-

cluster routing delay, both being 1 cycle.

In order to compare between different architectural styles, we

first modelled, in a limited way, the well-known coarse-grained re-

configurable architectures. The architectural features are summarized

in the table 1. For CGRA-1, the cluster-level connectivity of MESH-1

is used, whereas for the rest the cluster-level connectivity is not rel-

evant. The basic element used in all these architectures is a 32-bit

ALU with arithmetic and logical operators inside those. The input

and output ports of the basic elements can be registered or bypassed.

The connectivity style and connectivity strides are also indicated in

the table. For example, the MATRIX architecture supports a connec-

tivity style of nearest neighbour (NN) with a stride of 1, mesh with

a stride of 2, row-wise (ROW) and column-wise (COL) both with a

stride of 4. Actually, the row-wise and column-wise 4-hop connection

in the MATRIX architecture is present in alternative fashion, which

is simplified for this study.

Architecture Cluster CGRA CGRA-level Reflecting
Size Size Connectivity Topology of

CGRA-1 2x2 8x8 MESH-1 DReAM
CGRA-2 1x1 8x8 NN-1, MESH-2, MATRIX

ROW-4, COL-4
CGRA-3 1x1 8x8 MESH-1, ROW-1, COL-1 MorphoSys

Table 1. Instances reflecting known CGRAs
Two of the algorithm kernels are synthesized with the aforemen-

tioned CGRAs. From the results given in table 2, it is not hard to

find out the following notes. Firstly, in the architecture which is close

to DReAM, for both applications, the number of clusters used after

placement and routing is much more than the number of clusters used

before that. The reason for this is, since MESH connectivity is used

in CGRA level, a lot of extra clusters are used for routing purpose.

How many extra clusters are used for routing depends on the kind

of connectivity style and the routing capacity of clusters. Therefore,

further exploration of connectivity style in CGRA level is necessary

to achieve better results. Secondly, in both the architectures CGRA-

2 and CGRA-3, a cluster size of 1x1 is used. In such a case, the

in-cluster configuration does not call for any exploration. The per-

formance after placement and routing depends on the CGRA-level

connectivity. A better performance is achieved for the architecture

with MATRIX-like connectivity due to more availability of routing

resources.

Architecture Application No. of Clusters Critical Path
before P&R after P&R (cycles)

CGRA-1 IDCT-row 26 42 53
DES-round 12 23 23

CGRA-2 IDCT-row 58 62 24
DES-round 28 31 24

CGRA-3 IDCT-row 58 67 32
DES-round 28 35 30

Table 2. CGRA Synthesis Results
For the CGRA to have a right balance of performance and flexi-

bility, it is imperative to select the basic elements, routing architec-

ture and structural topology prudently. With different applications,

it turned out that the performance varies with different architectures.

To understand this variation, we begin the exploration with a sim-

ple architecture with a cluster size of 2x2. In each cluster, three ba-

sic elements are used namely, ALU (for arithmetic operations), CLB

(for logic operations) and MULT (for multiplication). The cluster is

optionally equipped with a multiplexer block to enable control flow

mapping. The arrangement of the elements inside cluster is as shown

in the figure 7 (CGRA-1). On that basis, the CGRA-level connectiv-

ity is varied to obtain the results as presented in table 3. Clearly a rich

interconnect structure reduces the critical path but, not for all kernels.

Interestingly, for DES-round, a connectivity style of NN-1 achieves

better critical path as well as cluster count than a connectivity style

of {MESH-1, NN-2}. This reflects the application data-flow organi-

zation, which is much denser than can be supported by MESH with

2-stride NN.

ALU
{+,-}

ALU
{+,-}

MULT
{*}

CLB
{&,|,^}

CGRA-1

ALU
{+,-,&,|,^}

ALU
{+,-,&,|,^}

MULT
{*}

ALU
{+,-,&,|,^}

CGRA-2

CLB
{&,|,^}

ALU
{+,-}

ALU
{+,-}

ALU
{+,-}

CGRA_DES-1

CLB
{&,|,^}

CLB
{&,|,^}

ALU
{+,-}

ALU
{+,-}

CGRA_DES-2

CLB
{&,|,^}

CLB
{&,|,^}

ALU
{+,-}

CLB
{&,|,^}

CGRA_DES-3

Figure 7. CGRAs for Exploration

Application No. of Clusters Critical Path Connectivity
before P&R after P&R (cycles) Style
10 16 11 MESH-1

BFLY 10 11 7 NN-1
10 13 7 MESH-1, NN-2
10 10 5 NN-1, MESH-2
8 10 17 MESH-1

FIR 8 8 12 NN-1
8 8 12 MESH-1, NN-2
8 8 12 NN-1, MESH-2
31 44 39 MESH-1

IDCT-row 31 40 33 NN-1
31 38 29 MESH-1, NN-2
31 37 21 NN-1, MESH-2
20 30 45 MESH-1

DES-round 20 23 23 NN-1
20 25 25 MESH-1, NN-2
20 21 21 NN-1, MESH-2

Table 3. CGRA Synthesis : Effect of Connectivity
In this experiment the functionality of the elements are altered.

This can be performed easily by modifying the OPERATOR LIST of

an element. Here, the operators defined in CLB are moved into ALU

and the CLB is replaced with another ALU. Now, the architecture

becomes the CGRA-2 of figure 7. The results are shown in table 4.

Application No. of Clusters Critical Path Connectivity
before P&R after P&R (cycles) Style
9 15 10 MESH-1

BFLY 9 12 6 NN-1
9 11 6 MESH-1, NN-2
9 9 5 NN-1, MESH-2
8 10 14 MESH-1

FIR 8 8 10 NN-1
8 8 10 MESH-1, NN-2
8 8 10 NN-1, MESH-2
26 41 33 MESH-1

IDCT-row 26 37 28 NN-1
26 34 23 MESH-1, NN-2
26 31 15 NN-1, MESH-2
14 24 28 MESH-1

DES-round 14 18 22 NN-1
14 17 20 MESH-1, NN-2
14 14 15 NN-1, MESH-2

Table 4. CGRA Synthesis : Effect of Functionality
Compared to the original structure, the functionality modification

allowed the arithmetic operations and logic operations in the applica-

tion to fit into the same element. Because one more ALU element is

now available inside the cluster, chances of more arithmetic or logic

operations to be put into one cluster is increased. Therefore, better

mapping results are easily found in BFLY, IDCT-row and DES-round.

However, there is not much difference for FIR. This is since there are

no logical operations in FIR.

To show the effect of varying element numbers in a cluster, the

DES-round kernel is chosen. In DES-round, there are only logic and

arithmetic operations, which are distributed in a ratio of roughly 3 to

1. In this experiment, three architectures from figure 7, with all of

those having {NN-1,MESH-2} connectivity at CGRA level. From

the results (refer table 5), it can be observed that, a good architectural

decision is based on the proper application characterization. The se-

lection of element type and number of elements inside cluster should

follow the basic characteristics of application e.g. the ratio of oper-

ators inside application. Here, when the ratio of elements of corre-

sponding type is close to the ratio of operators in application, a better

synthesis result is achieved.

Architecture No. of Clusters Critical Path
before P&R after P&R (cycles)

CGRA DES-1 20 22 23
CGRA DES-2 14 14 16
CGRA DES-3 11 11 13

Table 5. CGRA Synthesis : Effect of Diversity
By trading-off between the results of all the kernels and taking the

effects which are analyzed above, CGRA-2 is found to be the best

performing one. For area consideration, the MULT is kept as a sep-

arate element out of ALU. Considering the characteristics of BFLY

and FIR application, only one MULT is arranged inside cluster. Since

the logical and arithmetic (w/o multiplication) operations dominate

in BFLY, IDCT-row and DES-round, three ALU which includes both

logic and arithmetic operations are put inside cluster. An NN-1 con-

nectivity in cluster level and an {NN-1, MESH-2} connectivity at

CGRA level is used. For this CGRA, area-optimized version of CG-

SMAC is applied to observe the effect. The results are recorded in

table 6. The synthesis results without area optimization are indicated

within square brackets. Better area results are obtained in all cases.

Expectedly, a degradation of critical path is also observed. This area-

optimized version of CG-SMAC can be employed suitably when the

CGRA size is fixed beforehand and/or when the delay constraints are

less strict. An interesting follow-up work can be to perform area-

optimization in non-critical paths as in [15].

Application No. of Clusters [w/o opt.] Critical Path
before P&R after P&R (cycles) [w/o opt.]

BFLY 8 [9] 8 [9] 7 [5]
FIR 7 [8] 7 [8] 11 [10]
IDCT-row 23 [26] 28 [31] 21 [15]
DES-round 12 [14] 12 [14] 23 [15]

Table 6. CGRA Synthesis : Area-optimization
For experimenting with heterogeneous CGRA structures, the ap-

plication FIR is chosen with the architectures being same as presented

in figure 6. An overall MESH-1 connectivity style is chosen with the

inter-cluster and intra-cluster routing delay set as 1 cycle. For the H-

CGRA-2 architecture, the MULT elements are placed more sparsely,

which made the routing path longer. This resulted in higher number

of clusters as well as longer critical path (table 7).

Architecture No. of Clusters Critical Path
after P&R (cycles)

H-CGRA-1 20 8
H-CGRA-2 22 10

Table 7. Heterogeneous CGRA Synthesis
Though the algorithms used in the CGRA synthesis flow are

computation-intensive, the relatively less complexity of interconnects

in CGRA compared to fine-grained FPGAs allowed all the presented

case studies to be synthesized in reasonable time. In a AMD Athlon

Dual Core Processor (each running at 2.6 GHz), the case study ap-

plications finished within 1 (FIR, 15 operators) to 15 minutes (IDCT-

ROW, 58 operators) for CGRA-2.

The architectures used in this case study are synthesized to ob-

tain RTL description, followed by gate-level synthesis with Synopsys

Design Compiler. For comparison’s sake, we present the synthesis

results for the architecture CGRA-2. CGRA-2 is synthesized with

total 25 (5x5) clusters. For the designer-specified connectivity, to-

tal 2542 configuration bits are required to control CGRA-2. After

gate-level synthesis, the entire architecture met a clock constraint of

5 ns (with register attributes at element’s outports) for 130 nm pro-

cess technology (1.2 V) and occupied an area of approximately 3.77

mm2 of which 1.62 mm2 area is consumed by the CGRA-level rout-

ing alone. It should be noted that this synthesis figures are bound to

improve significantly after physical optimization and by using special

library cells, evidently for, the routing architecture.

7. Conclusion and Future Work
In this paper, a generic modelling language for describing CGRA

is presented. To perform design space exploration for different archi-

tectures, a complete synthesis as well as RTL generation flow from

this high-level language is developed. The synthesis flow is based

on that applied in fine-grained FPGA synthesis domain. The entire

CGRA design flow is integrated with a state-of-the-art processor de-

sign framework to enable partially re-configurable processor design.

We plan to incorporate several features in the CGRA description for-

malism e.g. the possibility of buffering data inside a cluster (only one

register port is supported now). The CG-SMAC algorithm can be im-

proved, in particular, with solution space pruning techniques. Several

design points of the CGRA are currently supported by the generic

modelling formalism without any support from the synthesis and/or

implementation flow. We will like to extend the tooling for that, too.

8. REFERENCES
[1] Stretch, http://www.stretchinc.com.

[2] B. Mei, A. Lambrechts, D. Verkest, J. Mignolet and R. Lauwereins, “Architecture
Exploration for a Reconfigurable Architecture Template,” IEEE Design and Test,
vol. 22, no. 2, pp. 90–101, 2005.

[3] H. Singh, M. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh and E. M. Chaves Filho,
“MorphoSys: An Integrated Reconfigurable System for Data-Parallel and
Computation-Intensive Applications,” IEEE Transactions on Computers, vol. 49,
no. 5, pp. 465–481, 2000.

[4] A. S. Y. Poon, “An Energy-Efficient Reconfigurable Baseband Processor for
Flexible Radios,” in IEEE Workshop on Signal Processing Systems Design and
Implementation, 2006.

[5] MathStar, http://www.mathstar.com/.
[6] N. Bansal, S. Gupta, N. Dutt and A. Nicolau, “Analysis of the Performance of

Coarse-Grain Reconfigurable Architectures with Different Processing Element
Configurations,” in Workshop on Architecture Specific Processors (WASP), 2003.

[7] R. Hartenstein, M. Herz, T. Hoffmann and U. Nageldinger, “KressArray Xplorer:
a new CAD environment to optimize Reconfigurable Datapath Array,” in
Proceedings of the conference on Asia South Pacific Design Automation, 2000.

[8] G. Dupenloup, T. Lemeunier and R. Mayr, “Transistor Abstraction for the
Functional Verification of FPGAs,” in Proceedings of DAC, 2006.

[9] B. Mei, S. Vernalde, D. Verkest and R. Lauwereins, “Design Methodology for a
Tightly Coupled VLIW/Reconfigurable Matrix Architecture: A Case Study,” in
Proceedings of the conference on Design, Automation and Test in Europe, 2004.

[10] G. Dimitroulakos, M. D. Galanis, N. Kostaras and C. E. Goutis, “A Unified
Evaluation Framework for Coarse Grained Reconfigurable Array Architectures,”
in Proceedings of theInternational Conference on Computing Frontiers, 2007.

[11] T. von Sydow, M. Korb, B. Neumann, H. Blume and T. G. Noll, “Modelling and
Quantitative Analysis of Coupling Mechanisms of Programmable Processor Cores
and Arithmetic Oriented eFPGA Macros,” in Proceedings of the IEEE
International Conference on Reconfigurable Computing and FPGA, 2006.

[12] M. Ahn, J. W. Yoon, Y. Paek, Y. Kim, M. Kiemb and K. Choi, “A Spatial Mapping
Algorithm for Heterogeneous Coarse-grained Reconfigurable Architectures,” in
Proceedings of DATE, 2006.

[13] G. Dimitroulakos, M. D. Galanis and C. E. Goutis, “Design Space Exploration of
an Optimized Compiler Approach for a Generic Reconfigurable Array
Architecture,” Journal of Supercomputing, vol. 40, no. 2, pp. 127–157, 2007.

[14] R. W. Hartenstein and R. Kress, “A Datapath Synthesis System for the
Reconfigurable Datapath Architecture,” in Proceedings of ASP-DAC, 1995.

[15] T. J. Callahan, P. Chong, A. DeHon and J. Wawrzynek, “Fast Module Mapping
and Placement for Datapaths in FPGAs,” in FPGA ’98.

[16] Y. Guo, G. J.M. Smit, H. Broersma and P. M. Heysters, “A Graph Covering
Algorithm for a Coarse Grain Reconfigurable System,” in Proceedings of the
Conference on Language, Compiler and Tool for Embedded Systems, 2003.

[17] T. von Sydow, B. Neumann, H. Blume and T. G. Noll, “Quantitative Analysis of
Embedded FPGA-Architectures for Arithmetic,” in Proceedings of the 17th
International Conference on Application-specific Systems, Architectures and
Processors, 2006.

[18] J. Y. Lin, D. Chen and J. Cong, “Optimal Simultaneous Mapping and Clustering
for FPGA Delay Optimization,” in Proceedings of DAC, 2006.

[19] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-based
Performance-driven Router for FPGAs,” in Proceedings of the International
Symposium on Field-programmable Gate Arrays, 1995.

[20] G. Chen and J. Cong, “Simultaneous Placement with Clustering and Duplication,”
in Proceedings of DAC, 2004.

[21] CoWare/LISATek, http://www.coware.com.

[22] R. Murgai, R.K. Brayton and A. Sangiovanni-Vincentelli, “On Clustering for
Minimum Delay/Area,” in Proceedings of ICCAD, 1991.

[23] A. Sharma, C. Ebeling and S. Hauck, “Architecture Adaptive Routability-Driven
Placement for FPGAs,” in Proceedings of the International Symposium on
Field-programmable Gate Arrays, 2005.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

