
Automated Trace Signals Identification and State Restoration
for Improving Observability in Post-Silicon Validation

Ho Fai Ko and Nicola Nicolici
Department of Electrical and Computer Engineering

McMaster University, Hamilton, ON L8S 4K1, Canada
Email: henryko@grads.ece.mcmaster.ca, nicola@ece.mcmaster.ca

Abstract

Embedded logic analysis has emerged as a power-
ful technique for identifying functional bugs during post-
silicon validation, as it enables at-speed acquisition of data
from the circuit nodes in real-time. Nonetheless, the amount
of data that is observed is limited by the capacity of the
on-chip trace buffers. This paper introduces an automated
method for improving the utilization of the on-chip storage,
by identifying a small set of trace signals from which a large
number of states can be restored using a compute-efficient
algorithm. This enlarged set of data can then be used to aid
the search of functional bugs in the fabricated circuit.

1. Introduction
In the implementation flow for very-large scale inte-

grated (VLSI) circuits (summarized in Figure 1), pre-silicon
verification techniques, such as simulation or formal meth-
ods, assist designers in eliminating functional errors (or
bugs) in a circuit before it is manufactured to ensure that
the implemented design satisfies the specification. In a sub-
sequent step, manufacturing test helps to detect physical de-
fects (e.g., shorts or opens) prior to delivering the packaged
circuits to end-users. As state-of-the-art process technolo-
gies enable system-on-a-chip (SOC) designs with multi-
million transistors, the time required to extensively simulate
or formally verify large circuits and complex interfaces be-
comes unbearable. Due to this increased design complexity
and the inadequate accuracy in modeling integrated circuits
(ICs), pre-silicon design verification techniques are insuf-
ficient to guarantee error-free first silicon. Given the esca-
lating mask costs, it is imperative to identify the escaped
bugs as soon as the first silicon is available [14]. Semicon-
ductor manufacturers currently rely mainly on custom in-
house methods for debugging in silicon. Nevertheless the
continuous growth in the design size, the use of embedded
cores from third parties, and the complex interactions be-
tween these cores drive a shift toward scalable post-silicon

Specification:
design documentation,

behavioral reference model

Implementation:
full custom, cell libraries, gate arrays

Manufacturing:
complementary metal-oxide
semiconductor technology

Pre-silicon verification:
- dynamic simulation
- formal verification

Manufacturing test:
- automatic test pattern 
generation (ATPG)
- scan technique

Post-silicon validation:
scan-based debug
trace buffer-based debug

Figure 1. Design flow for VLSI circuits

validation techniques. This explains why structured post-
silicon validation techniques have experienced an increased
adoption over the past few years [1, 2, 12].

The main challenge in post-silicon validation (or silicon
debug) is observability of internal signals. Physical prob-
ing techniques have been widely used for IC failure analy-
sis [13]. Nonetheless, the decreasing feature sizes, flip-chip
technologies and the growing complexity of SOCs make
data acquisition using physical probing cumbersome, unless
they are complemented by design for debug (DFD) tech-
niques. Embedded logic analysis [3] is a DFD technique
used for improving observability of internal signals in a de-
sign by acquiring data on-chip in trace buffers. The sam-
pled data is then transferred through low bandwidth device
pins, so that post-processing algorithms can be applied and
help identify design errors. The limited observability of the
internal signals may lengthen the debug process and it mo-
tivates our work. Instead of introducing yet another tech-
nique for increasing observability by acquiring more data
on-chip, our objective is to better utilize the limited storage
space provided by the DFD hardware. By consciously se-
lecting the trace signals when designing the DFD hardware,
we show that one will be able to restore a significant amount
of missing data from the internal state elements that are not
traced during post-silicon validation. For instance, it is a

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



common practice for microprocessor designers to manually
identify which signals are to be captured (e.g., pipe control
signals), such that additional state information (e.g., values
in pipe data registers) can be reconstructed off-chip [5].

Motivated by the lack of information in this area in the
public domain, the aim of this paper is to provide a first step
to develop the understanding on how computer-aided de-
sign (CAD) technology can aid structured post-silicon vali-
dation at the core level. By proposing automated algorithms
for identifying trace signals and restoring state information,
we aim to develop a structured method for debugging cores
in future SOCs. Note that the proposed method can be in-
tegrated together with system level debug techniques such
as [15]. When an error among cores is detected at the sys-
tem level, the proposed method can be used to identify the
source of the error by analyzing individual cores in an SOC.
Also, the proposed method complements existing data ac-
quisition techniques, because the more signals are traced,
the more data can then be reconstructed by our algorithms.
It is also important to note that the proposed technique fo-
cuses only on post-silicon validation for functional errors.

2. Post-Silicon Validation Techniques
To address the problem of limited observability in post-

silicon validation, a number of ad-hoc DFD solutions for
improving data acquisition in microprocessors were pro-
posed [14]. These solutions can be divided into two main
categories: scan-based and trace buffer-based techniques.

The scan-based technique utilizes internal scan chains to
capture and off-load the internal states in a design when a
specific trigger event occurs. The captured data can then
be analyzed using post-processing algorithms such as fail-
ure propagation tracing [7] to identify the failing state ele-
ments. However, because captured data is shifted out of the
chip through the scan chains, the circuit has to stop and then
resume its execution. This prevents the designer from ac-
quiring data in real-time. Since functional bugs can appear
in circuit states that may be exercised thousands of clock
cycles apart [10], it is therefore desirable to maintain cir-
cuit execution during scan dumps. This can be achieved by
double buffering the scan elements, which will obviously
lead to a substantial area penalty [11]. Even if this penalty
would be acceptable, data sampling in consecutive clock cy-
cles would still not be possible, which is, however, an essen-
tial requirement for identifying timing-related problems in
a design during post-silicon validation.

In order to facilitate real-time data acquisition during
post-silicon validation, the trace buffer-based technique is
employed. Using this approach, data is sampled at-speed
through embedded logic analyzers, and then stored in trace
buffers such as embedded memories on-chip. The sampled
data is subsequently transferred off the chip via a low band-
width interface for post-processing [4, 16]. In this case,
the amount of data that can be acquired is limited by the

trace buffer depth, which limits the number of samples to
be stored, and its width, which limits the number of trace
signals sampled in each clock cycle. Despite the recent ad-
vancement in the design of embedded logic analyzers (e.g.,
[3]), the reluctance to invest additional area for large trace
buffers only for the purpose of post-silicon validation limits
the amount of available data that can be acquired on-chip.
This indirectly translates into a more time-consuming pro-
cess for identifying the design errors. Thus, it is desirable
to find a way to identify the trace signals in a design, such
that the acquired data can be used to reconstruct as much
missing data (for other internal signals) as possible. This
should be done in such manner that any post-processing al-
gorithm can search for design bugs using the enlarged set of
data. To the best of authors’ knowledge, the only solution
discussed in the public domain is [9]. However, based on
the description from [9], their algorithm restores data only
in the combinational logic nodes of the circuit.

Unlike any prior works, this paper proposes a solution to
reconstruct data for sequential circuits across multiple time
frames by introducing a compute-efficient state restoration
algorithm. In addition, by coupling with automatic trace
signal identification for random logic, we show that a signif-
icant amount of missing data can be restored for the circuit
during post-silicon validation.

3. State Restoration
Throughout this paper we will use the simple circuit

shown in Figure 3 to illustrate the key points of our solu-
tion. Note, although it is unlikely that one would need our
method to debug such a simple circuit in a practical envi-
ronment, we have decided to use it to demonstrate that our
algorithms based on circuit analysis can indeed automati-
cally identify the same trace signals as what an experienced
designer would select manually.

3.1 Principal Operations for State Restoration
Our proposed algorithm relies on applying two princi-

pal operations to forward propagate and backward justify
known values among circuit nodes to reconstruct the miss-
ing data. Thus, we label them forward and backward op-
erations, and they are illustrated in Figure 2. One may ar-
gue that the application of the principal operations is similar
to the technique used in automatic test pattern generation
(ATPG) algorithms to forward propagate and backward jus-
tify test patterns for manufacturing test on a circuit netlist.
However, unlike ATPG, the state restoration algorithm only
needs to check if data can be reconstructed at a circuit node

AND
0

0X

(a) Forward

AND
1

11

(b) Backward

AND
0

01

(c) Combined

AND
X

00

(d) Not defined

Figure 2. Principal operations



A

B

C

E

D

Clock

F0 [1, 1]
F1 [1, 1]
B0 [1, 1]
B1 [1, 1] F0 [0, 1]

F1 [0, 1]
B0 [0, 0]
B1 [0, 0]

F0 [0, 0.5]
F1 [0, 0.5]
B0 [0, 0]
B1 [0, 0]

F0 [0, 0]
F1 [0, 0]

B0 [0, 0.5]
B1 [0, 1]

F0 [0, 0]
F1 [0, 0]
B0 [0, 1]

B1 [0, 0.5]

Circuit restorability if 
FF C is traced 

= 0.5+1+1+0.5+1+1
+1+1+1+1+0.5+0.5 

= 10

(a) Circuit-under-debug

0 1 2 3 4
A 1 1 X X X
B 0 0 X X X
C 0 1 1 0 X
D X 1 0 0 1
E X 1 0 X X

Clock cycles

(b) Restored data in sequential elements

Figure 3. Example of state restoration

and no branching and backtracking will be done (if unsuc-
cessful, undefined values will be shown in the simulator as
illustrated in Figure 2(d)). After state restoration, the de-
signer can then use the expanded set of data to verify the
behavior of the circuit against its specification. In this work,
we assume that a gate level netlist is available while debug-
ging a circuit and the trace signals are flip-flops. One may
argue that the set of expanded data obtained from the netlist
does not reflect the actual circuit responses from the chip.
However, as we only focus on the identification of func-
tional bugs, it is assumed that the behavior of the manufac-
tured circuit matches the behavior of the circuit netlist since
it has already passed the manufacturing test. This assump-
tion is validated from how state restoration has been em-
ployed successfully for microprocessor systems [5], where
control data is acquired on-chip, and reconstruction of states
in the data path is done off-chip.

Figure 3 shows an example that demonstrates how the
principal operations are applied to a simple circuit that has
both combinational and sequential elements. While Figure
3(a) shows the simple circuit with five flip-flops (FFs) (F
and B values will be explained in Section 4), Figure 3(b)
gives the data in the state elements after the restoration al-
gorithm is applied. In this example, only FF C is sampled
during clock cycles 0− 4. It should be noted that the X in
the table refers to values that cannot be restored using only
the available sampled data. By forward propagating and
backward justifying known data between gates in the cir-
cuit, data can be restored for other state elements one clock
cycle at a time. When comparing the amount of data that
is available before and after state restoration, a restoration
ratio of 14/4 = 3.5X can be achieved for the elaborated ex-
ample. One drawback of the proposed algorithm is that the
amount of data that can be restored depends on the initial set

Logic value Two bit code
0 00
1 11

undefined 01, 10
Table 1. Two bit codes for data representation

of sampled data. For instance, if only FF E is sampled in
Figure 3(a), no new data can be reconstructed for any state
elements in the circuit.

When a circuit netlist is translated into a graph, where the
nodes in the graph represent logic gates, state elements, pri-
mary inputs and outputs and directed edges represent signal
dependencies, the state restoration algorithm will apply the
principal operations to each node repeatedly until no more
data can be reconstructed for all signals from the given sub-
set of data. Thus, the computation time for the state restora-
tion process is directly proportional to the amount of nodes
presented in the circuit graph. In addition, when restoring
state data for a circuit across a large number of clock cycles,
the CPU run time for reconstructing the missing data will be
affected, since the principal operations that are introduced
so far can just restore state data for one clock cycle at a time.

3.2. Exploiting Bitwise Parallelism for Speeding Up
the State Restoration Algorithm

To be applicable to large circuits, it is essential for the
state restoration algorithm to be compute-efficient. This is
because the designer may need to test the circuit with dif-
ferent stimuli during the debug process. To reduce compu-
tation time for the state restoration algorithm, we explore
the fact that when performing the principal operations on
a node, the results are independent of each other for each
data point in different clock cycles. For example, in order
to restore data for a circuit for 5 clock cycles, one can iter-
atively apply the principal operations to each node in each
clock cycle. However, this can also be achieved by hav-
ing 5 copies of the circuit graph, each copy containing the
corresponding data for the specific clock cycle, and apply-
ing the principal operations in the different graphs simulta-
neously. Nevertheless, having duplicate copies of the cir-
cuit graph requires a prohibitively large amount of memory
during program execution for large circuits. As a result,
we derive new logic operations for the primitive gates such
that the principal operations can be applied concurrently at
a node across multiple clock cycles, without duplicating the
circuit graph during state restoration.

We exploit the integer data type in ANSI C on a 32-bit
platform to enhance the performance of our algorithm by
storing data for 32 consecutive clock cycles in two integers
(8 bytes) for each node. For example, to represent the data
[0,1,1,0,X ] for clock cycles 0-4 for FF C in Figure 3(a),
using the two-bit codes in Table 1, we can store the data for
FF C using two integer variables as follows:

int0 = 0,1,1,0,1, . . . ,1
int1 = 0,1,1,0,0, . . . ,0



a0a1
b0b1

00 01 11 10
00 0 0 0 0
01 0 1 1 1
11 0 1 1 0
10 0 1 0 0

(a) K-map for z0

a0a1
b0b1

00 01 11 10
00 0 0 0 0
01 0 0 0 0
11 0 0 1 1
10 0 0 1 1

(b) K-map for z1

Figure 4. Derivation of forward equations for
the AND gate

In the above equations, the first 5 bits of the two variables
store the data for clock cycle 0-4 for FF C, and the remain-
ing 27 bits store the code for undefined data. By working
with two integer variables, the algorithm can restore data
for 32 consecutive clock cycles at a time using a sequence
of logic equations based on the bitwise operations provided
by ANSI C for each of the primitive gates. For each princi-
pal operation, two different equations (one for each integer)
will be developed in such way that the number of 2-operand
bitwise operations are minimized. Although the formalism
of multi-valued logic and input/output encoding from logic
synthesis can be used to derive these systems of equations,
the following discussion relies on the illustrative advantage
of the Karnaugh map (K-map) representation.

Figures 4(a) and 4(b) show the K-maps for deriving the
logic equations for the forward operation at the output z of
an AND gate. Note that the inputs of the AND gate are la-
beled a and b, and since two bits are needed for data rep-
resentation, the variables for the logic equations are labeled
a0, a1, b0, b1 for the inputs, and z0, z1 for the output. From
the principal operations in Figure 2, we know that when
any input of an AND gate is 0, the output should also be a 0.
This is why the entries are set to 0 on the first rows and the
left-most columns of the K-maps for z0 and z1 in Figures
4(a) and 4(b). The remaining parts of the K-maps are also
filled according to the principal operations. Note that the
shaded regions of the K-maps represent inconclusive values
due to the insufficient data from the other ports. In these
regions, the values of z0 and z1 can be filled consciously
in such way that the resulting code is 01 or 10 to represent
undefined values, and at the same time, the number of bit-
wise operations is minimized. The K-maps for deriving the
logic equations for the backward operation can also be con-
structed using the same principle. Note that for backward
operation, four logic equations (two equations for each in-
put port) will be derived. However, the variables in the logic
equations among input ports of a gate will be exchanged. In
this example for an AND gate, the equations for forward and
backward operations become:

z0 = a1b1 +a0a1b0 +a0b0b1 z1 = a0b0
a0 = z0z1 +b0(z0 + z1) a1 = z0z1 +b0 + z0 z1 b1
b0 = z0z1 +a0(z0 + z1) b1 = z0z1 +a0 + z0 z1 a1

AND

OR

F0(z) = max{F0(a), F0(b)}
F1(z) = (F1(a) + F1(b))/2
B0(a) = (max{B0(z)} + F1(b))/2
B1(a) = max{B1(z)}

F0(z) = (F0(a) + F0(b))/2
F1(z) = max{F1(a), F1(b)}
B0(a) = max{B0(z)}
B1(a) = (max{B1(z)} + F0(b))/2

a

a

b

b
z

z

Figure 5. Restorability calculation

Using these logic equations to restore data in 32 clock
cycles, the total number of bitwise operations for the AND
gate is 10 for one forward operation, and 26 for one back-
ward operation. The equations for other primitive gates can
be obtained using similar concepts from the above elabo-
rated example. It should also be emphasized that large digi-
tal circuits often involve more complex logic gates, or logic
gates with higher fan-in. These complex gates can either be
decomposed into a hierarchy of the primitive gates, or addi-
tional equations specific to their behavior can be generated.

4. Trace Signals Identification
As shown in the previous section, the amount of data that

can be restored by the state restoration algorithm depends
on an initial set of data acquired from the DFD hardware.

If a trace signal has large input and output logic cones,
the probability of restoring data for other signals through
forward and backward operations on this signal will be
higher. Moreover, as the probabilities of restoring either
0 or 1 in different logic gates are different, we consider the
restorability of 0 and 1 for each logic gate separately. The
equations in Figure 5 capture these parameters for calcu-
lating the restorability of a node in a circuit. We define
the forward restorability to be the probability of restoring
data of a node through forward propagation, while back-
ward restorability represents the probability of restoring
data from backward justification. When a node can be fully
restored through forward (backward) operations, the for-
ward (backward) restorability will be 1.

After defining the equations for calculating restorabil-
ity of a node, Algorithm 1 can be used to identify the
desired trace signals. The algorithm uses a breadth-first-
search approach to calculate restorability values for all the
nodes. The calculation starts by first computing the forward
restorability of all the child nodes of the first node in the
search list. It then works out the backward restorability of
all the parent nodes of the same node. In the case when
sequential loops are found in a circuit, the algorithm will
iterate the forward and backward calculations for the nodes
in the loop. This is because the state restoration algorithm
may be able to restore data for multiple clock cycles by iter-
ating in the loop. In order to limit computation time for the
trace signal identification algorithm, a user-defined param-
eter called Threshold is employed. This threshold is used to



check the newly computed values against the ones from the
previous iteration. It is obvious that the lower the thresh-
old, the more effort the algorithm will spend on calculating
the restorability of each signal in the circuit. Figure 3(a)
can be used to explain the greedy nature of the algorithm
when trying to select the first trace signal. In the figure, the
F0, F1, B0 and B1 values represent the forward and back-
ward restorability of each flip-flop respectively for two iter-
ations when assuming FF C is selected as trace signal. Note
that for the sake of clarity, only the restorability values of
the flip-flops are shown, but in fact, the restorability for the
logic gates between flip-flops are also calculated.

In the first iteration, the backward restorability B0 and
B1 of FF A are calculated to be 0.5 and 1 respectively ac-
cording to the equations shown in Figure 5 for the AND
gate, since the backward restorability values of FFC is set
to 1 initially. The restorability of other nodes are calculated
in the same manner, and then summed together to give the
restorability of the circuit if FF C is selected as traced signal.
To decide which node to select as the trace signal, the algo-
rithm will calculate the circuit restorability for when each
node is selected, it will then choose the node that produces
the highest circuit restorability as the trace signal. To select
the targeted number of trace signals, Algorithm 1 incremen-
tally calculates circuit restorability to select one signal at a
time in a greedy manner. Using the circuit in Figure 3(a) as
an example when choosing two signals, and assuming sig-
nal FF C is chosen in this iteration, Algorithm 1 will then
select the second trace signal by trying to select signals in
this sequence: FF C

T
FF A, FF C

T
FF B, . . ., until all

other signals are selected together with FF C as trace sig-
nals. It will then choose the signal pair that will produce
the highest restorability values across the circuit as trace
signals. This gradual approach for trace signals selection
follows the same philosophy on how new states are chosen
to be probed during microprocessor debug, when signals
are also selected incrementally to determine what additional
data can be gathered from the microprocessor.

One may argue that the proposed restorability equa-
tions resemble the SCOAP controllability/observability
concept [8], which is used to calculate the controllabil-
ity/observability of circuit nodes to guide the ATPG pro-
cess for manufacturing test. However, it should be noted
that during state restoration, the combined operation shown
in Figure 2(c) can be used to reconstruct missing data in
a circuit. As this is not a valid operation during ATPG,
the SCOAP measure does not reflect how data is actually
restored among circuit nodes. For instance, in the circuit
shown in Figure 3(a), the SCOAP measure will identify FF
E as a hard to control signal due to the presence of the XOR
gate. However, tracing only FF E will not be able to help
restore data for any other signals in the circuit.

Algorithm 1: Algorithm for identifying trace signals
Input : Circuit, T B width, T hreshold
Output : list of selected trace signals

1 while cur width < T B width do
2 while not all nodes in Circuit are calculated do
3 search list = Get chosen nodes;
4 Set initial values for chosen nodes;
5 while search list is not empty do
6 cur node = first node in search list;
7 foreach (child node of cur node) do

8 CalculateForwardRestorability(child node);
9 if (new value − old value ≥ T hreshold)

then
10 Put child node at end of search list
11 foreach (parent node of cur node) do

12 CalculateBackwardRestorability(parent node);
13 if (new value − old value ≥ T hreshold)

then
14 Put parent node at end of search list
15 Sum the restorability of all nodes in the circuit;
16 Select the node with highest restorability;
17 cur width++;
18 Return list of selected trace signals;

5. Experimental Results
Experimental studies [2] indicate that trace buffers of

size 1k x 8 (i.e., depth of 1024 and width of 8 bits) to 8k
x 32 are accepted in industry today, and it is common that
the trace buffer is used as a time-shared resource when de-
bugging larger cores in an SOC. Time sharing is also justi-
fied by the fact that if only 32 signals are traced, it is dif-
ficult to restore values for over 2,000 flip-flops (which nor-
mally belong to a logic block of about 50,000 gates). Given
this expected core size, we perform our experiments on the
ISCAS89 benchmark circuits [6]. Moreover, since the IS-
CAS89 benchmark circuits are publicly available, we hope
that future proposals on this emerging area can benchmark
their algorithms against ours. For our experiments, both the
state restoration algorithm and the trace signals identifica-
tion algorithm are implemented using ANSI C and the pro-
gram is executed on a PC with dual-Xeon processors at 2.4
GHz with 1 GB of RAM. Due to space limitation, we only
discuss the results for s38584 and s35932 to illustrate the
key benefits of the proposed solution. However, it should
be noted that the same findings are also observed in the ex-
perimental results for other ISCAS benchmark circuits.

We first discuss the runtime of the algorithms proposed
in this paper. Although the trace signal identification algo-
rithm relies on a greedy strategy, it requires a large number
of iterations to propagate the metric in Figure 5 for calcu-
lating restorability of each node through the circuit. This
algorithm is of order O(knm), where k is the total number
of gates, n is the number of trace signals and m is the trace



Buffer Buffer Random Thres- Proposed metric
depth width Ratio Time (s) hold Ratio Time (s)
4096 8 1.70 0.00 0.50 131.88 120.60

0.10 126.92 125.80
16 1.91 0.00 0.50 67.17 126.40

0.10 65.43 164.60
32 4.98 5.48 0.50 39.84 196.60

0.10 37.27 255.20
8192 8 1.70 0.00 0.50 132.17 341.00

0.10 127.20 345.80
16 1.91 0.00 0.50 67.37 360.80

0.10 65.57 470.00
32 5.23 15.76 0.50 39.96 563.80

0.10 37.36 834.40

Table 2. State restoration results for s38584
Buffer Buffer Random Thres- Proposed metric
depth width Ratio Time (s) hold Ratio Time (s)
4096 8 2.25 0.20 0.50 1.92 0.00

0.10 254.90 52.80
16 40.01 1.60 0.50 13.35 3.80

0.10 127.80 52.40
32 30.42 2.80 0.50 7.68 3.80

0.10 64.59 50.80
8192 8 2.24 0.32 0.50 1.92 0.00

0.10 254.85 132.20
16 40.67 2.84 0.50 13.08 8.40

0.10 127.77 130.40
32 30.16 4.84 0.50 7.54 8.60

0.10 64.58 126.40

Table 3. State restoration results for s35932

buffer depth. Therefore, it can take hours for selecting 32
trace signals. Although this is a large number which ob-
viously needs to be addressed in the future, it should be
noted however that this time is invested only once before
the circuit is fabricated. What matters is how much time is
spent on state restoration after extracting the samples from
the circuit-under-debug, since state restoration is run over
and over while searching for design errors. The runtime for
state restoration, as shown in Tables 2 and 3, is in the range
of seconds to minutes.

Tables 2 and 3 give the results for s38584 and s35932
respectively. The restoration ratios are obtained by compar-
ing the total number of restored values versus the number
of values acquired on the trace signals through the on-chip
trace buffer. The reported results stand for five different sets
of random data and the restored values account also for the
primary inputs and outputs of the circuit.

There are several important points to be noted. First,
using the proposed metric for trace signal selection can
achieve higher restoration ratio than when trace signals are
selected randomly. Also, if the threshold for signal selection
is decreased, the amount of data that is restored increases
for s35932. For s38584, decreasing the threshold does not
improve the restoration ratio. This is due to the greedy na-
ture of the signal identification algorithm. Moreover, note
that increasing the trace buffer depth for s35932 does not
help improve the restoration ratios due to the low sequential
depth of the circuit. This is unlike s38584 where the sequen-
tial depth is large and it is visible from the results that as the
trace buffer depth increases, better ratios are achieved for
the same trace buffer widths. This comes at the expense of
higher restoration time which is still within an acceptable

range of a few minutes. Another factor that significantly
contributes to high restoration ratio is the presence of large
fan-ins, as in the case of s35932. This is why for this cir-
cuit, when using the proposed metric with a threshold of
0.1, state restoration for almost all the flip-flops, inputs and
outputs can be achieved.

6. Conclusion
In this paper, we have demostrated how by consciously

choosing only a small number of signals to be probed in
real-time, the observability of the circuit-under-debug can
be improved through automatic state restoration.

References

[1] Special Session: Why Doesn’t My System Work? 43rd the
IEEE/ACM Design Automation Conference, 2006.

[2] M. Abramovici. Experience and Opinon (Design for Debug). In
Proceedings of the IEEE International Workshop on Silicon Debug
and Diagnosis, 2006.

[3] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi,
and D. Miller. A Reconfigurable Design-for-Debug Infrastructure
for SoCs. In Proceedings of the IEEE/ACM Design Automation
Conference, pages 7–12, 2006.

[4] Altera Verification Tool. SignalTap II Embedded Logic Ana-
lyzer. http://www.altera.com/products/software/products/quartus2
/verification/signaltap2/sig-index.html, 2006.

[5] ARM Limited. Embedded Trace Macrocells.
http://www.arm.com/products/solutions/ETM.html, April 2007.

[6] F. Brglez, D. Bryan, and K. Kozminski. Combinational Profiles
of Sequential Benchmark Circuits. In Proceedings of the IEEE In-
ternational Symposium on Circuits and Systems, pages 1929–1934,
1989.

[7] O. Caty, P. Dahlgren, and I. Bayraktaroglu. Microprocessor Silicon
Debug Based on Failure Propagation Tracing. In Proceedings of the
IEEE International Test Conference, 2005. Paper 12.2.

[8] L. H. Goldstein. Controllability/Observability Analysis of Digital
Circuits. IEEE Transactions on Circuits and Systems, 26(9):685–
693, Sept 1979.

[9] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang. Visibility Enhance-
ment for Silicon Debug. In Proceedings of the IEEE/ACM Design
Automation Conference, pages 13–18, 2006.

[10] D. Josephson. The Manic Depression of Microprocessor Debug. In
Proceedings of the IEEE International Test Conference, pages 657–
663, Oct 2002.

[11] D. Josephson and B. Gottlieb. The Crazy Mixed up World of Sili-
con Debug. In Proceedings of the IEEE Custom Integrated Circuits
Conference, pages 665–670, 2004.

[12] A. Khoche and D. Conti. TRP in Action: Embedded Instrumenta-
tions in FPGA. In Proceedings of the 24th IEEE VLSI Test Sympo-
sium, 2006. Session 4C.

[13] N. Nataraj, T. Lundquist, and K. Shah. Fault Localization using
Time Resolved Photon Emission and Stil Waveforms. In Proceed-
ings of the IEEE International Test Conference, pages 254–263,
Sept 2003.

[14] B. Vermeulen and S. K. Goel. Design for Debug: Catching De-
sign Errors in Digital Chips. IEEE Design and Test of Computers,
19(3):35–43, May 2002.

[15] B. Vermeulen, K. Goossens, R. v. Steeden, and M. Bennebroek.
Communication-Centric SoC Debug Using Transactions. In Pro-
ceedings of the IEEE European Test Symposium, pages 69–76,
2007.

[16] Xilinx Verification Tool. ChipScope Pro.
http://www.xilinx.com/ise/optional prod/cspro.htm, 2006.


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




