A Variation Aware High Level Synthesis Framework

Feng Wang, Guangyu Sun, Yuan Xie
The Pennsylvania State University, University Park, PA, USA
{fenwang, gsun, yuanxie} @cse.psu.edu

Abstract— The worst-case delay/power of function units has been used
in traditional high level synthesis to facilitate design space exploration. As
technology scales to nanometer regime, the impact of process variations
increases. The degree of variability encountered in the new process
technologies makes worst-case analysis undesirable, because it may
result in unexpected performance/power discrepancy or a pessimistic
estimation, and may end up using excess resources to guarantee design
constraints. In this paper, we propose a high level synthesis framework
to take into account of the performance/power variation for function
units. An effective metric called parametric yield, which is defined as
the probability of the synthesized data flow graph (DFG) meeting the
performance and power constraints, is used to guide scheduling, module
selection, and resource sharing. An efficient performance/power yield
perturbation computation method for DFG significantly improves the
effectiveness of our yield driven high level synthesis algorithm. The
experimental results show that our variation-aware synthesis framework
achieves significant yield improvements, and has much faster (3X)
runtime speed compared against previous approach.!

I. INTRODUCTION

High-level synthesis (HLS) is the process of translating a be-
havioral description into a hardware implementation at register-
transfer level [1] [2]. The design specification is usually written
as a behavioral description, in languages such as ANSI C++ or
SystemC. The behavioral description is first compiled into an internal
representation (such as control and/or data flow graphs (CDFGs)),
which are then mapped to the functional units that are selected from
the resource library to meet design goals (such as performance, area,
and power). The synthesis process usually consists of scheduling,
module selection, and resource sharing [1].

The worst-case latency/power for each function unit has tradition-
ally been used by high level synthesis algorithms to perform design
space exploration. As technology scales, the reliance on deep sub-
micron process technologies for the fabrication of circuits gives rise
to concerns about process variations, which can cause significant per-
formance and power variations for a function unit design. Although
designing for worst-case process margins is the traditional approach
to deal with outliers, the degree of variability encountered in the
new process technologies makes this option nonviable. Under the
influence of process variation, the existing deterministic worst-case
design methodologies in high level synthesis may result in unexpected
performance/power discrepancy or a pessimistic estimation, and may
end up using excess resources to guarantee design constraints, due
to overly conservative design approaches.

As a result of larger variability when technology scales, a shift in
the design paradigm, from today’s worst-case deterministic design
to statistical or probabilistic design [3], is critical for deep sub-
micron design. Industry and academia have already realized the need
for such a shift in the design paradigm, and there are a lot of
research activities [3]-[7] at various design levels to deal with process
variations. Recently, variation aware design techniques have been
developed for the embedded system [8] [9]. However, combating the
process variation effects in high level synthesis has not gained much
attention until very recent attempts. In this paper, we apply statistical
timing/power analysis to high level synthesis, and develop yield
driven synthesis framework so that the impact of process variations
is taken into account during high level synthesis.

I'This research was supported in part by NSF grants of CAREER 0643902,
CNS 0720659 and CCF 0702617.

978-3-9810801-3-1/DATE08 © 2008 EDAA

II. RELATED WORK

Extensive researches in high level synthesis techniques have been
done. Early work focuses on high level synthesis for data flow designs
in an attempt to satisfy the design specifications and minimize delay,
area, and power consumption. A variety of scheduling heuristics, re-
source sharing, and module selection techniques have been proposed
to tackle performance/power/reliability/thermal challenges [10]-[13].
Since the scheduling, module selection, and resource sharing are
strongly interdependent, simulation annealing and integer linear pro-
gramming formulations techniques have been used to perform these
subtasks simultaneously [1] [2].

The research on statistical analysis and optimization has gained
great attention due to the increasing impact of process variation on
the performance and power. Recently, a variety of gate-level statistical
timing analysis and optimization techniques have been proposed. Fast
statistical time analysis tools have been developed to replace the
Monte Carlo analysis techniques [5] [14]. Based on the gate-level
statistical timing analysis, variation-aware optimization techniques
[15] [7] have been proposed at gate-level logic design. Recently, the
challenges caused by process variation were realized by the high level
synthesis community. For example, a high-level synthesis framework
considering delay variation was proposed [16]. Jung et al. [17]
proposed a timing variation aware scheduling and resource binding
algorithm to reduce the latency. However, power variation was
ignored in these works. In another work, the leakage power variation
was analyzed in the context of high level synthesis [18] to minimize
the average power. However, the timing/power model and analysis
in that work is overly simplified. Consequently, the timing/power
analysis in that approach can lead to large errors in estimating the
path delay distribution and the power distribution. Wang et al. [19]
proposed a module selection algorithm that combines design-time
optimization with postsilicon tuning to maximize design yield.

Our contributions in this paper distinguish itself in the following
aspects: 1) develop the power and performance yield constraint
high level synthesis algorithms; 2) develop an efficient timing yield
perturbation computation method, which significantly reduces the
run time; 3) bring performance and power variation awareness into
subtasks of the high level synthesis by performing yield driven
module selection, resource sharing, and scheduling simultaneously.

III. TIMING AND POWER YIELD IN HIGH LEVEL SYNTHESIS

High level synthesis usually consists several steps: scheduling,
module selection, and resource sharing. Scheduling assigns each
operation (such as add and multiply) in a CDFG to one or more clock
cycles (or control steps). Scheduling techniques in HLS are usually
classified as time-constrained scheduling or resource-constrained
scheduling. Module selection decides the type of functional units
to perform the operation in CDFG. Resource sharing uses the same
resource (functional units or registers) to perform multiple operations
or store more than one variable. These steps can interact with each
other and affect the final synthesis results.

Traditionally, high level synthesis is performed under design con-
straints, which includes resource constraints, performance constraints,
and power constraints: The resource constraints require that the
operations are performed with only a limited number of resources
available; The performance constraints require that the operations

(a) (b)

Fig. 1. A CDFG has two different schedules, with different clock cycle time
and resource. Note that two addition operations chained to the multiplication
operations are bound to the same adder (add2) in (b)

in the CDFG to finish the execution in a number of clock cy-
cles (latency constraints) with a particular clock rate (clock cycle
time(CCT) constraints); The power constraints require that the total
power consumption of the synthesis result should be lower than
a specified limit. Note that in this paper, we focus on data-flow
intensive applications (represented by a DFG), in which most of the
computations performed in the design are arithmetic operations (such
as addition and multiplication).

In order to fully explore the design space, a diverse library of
functional units is available for the high level synthesis tool. For
example, to perform an addition operation, one can use a ripple-
carry adder, carry-lookahead adder, or carry-select adder, each of
which can be characterized by a {(delay, power)} pair. Under the
influence of process variations, the functional unit delay and power
follow a probability distribution, individually. Therefore, delay or
power for each function unit is not a fixed number, but a random
variable. For example, a pass gate carry-select adder may be faster
than a static carry-selected adder, but with larger delay variation.

A. Timing and Power Yield

To bring the process-variation awareness to the high level synthesis
flow, we introduce a new metric called parametric yield. The
parametric yield is defined as the probability of the synthesized
hardware meeting a specified constraint Yield = P(Y < Y _max),
where Y can be performance or power. The performance yield is
defined as the probability of the synthesis results meeting the clock
cycle time constraints under the latency constraints and resource
constraints. The power yield is defined as the probability that the
total power of the synthesis result is less than the power limit under
latency and resource constraints.

For each functional unit F'U;, the delay probability distribution
D;(t) and power probability distribution P;(w) can be characterized
using gate-level statistical analysis as described in Section II. The
calculation of the parametric yield depends on scheduling, module
selection, resource sharing, and clock selection. For example, in
Fig. 1, the same CDFG can be either scheduled into 4 clock cycles
with a much shorter clock cycle time 7T's, or scheduled into 2 clock
cycles with a longer clock cycle time 77,. The computation time
is 4 X Ts and 2 x T, respectively. In Fig. 1(a), the synthesized
underlying architecture would be one multiplier and one adder,
working in parallel, while in Fig. 1(b), the synthesized underlying
architecture would be two adders and one multiplier, with the adders
and multiplier connected in series (for illustration purpose, we ignore
the possible multiplexers and registers in the synthesis result in this

example). The performance yield for each of these two cases is
calculated as Equation (1) and (2):

Y, = (/OTS Daga(t)dt) x ('/OTS Dot (£)dt))

Yy, = (/{;TL Daddz(t)(/(;TLit Dypui(s)ds)dt) x (_/(;TL Dggar(t)dt) (2)

Note that equation (2) is valid with the assumption that the addition
operations, which are chained to the multiplication operations in both
CC1 and CC2, are bound to the same adder (add2) in Fig. 1(b).

The power yield for each case can be computed as the probability
of the total power is less than the power limit. The total power
is computed as the sum of each function unit’s power (which is a
random variable with power distribution P;(w)).

The preceding example is only a simple illustration of the calcula-
tion of parametric yields. However, when the synthesis result is more
complicated structure and delay/power distribution is complex, one
may have to resort to the statistical analysis methods described later
in Section IV and V.

B. Worst-case Approach vs. Yield-driven Statistical Approach

Although all the three steps can affect the performance/power yield
of the synthesis results, in this section, we use module selection step
as an example to compare the yield driven approach and worst-case
deterministic approach. For example, the power distribution and delay
distribution of two function units (ful and fu2) are shown in Fig.
2. The power limit (PL) and clock cycle time , T, are given and
shown in Fig. 2. The two methods are applied to this example:

o Worst-case deterministic approach: the faster function unit, ful,
will be chosen because the worst case delay of the slower
function unit, fu2, exceeds the clock cycle time, T'clk. However,
the power consumption of ful is much larger than that of the
fu2 with smaller area. This module selection decision might
lead to large power yield loss, as shown in the Fig. 2(b) and
Fig. 2(d).

o Yield-driven approach: to maximize the power yield under the
performance yield constraint, fu2 might be chosen, because
the performance yield loss by selecting fu2 is relatively small
compared to choosing ful, as show in Fig. 2(a) and 2(c).
However, this selection results in larger power yield, as shown
in Fig. 2(b) and 2(d).

IV. STATISTICAL ANALYSIS IN HIGH LEVEL SYNTHESIS

In traditional high level synthesis, performance and power analysis
are based on worst-case analysis. In this section, we first present
our statistical timing and power models for function units (including
multiplexers and registers) in the library. Based on these models,
statistical timing/power analysis of the synthesized DFG (which is
the data flow graph with all operations are scheduled and bounded
to function units) is described.

A. Statistical Timing Model and Analysis

Similar to the gate level statistical timing analysis [5], [14], [15],
we use a first-order canonical model to model the delay for a function
unit in the resource library. In this model, the delay of a gate is
expressed as

Do =do+ Y diXi+ dnt1Xm ®
i=1
where do is the nominal delay of a gate. X; and X, are the indepen-
dent normally distributed random variables to model the variations
in process parameter variations. X; is the correlated component of
these variation parameters and X, is the random component.

PDF PL PDF

PL

Prut

Power Power

(b)

PDF PDF

Telk

@ ek
1

Delay Delay

(a) (©)

Fig. 2. Example: (a) and (b) show the delay and power distribution
of the function unit 1, Ty and Ppyq. (¢) and (d) show the delay and

power distribution of the function unit 2, T'f,,2 and Pjyy2. The performance
yield is computed as (fOTCLk T, (t)dt) and the power yield is computed as

(JITF Py (w)dw).

In the statistical timing analysis, the maz and sum operations
are used to propagate the delay distribution in the synthesized DFG.
The results of these two operations are maintained in the canonical
form. Consequently, the delay of the circuit is also expressed in
the canonical form. Thus, the delay of function units in high level
synthesis can be expressed in the canonical form as in equation (3).
For instance, in Fig. 1(a) , the max operation is performed over the
delay values of adder and multipliers to obtain the delay distribution
for each clock step; in Fig. 1(b), the sum operation is performed
for the delay of adder and multiplier that are connected in series, to
obtain the path delay from the input of the multiplier to the output
of the adder. The results of the max and sum operations are also
expressed in the linear canonical form [14]. For the sum operation,
the coefficient of the result is the sum of the corresponding coefficient
of the random variables. The max operation is performed using the
moment matching method [20].

B. Statistical Power Model and Analysis

The statistical leakage power of a function unit can be expressed
as

Py = exp(ao + Y, aiXi + ani1Xm)
i=1

“)

where exp(ag) is the nominal leakage power of a function unit. X;
and X, are the independent normally distributed random variables
to model the variations in process parameter variations. X; is the
correlated component of these variation parameters and X, is the
random component. The total power of the circuit is computed as
summation of the power of all the components in the circuit. The
result of the summation is also expressed in the same form as equation
(4) [21]. The total power of the synthesized DFG is computed by
iteratively adding the leakage power of the function units in the DFG.
Assuming that the sum of the function unit’s leakage power, P, =
Py + P,, the coefficients of P, are determined as equation (5), (6)
and (7) based on the Wilkinson’s method [21].

E(PpeXi) + E(Pne™i)
(E(Pr) + E(Pn))E(eXi)

(E(Py) + E(Pa))!)
(E(Py) + E(Pn))? + Var(Py) + Var(P,) + 2Cov(Py, Pn()6)

a; = log() Vi € [1,n] 5)

ag = 0.5log(

Var(Pg) + Var(P,) + 2Cov(Py, Py, n
ans1 = llog(1 4 2%) PuPn)y S~ a2 o
i=1

(E(Py) + E(Pp))?

E(P) represents the mean of the random variable P, Var(P)
represents the variance of the random variable P, and Cov(P, Q) is
the covariance of the random variables P and Q.

V. YIELD ANALYSIS IN HIGH LEVEL SYNTHESIS

In this section, we first introduce a parametric yield computation
method for a synthesized DFG. We then present fast yield perturba-
tion computation methods.

A. Yield Analysis for Synthesized DFG

After the resource allocation and binding, operations are bound to
function units in library meeting the resource and latency require-
ments. In addition, the operation in each clock cycle has to meet the
timing requirements in terms of clock cycle time. Thus, given the
clock cycle time, T'clk, the timing yield of this DFG is computed as:

TimingYield(Tpra) = Probability(Tpra < Tclk|constraints) (8)

The T'prq is computed as:

T2

cycle? ==

T

Tpra = maz(Th, . e ete) ©

where n is the number of the POnodes in the DFG. A POnode
is defined as the operation node that has no fan-out operation nodes
within the same clock cycle. For instance, the two adder nodes at
clock cycle CC?2 in Fig.1 (b) are the POnodes in that particular
clock cycle. The Tciycle is the arrival time of the POnode i. The
arrival time of the POnode is computed using the statistical timing
analysis method in Section IV-A. Note that the max operation is
defined in Section IV-A. The constraints refer to the resource and
latency requirements.

Given a power requirement, Preq, the power yield is computed as
the probability that total power,Pprg, is less than the requirement,
as expressed in equation 10.

PowerYield(Pprg) = Probability(Ppra < Preg|constraints) (10)

B. Fast Timing Yield Perturbation Computation

Based on the timing yield analysis, a brute-force approach to
compute yield gain/loss due to the timing perturbation (caused by
the module reselection and resource sharing during synthesis) can be
used. The computation complexity of this approach is O(n) for each
timing perturbation, where n is the number of the POnodes, because
the computation of the Tpr¢ in equation (9) requires (n — 1) max
operations.

Since the yield computation has to be performed whenever there
is a change in any synthesis steps (scheduling, module selection, or
resource binding), and it resides in the inner loop of the optimization
algorithm, as shown in Section VI-A and VI-C (the cost function in
line 5 of Fig. 4), a fast yield perturbation computation approach is
critical to the optimization algorithm.

In this work, a balanced binary tree based approach is developed
to reduce the computation complexity of yield computation. In this
approach, a balanced binary tree is constructed to avoid the re-
computation in brute force approach. Each leaf node of this balanced
binary tree is associated with a POnode in the DFG, and contains
the arrival time of the POnode. Each non-leaf node contains the
maximum value of the random variables of its children. Fig. 3 shows
an example of a balanced binary tree for the yield perturbation com-
putation. The DFG has eight POnodes and their corresponding arrival
times are f1-f8. For each rebinding operation, the arrival time of the
corresponding node is updated; meanwhile, the maximum random

Max(f1-f8)

Max(f1-f4) O/ Max(f5-18)
A,m)\dwax(fs,m) A(fs,fe) Max(f7,f8)
f1 2 13 4 15 6 17 18

Fig. 3. Example of the binary tree based yield perturbation computation for
a synthesized DFG.

variables in its parent nodes are also updated. During this updating
process, the new Tprg is computed. For instance, the operation
5 is rebound to a new function unit, which requires recomputing
max(f5, f6), and maz(f5— f8) and max(f1— f8). This updating
process requires h—1 operations, where / is the depth of the balanced
binary tree. Since Tprg = max(f1 — f8), the new Tprc is
computed with h—1 max operations, and h = log(n). Consequently,
the computational complexity of updating T ¢ is O(log(n)), where
n is the number of the POnodes. Resource sharing or splitting
involves updating the leaf nodes, which are rebound to other function
units, and their parent nodes, and the computational complexity of
these perturbation is also O(log(n)). Thus, the overall computational
complexity of the timing yield perturbation computation is reduced
from O(n) to O(log(n)).

C. Power Yield Perturbation Computation for DFG

The power yield perturbation due to the module reselection or
resource sharing is computed based on the total power analysis.
Assuming that N function units, fug'?, involves the change of
module selection or resource sharing, and these function units are
replaced with other K function units, fu;“?, the total power after

the module selection and binding is computed as:

N K

PR = PRRe =" Pruft 43" Pfule® an

i=1 i=1

PR, and PP refer to the power of the DFG after the perturbation
and that before perturbation. Pful’®” and P fu?'¢ represent the
power of the function units, ful*® and fug'd, respectively. Since
a relative small number of the function units are involved during a
change in DFG, thus the computational complexity of the power yield

perturbation is constant.

VI. YIELD DRIVEN HIGH LEVEL SYNTHESIS

In this section, we first present the yield driven high level synthesis
framework. We then describe the details of our simulated annealing
(SA) based method, which includes two key functions: move gener-
ation function and the cost function.

A. Yield Driven Synthesis Framework

SA_Opt(synthesized D FG,constraints,Library){
T <-Initial Temperature;
do{
While(Thermal Equilibrium){
Identify_possible_move;
Evaluate ACost;
Accept(ACost,Temperature) }
Update_Temperature;
}while(converge or cool down)

}
Fig. 4. The Pseudo Code of Yield Driven HLS

WP LD =

PDF Telk PDF Telk
| |

1 1

1 1

1 1

1 1

1 1

1

1

Delay Delay
0 0
Fig. 5. Module selection example

Our yield driven high level synthesis framework, as shown in
Fig. 4, takes an DF'G, constraints (latency constraint, resource
constraint, CCT constraint, and power constraint), and a module
Library as inputs, and outputs a synthesized DFG that is power
optimized while satisfying performance constraints. Since the sub-
tasks of high level synthesis are strongly interdependent, simulated
annealing is used to perform simultaneous scheduling, allocation, and
binding. The SA technique is an effective method to explore the
design space by allowing hill climbing moves [22]. Our algorithm
begins with a synthesized DFG, where each operation is bound to the
fastest function unit in the library and scheduled as soon as possible
(ASAP). Based on the fast SA algorithm in physical synthesis [22],
this SA based yield driven synthesis algorithm is characterized by
the following functions:

1) Identify_possible_move function finds the possible moves (line
4), which will be described in detail in Section VI-B.

2) Accept function (line 6) accepts the move reducing the cost, or
accepts the move with probability equals to exp(—ACost/T)
when the move increases the cost.

3) Update_Temperature updates temperature based on the current
cost change (line 7).

4) The cost function (line 5) computes the cost associated with
the current synthesized DFG, which will be described in detail
in section VI-C.

5) The stopping criterion: (line 8).

B. Move Generation function

In order to fully explore the design space, the possible moves
generated during the perturbation can be classified as four types [23]:

« Rescheduling. The operation is scheduled to other clock cycles.
This type of move itself does not affect the timing and power
yield. However, it can lead to other moves, such as module
reselection and resource sharing.

o Module reselection. In this move, an operation is assigned to
a different function unit in the library with different timing
and power characteristics. For instance, a one-cycle function
unit is replaced by a two-cycle one. The rescheduling might be
performed to ensure that this move will not cause the violation
of the latency constraints, if the latency of the function units in
terms of clock cycles is changed. We illustrate this move in Fig.
5: the multiplication operation 1 is rebound to a two-cycle multi-
plier. The delay distribution of these function units are available
in library as shown in Fig. 5. This type of move reduces the
power if a faster function unit is replaced by a slower function
unit. However, the timing yield of this move might be increased

PDF

Delay

Delay
0 0

Fig. 6. Resource sharing example

or decreased depending on the delay distribution of the function
units and the clock cycle time constraints. For example, in Fig. 5,
the timing yield before the move is p(Tf1 < T'clk), where T f1
is the delay of the single cycle function unit. However, the timing
yield after the move is p(max (T f2cycie1, T f2eycie2) < Tclk),
T f2cycter and T f2cycie2 represent the delay of the 2-cycle
function unit in cycle 1 and cycle 2, respectively. Assuming
that p(T' f2cycier < Telk) = 0.9, p(T f2eycie2 < T'clk) = 0.9
and p(Tf1 < Tclk) = 0.75, the timing yield is improved since
p(maz(T f2eycier, T [2eyciez) < Tclk) <= p(Tf2eycrer <
Tclk)*p(T f2eycte2 < Tclk) = 0.81 due to the positive
correlation between T f2¢ycie1 and T f2cyciea.

Resource Sharing. In this move, two function units are merged
into a single function unit. For example, function unit f/ and
function unit f2 are replaced with function unit /3. In this work,
this type of move is performed under the condition that the
merged function unit f3 can perform the operations, which are
originally bound to fI and f2, and has the same latency as the
original function units. In addition, these two function units can
not scheduled in the same clock cycle.

We illustrate this type of move in Fig. 6. In this example
multiplier 1 and multiplier 2 are merged into a single multiplier.
This resource sharing move is preceded by the rescheduling of
the operation 1. This type of move can effectively reduces the
power. The overhead introduced by this move are additional
multiplexes, which are required at the inputs of multiplier 1
and multiplier 2. However, the timing yield might be increased
and reduced depending on the distributions of the function
units and the multiplexes. In Fig. 6, the timing yield before
the move is p(max(Tf1,Tf2) < Tclk); the timing yield
after move is p(Tf3 + Tmux < Tclk). Assuming that T f1
and Tf2 are independent and p(Tf1 < Tclk) = 0.9 and
p(Tf2 < Tclk) = 0.9, and p(T'f3 + Tmuz < Tclk) = 0.85,
the resource binding lead to timing yield improvement since
p(maz(Tf1,Tf2) < Tclk) = 0.81.

Resource Splitting. In this move, a single function is split into
two function units. The operation originally shared with other
operations is split from the shared function unit. This type of
move might lead to other moves, such as module reselection
and resource sharing. For example, in Fig. 7, the operation +1
is split from the single cycle adder and it is possible to rebound
it to a 2-cycle adder, which requires rescheduling; this move
might lead to resource sharing with operation +3. The power
yield of this move is increased and the timing yield might also
be increased as shown in analysis in the resource sharing move.

PDF Telk PDF Telk
1
1
1
1
1
|
Delay Delay
0 0
Fig. 7. Resource splitting example

C. Cost function

The cost function for our yield driven synthesis algorithm consists
of two portions: the first portion is related to the power yield loss;
the second portion is the penalty of the timing yield violation.

Cost = (1 — poweryield) + f(timingyield) (12)

The timing yield violation penalty function, f(timingyield) is 0
if timingyield is larger than (1 + «)X timing_yield_contraints;
otherwise, f(timingyield) is

[(timingyield — timing_yield_contraints) scale]® /scale (13)

where o, a small value, is used to guarantee the time yield when the
temperature approaches zero. When the timing yield is violated, the
penalty is proportional to the square of the quantity of the amount of
the timing yield violation. The scale is a constant value. Experimental
results indicate that this cost function is able to guarantee the timing
yield while effectively exploring the timing yield and power yield
tradeoff as shown in Section VIIL.

VII. ANALYSIS RESULTS

In this section, we present the analysis results. The results show
that our method can effectively reduce the impact of the process vari-
ation and maximize the parametric yield, significantly outperforming
traditional deterministic methods that use worst-case models. Note
that in the deterministic synthesis methods, the slack is used to guide
the design exploration and the timing qualities are computed using
worst case delay models.

We implement our yield driven high level synthesis algorithm in
C++ and conduct the experiments on six high level level synthesis
benchmarks: a 16-point symmetric FIR filter (FF), a 16-point elliptic
wave filter (EWF), an autoregressive lattice filter (ARF), an algorithm
for computing Discrete Cosine Transform (DCT), a differential equa-
tion solver (DES), and an IIR filter (IIR). In this paper, we evaluate
the effectiveness of our algorithm under different performance yield
constraints: 99%, 90% and 85%.

To demonstrate the yield improvement of our method, we compare
the results of our yield driven synthesis (YD) against traditional
deterministic synthesis methods using worst case (WC) models. In
Tables I, II and III show the results of our method (YD) against those
of the deterministic synthesis technique (WC), under 99%, 95% and
85% performance yield requirement, respectively. In the first column,
we show the benchmarks we used in this analysis. From the second
column to the third column, we show the absolute power yield results
of the process yield driven high level synthesis method (YD) and
the deterministic worst case high level synthesis technique (WC),

respectively. In the fourth column, we show the absolute value of
the yield improvement of our method over worst case method. In
the fifth column, we show the relative yield improvement of our
method over worst case method. As can be seen from Tables I,
I and III, significant yield improvement could be obtained if we
take into account the variation in high level synthesis. The yield
results show that WC based technique is pessimistic with average
31%, 40% and 48% power yield loss under the 99%, 95% and
85% performance constraints, respectively. It is because worst-case
analysis without taking the probabilistic information into account can
result in a pessimistic estimation and end up using excess resources
(with excess power) to guarantee performance constraints.
Compared to the previous work [16], which only considers delay
variation and each synthesis step in [16] was still deterministic, our
approach considers both delay and power variation, and performs
each synthesis subtask statistically. Furthermore, even though both
[16] and our approach are based on simulated annealing approach,
in this work, the fast yield computation method and the proper cost
function greatly improve the runtime of the algorithm. The average
runtime across the benchmarks is about 3 times faster than the
approach in [16], which has not considered the power variability
yet. Such runtime improvement lies in the effectiveness of the cost
function. The cost function in [16] is hard to guarantee the timing
yield, thus affecting the design space exploration. In addition, the
computation complexity of the yield gain/loss computation in [16] is
O(n), while the computation complexity of our method is O(log(n)).

TABLE I
POWER YIELD UNDER 99% PERFORMANCE YIELD CONSTRAINT
Name YD WC YD-WC | (YD-WC)Y/WC
AR 94% 67% 27% 40%
DES 94% 82% 12% 15%
EWF 7% 44% 33% 75%
FF 94% 82% 12% 15%
DCT 94% 82% 12% 15%
IIR T7% 44% 33% 75%
Average 88% 67% 21% 31%
TABLE 11
POWER YIELD UNDER 95% PERFORMANCE YIELD CONSTRAINT
Name YD WC YD-WC | (YD-WC)YWC
AR 97% 67% 30% 44%
DES 97% 82% 15% 18%
EWF 88% 44% 44% 100%
FF 97% 82% 15% 18%
DCT 97% 82% 15% 18%
IIR 86% 44% 42% 97%
Average 94% 67% 27% 40%
TABLE III

POWER YIELD UNDER 85% PERFORMANCE YIELD CONSTRAINT

Name YD WC YD-WC | (YD-WC)/WC
AR 100% | 67% 33% 48%
DES 100% | 82% 18% 22%
EWF 98% 44% 54% 124%
FF 100% | 82% 18% 22%
DCT 100% | 82% 18% 22%
IR 98% 44% 54% 124%
Average 99% 67% 32% 48%

VIII. CONCLUSIONS

In this paper, we formulate the power and performance yield
constraint high level synthesis problem and propose an efficient
algorithm to solve it. We develop the performance and power

parametric yield computation methods, and a fast performance yield
gradient computation scheme. Based on the fast yield perturbation
computation method, the performance and power yield aware high
level synthesis framework is developed. Simulation results show that
significant yield gain can be obtained with our yield driven high
level synthesis framework. Our future work is to incorporate the
process variability into the design flow of a state-of-the-art high
level synthesis tool called Catapult-C, with the support from Mentor
Graphics.

REFERENCES

[1] A. Raghunathan, N. K. Jha, and S. Dey. High-level power analysis and
optimization. Kluwer Academic Publishers, 1998.

[2] D. Gajski, N. Dutt, and A. Wu. High-level synthesis: Introduction to
chip and system design. Kluwer Academic Publishers, 1992.

[3] F. N. Najm. On the need for statistical timing analysis.
Automation Conference, pages 764—765, 2005.

[4] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical analysis and
optimization for VLSI: Timing and power. Springer, 2005.

[5] S. Sapatnekar. Timing. Kluwer Academic Publishers, 2004.

[6] D. Marculescu and E. Talpes. Variability and energy awareness: A
microarchitecture-level perspective. In Design Automatin Conference,
pages 11-16, 2005.

[71 A. K. Singh, M. Mani, and M. Orshansky. Statistical technology
mapping for parametric yield. In International Conference on Computer
Aided Design (ICCAD), pages 511-518, 2005.

[8] D. Marculescu and S. Garg. System-level process-driven variability

analysis for single and multiple voltage-frequency island systems. In

Proc. IEEE/ACM Intl. Conference on Computer-Aided Design (ICCAD),

Nov. 2006.

Feng Wang, C. Nicopoulos, X. Wu, Yuan Xie, and N. Vijaykrishnan.

System-level process variation driven throughput analysis for single and

multiple voltage-frequency island designs. Proc. of ICCAD, Nov. 2007.

C.-G. Lyuh and T. Kim. High-level synthesis for low power based

on network flow method. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 11(3):364-375, 2003. 1063-8210.

X. Tang, H. Zhou, and P. Banerjee. Leakage power optimization

with dual-vth library in high-level synthesis. In Design automation

conference, pages 202-207, 2005.

R. Karri and A. Orailoglu. Time-constrained scheduling during high-

level synthesis of fault-secure vlsi digital signal processors. Reliability,

1IEEE Transactions on, 45(3):404—412, 1996. 0018-9529.

R. Mukherjee, S. Ogrenci Memik, and G. Memik. Temperature-aware

resource allocation and binding in high-level synthesis. In Design

Automation Conference, pages 196-201, 2005.

C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and

S. Narayan. First-order incremental block-based statistical timing

analysis. Design Automation Conference (DAC), pages 331-336, June

2004.

A. Agarwal, K. Chopra, D. Blaauw, and V. Zolotov. Circuit optimization

using statistical static timing analysis. In Design Automation Conference,

pages 321-324, 2005.

[16] W.-L. Hung, X. Wu, and Y. Xie. Guarantee performance yield in high
level synthesis. In International Conference on Computer Aids Design,
2006.

[17] Jongyoon Jung and Taewhan Kim. Timing Variation-Aware High-Level

Synthesis. Proc. of ICCAD, November 2007.

S. P. Mohanty and E. Kougianos. Simultaneous power fluctuation and

average power minimization during nano-cmos behavioral synthesis. In

Proc. of VLSID, pages 577-582, 2007.

Feng Wang, X. Wu, and Yuan Xie. Variability-driven module selection

with joint design time optimization and post-silicon tuning with adaptive

body biasing. Proc. of ASPDAC, Nov. 2008.

C. Clark. The greatest of a finite set of random variables. Operations

Research, pages 145-162, 1961.

A. Srivastava, S. Shah, K. Agarwal, D. Sylvester, D.Blaauw, and

S. Director. Accurate and efficient gate-level parametric yield estimation

considering correlated variations in leakage power and performance.

Design Automation Conference (DAC), pages 535-540, 2005.

[22] Tung-Chieh Chen and Yao-Wen Chang. Modern floorplanning based on
fast simulated annealing. In Proc. of ISPD, pages 104-112, 2005.

[23] Anand Raghunathan and Niraj K. Jha. An iterative improvement
algorithm for low power data path synthesis. In Proc. of ICCAD, pages
597-602, 1995.

In Design

[9

—

(10]

(1]

[12]

[13]

[14]

[15]

(18]

[19]

[20]

[21]

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

