

ABSTRACT
This paper provides insight into the novel solutions used

to build SoCs targeting increased productivity in a complex
environment. Design of such SoCs relies on multi-team,
multi-site cooperation and data exchange. The data
exchange, made possible though descriptions based on The
SPIRIT Consortium’s IP-XACT™ specification and the
automation for its processing, forms the basis of the
approach. Initially, the specification focused at IP reuse;
this has now been extended to SoC subsystem exchange.
This paper also describes state-of-the-art subsystem design
automation and improvement opportunities, based on a
close collaboration between NXP Semiconductors and
Mentor Graphics. We do not cover all the aspects of reuse
but mainly stress the concurrent engineering process.

I. INTRODUCTION

N a June 2007 EE Times article, Ron Collett, president
and CEO of Numetrics Management Systems, Inc.

presented his views on IP reuse, which were “based on
1,200 benchmarked IC projects from more than 35
companies: ‘There are good and bad news about the reuse
situation. Over the past ten years, reuse leverage more than
doubled, and more reuse tends to translates into less project
effort, shorter cycle times as well as fewer spins and less
schedule slip.’ Still on the positive side, Collett indicated
that the average transistor count per block is growing and
the number of blocks per chip is rising. Moving to bad news,
Collett noted that the average team size has doubled between
the years 2000 and 2006.”

This is not cost-effective in today’s electronic consumer
market where cost pressure is at its peak and margins are
tight. Companies often attempt to lower their cost of
production by investing in design centers in emerging
countries, which scatters the design teams all over the world.
In that context, efficiently exchanging and reusing
information between the dispersed design teams is even
more challenging. Having a common development
environment and a consistent way of exchanging subsystems
is key to keep up the productivity and time to market
brought by IP reuse and flow automation[1].

“Collett also deplored that the semiconductor industry has
serious schedule slip problems. About 85 percent of all IC
projects miss their original schedule. ‘This is chaos. The

average schedule slip is 44 percent, and high schedule slip
means poor schedule predictability" with a direct impact on
cost and margins.

II. THE IP-XACT SPECIFICATION, THE MEDIA FOR
EFFICIENT EXCHANGE OF INFORMATION

We stated the need for concurrent design of subsystems

and the exchange of design data between sites. Until
recently there was no industry-wide answer on how to
document IPs and ease their integration into system-on-a-
chip (SoC) products usually formed by IPs from multiple
sources as illustrated in Figure 1.

Fig 1. The SoC development eco-system

The SPIRIT Consortium’s IP-XACT specification
changed the situation. Here EDA vendors, IP providers and
SoC integrators cooperate to define the answer to describing
IP properties in a common way and ease its integration
[2][5]. Tools based on the IP-XACT specification, such as
Platform Express™ from Mentor Graphics, are capable of
providing an eco-system where one can easily exchange
information around an SoC and rapidly produce subsystems
and eventually the final SoC. This would have previously
required significant integration time and effort in a
traditional design flow.

IP and design information such as interface signals and

memory map, captured in the IP-XACT format using the
XML language, document the IP in a standard and
exchangeable way. The IP-XACT specification enables the

Subsystem Exchange
in a Concurrent Design Process Environment

Marino Strik1, Alain Gonier2, Paul Williams3
1NXP Semiconductors, The Netherlands; 2Mentor Graphics, France; 3Mentor Graphics, UK

I

978-3-9810801-3-1/DATE08 © 2008 EDAA

XML elements of the specification to be extended to
describe information that is not covered through available
IP-XACT semantics.

The ability to exchange data is not enough. Productivity
increases further if the processing of the exchanged data is
automated. Or, to be more precise, a flow and methodology
is needed that can process the data coming from multiple
sources and which can effectively transform the input data
into an SoC. This flow and methodology needs to address
assembly, documentation generation, verification, and
synthesis [3]. Automating the processing is important in
order to be able to quickly handle updated versions of
subsystems and generate consistent outputs. The IP-XACT
specification, by providing the design context information,
enables such an automated flow. The scope of automation is
wide; it includes all steps from IP selection and
configuration to ready-for-placement netlist with
accompanying timing constraints. For instance, SoC
assembly, verification, synthesis, and dft insertion all fall
within that scope Future work may extend the scope to
layout. For now, the ready-for-placement netlist with timing
constraints provides a clear and well defined challenging
target.

The following sections describe our experience of

managing the integration of subsystems provided by
multiple, disperse teams. Each subsystem is created
according the novel concepts based on the IP-XACT
specification. A key criteria for success is the smooth
handover of information, allowing verification,
documentation and implementation flows to run
automatically.

III. THE CONCURRENT ENGINEERING PROCESS EQUATION

For reuse to be efficient, a repeatable and established

methodology is essential. According to Collett, the problem
lays in the difficulty to estimate design complexity and
especially the impact of reuse. He declared: "The problem is
that reuse expectations typically exceed reality, and there is
a difference between the assumed effort required and the
actual effort required. The effort behind reusing blocks is
underestimated, and a leading cause of poor schedule
predictability is the inability to assess the impact of IP
modifications on project effort."

The two key areas of focus for leading-edge
semiconductor firms are schedule predictability and risk
management of large platforms or projects, declared Collett.

Although there are good evidence that reuse is working,
development productivity is not keeping pace because of
team size increase and poor schedule predictability. And, the
misunderstanding interplay between reuse and the effort
saved is a major cause of poor predictability, Collett
summarized.

A. Sharing subsystems across teams

Teams exchange subsystems in many ways. These differ

mainly by the amount of flexibility of the subsystem, in
other words, how much the end-user is allowed to
reconfigure the delivered subsystem.
The three major use models are:

1. Soft core use model
a soft core use model is applied if the end-user
prefers to take ownership of the product. The design
sources are transferred with permission to be
modified and the warranty from the IP provider is
limited. Updating the delivery with incremental
releases from the IP provider can get complicated if
the end-user changes are not automatically
reproducible.

2. Firm core use model

a firm core use model is applied if the end-user
prefers not to take functional ownership of the
product. The design sources are transferred, including
a synthesized gate level netlist which meets a
mutually agreed performance level (area and timing).
There is no permission to functionally modify the
design as functionality is guaranteed by the IP
provider. The end-user needs to integrate the
subsystem and create a chip layout, which may
require standard cell netlist changes that maintain
functional equivalence. Updating the delivery is not
as difficult as with soft cores. A new netlist may
replace an earlier version especially when pin
compatibility is maintained.

3. Hard core use model

a hard core use model is applied if the end-user
prefers not to take ownership of the product. The
design sources are transferred, including a
synthesized gate-level netlist and a layout view that
meets a mutually agreed performance level and
footprint. There is no permission to modify the
hardened design. Updating the delivery is comparable
with the firm core use case. A new layout may
replace an earlier version especially when footprint
compatibility is maintained.

1) Data Management

Receiving updated data multiple times may require a

significant effort to correctly and efficiently apply version
management. Two different releases of a subsystem will
typically contain many files with the same names, with or
without updated content, and only a few newly created or
removed files. It is difficult to deal with this difference
reliably at the individual file level. Therefore, it is

recommended that the number of elements to be individually
updated remains limited. This is handled by treating one or a
few directories and their content as the elements to be
updated as depicted in Figure 2.

Fig 2, Directory representation of two subsystem structures allowing for

easy configuration management

The fact that files are not shared across different
subsystems is also important. The integrator will need to
agree with its suppliers which (top level) directory names
they will use.

2) Naming Conventions

Commonly used languages like verilog define that the last

compiled description overrules all earlier descriptions with
the same name. However, in order to guarantee that all sub-
designs with the same name from different suppliers have
identical content, name clashes for all hierarchical design
names must be avoided. Using unique names during
integration is not an attractive scenario. It requires name
clash detection and modification of deliverables which later,
for example, could hamper reporting problems to a supplier
or violate warranties for firm and hard core use models.
Hence it is best to make a serious attempt to avoid name
clashes through upfront naming agreements. This requires
subsystem providers to fully control the naming of their
design elements. If subsystem creators apply reusable IP,
then that IP must support configurable names.

3) Use of IP-XACT

Before we continue, it is important to have a common

understanding of IP and subsystem terms:
• We define IP as being a basic block such as UART,

I2C, bus matrix, etc.
• Assembling IPs together is creating a subsystem,

which can be viewed as a larger IP.

 The IP-XACT specification differentiates between
component and design XML descriptions:

• Component XML description details the hardware
and software interface, focusing on the information
required for integration.

• Design XML description details a composition of
components, its connectivity, and the component
configuration parameters that are specific to each
component instance. For integration purposes a
component view of the subsystem needs to
accompany the design XML.

To distinguish the two different component types, we

introduce the term leaf component for component XML that
describes a (reusable) IP and which is not a composition of
IP described through an IP-XACT design.

Configurable IP is characterized by its IP-XACT Vendor,
Library, Name, Version (VLNV) and parameter value pairs.
IP parameter values such as IP base address can be manually
set by the user or automatically calculated by a generator
using context information to compute its value.
Configurable IP are explained in greater details in section B.

Except in the case of the softcore IP, parameters are
currently not available up in the hierarchy. Hence composed
systems are not configurable when being instantiated. For
integration of firm or hard subsystems, change of context
will not affect parameters value. Hence, all configurable IP
parameters must be resolved as should parameters that are
derived from the context prior the delivery. There are 2
options to enforce this property:

1. For all IP inside a firm or hard subsystem, the
context analysis can be switched off. This will
ensure all parameters remain fixed. An integrator
can potentially be confronted with issues during
functional verification which may be too late and
difficult to translate back to the root cause.

2. The context analysis can also be executed as normal,

where the process reports an error message as soon
as a parameter value is derived, which is different
compared to the original value. Preferably an error
message is presented only if the context is
incompatible with the subsystem. At this moment it
is not yet well understood how to automatically
distinguish a compatible from an incompatible
parameter value. An error message should report to
the system integrator which IP and parameter
combinations are subject to value change. An
integrator will need to decide whether to continue
or address the issue.

Having IP-XACT standardized information about

parameters that are to be changed supports communication
with a supplier of a subsystem. In the scenario where the
subsystem is fixed, the IP-XACT parameters help adjust the
context of the subsystem.

Today we need to use XML component vendor extensions
to qualify a subsystem soft/firm/hard property as the
specification does not have dedicated XML elements to hold

this information. Whether there will be a need for having an
end-user softening capability where a hard core can be used
as firm core or where a firm core is used as soft core is not
clear yet, although technically this is certainly possible. The
organizational and warranty-related consequences need be
further investigated.

B. Sharing components across subsystems
Sharing components across teams is fundamental in the

concurrent engineering process. One key aspect of IP is how
one deals with its configuration. The following sections
address what to consider when sharing IPs across
subsystems.

1) Set user configuration boundaries properly

Having highly reconfigurable IP for extensively reused
functional blocks is a must. It ensures that everyone use the
same source of IP, and, as a consequence, raise the IP
quality and team productivity as everyone contributes to
make the IP bug free and repeatedly reused without
problems. As stated earlier, we are only covering the
concurrent engineering process and not all aspects of IP
reuse. If we look at Figure 3 below, we can categorize IPs
according to flexibility in parameters and interfacing.

Fig 3. IP Category in terms of configurability

Highly configurable IP will mainly help the subsystem

provider to quickly create and configure its subsystems. The
subsystem provider, who has a deep knowledge of his/her
subsystem, will then be able to quickly derive and generate
different implementations and rapidly satisfy end-user
requests. In that sense, configurable IP will primarily serve
the subsystem provider and have little impact to the end user
of the complete subsystem that will not have any or limited
access to the IP configuration.

If you take the case of an IP on the right hand-side where
its external interface can be modified through configuration,
one may consider not giving the end-user access to these
parameters as it will modify the internal connections and
even potentially modify the subsystem external interface. It
is the duty of the subsystem provider to set the right
boundaries of the end-user configuration.

2) Ease configurable IP integration

Figure 4 illustrates the degree of automation one can
expect according to the type of IP used. Typically there are
two things that can affect an IP configuration:

1. Context information (data bus width, other IP base
addresses)

2. User information (optional IP features)

Fig 4. Degree of automation versus IP category

IP such as bus infrastructure matrix can get most of its

configuration parameters from the design context and
therefore, with a high degree of automation, will require
fewer to no inputs from the user. In the latter case, as shown
in Figure 4, automation is nearly impossible for parameters
which are leaves in a dependency tree and for which a value
is an architectural or feature choice.

In a nutshell, the more design-context sensitive one’s IP
is, the easier it will be to automate its integration into the
subsystem. Conversely, the more user-defined one’s IP is,
the less one will automate and thus will rely on user entry to
make it work correctly in its subsystem.

The IP-XACT specification supports both user and
context-sensitive configuration so that IP developers can
provide a flexible IP whilst preventing non-desired
configuration by embedding automation to configure IP
parameters depending on the design context. Take the
example of an interrupt controller that adapts the size of its
decoder according to the number of connected interrupts.

The size of the interrupt bus will vary according to the
number of interrupts in the design, and, while the internal
behavior will be identical, the interface will differ from one
SoC to another; the internal structure of the IP will differ as
well, as the decoder logic will adapt to the number of
interrupt lines to decode. The integrator’s only duty is to
connect the different interrupt lines to the interrupt bus
interface of the interrupt controller; the corresponding HDL
will be generated accordingly with the corresponding
interrupt lines and internal decoding logic.

C. Use of Hierarchy Efficiently
The primary purpose of design hierarchy is to provide a

mechanism for reducing design complexity by partitioning a
design into smaller, more manageable subsystems. These
subsystems can then be allocated to separate design teams,
each focused on the particular issues associated with that
part of the system. Hierarchy can also be used to demark
layout requirements, power domain systems, test
requirements, etc., but experience shows that visualizing
multiple, different hierarchies on a single system adds
considerable complexity and should be avoided wherever
possible.

1) Approaches to design hierarchy.

Two approaches are common for implementing hierarchy

in a complex design. It is worth studying each of these
approaches because it helps identify the underlying
requirements of subsystem design:–

a) A tagging approach.
Here the whole system is structured as a large flat

design, and a combination of tags on components and
filtering makes the design appear as hierarchical to tools
like viewers and HDL generators. This approach provides
considerable flexibility in design manipulation because
changes can be achieved by simply moving tags;
however, it does not meet the requirements of subsystem
design because it does not offer a mechanism for multi-
site isolated development and integration.

b) A design cross referencing solution
The alternative approach is that all levels of hierarchy

become self-contained designs, and that each design is
allowed to cross-reference other designs to build up a
hierarchical structure. This is essentially the approach
adopted by the IP-XACT specification in that designs
contain components and components can have views that are
themselves other designs. For sub-system design, this
approach has the advantage that it scales; components can be
combined to form designs that are wrapped as components,
which can then be combined into larger systems.

2) IP-XACT hierarchy

The IP-XACT approach to hierarchy is therefore well
suited to partitioning a large design into separate
subsystems, which can be designed at different locations and
then integrated. A cross-referencing solution allows
subsystems to be multi-instantiated in a design, which is
powerful but brings its own issues:

a) Consistency Issues
Successful integration of systems requires that each sub-

design is created with a level of consistency. The IP-XACT
specification greatly helps in this area because it describes
interfaces, filesets, and other characteristics of the sub-
system in a consistent XML format. However, the
specification has very strict rules of consistency that must be
followed precisely by all sub-design teams, chief of which is
bus definition (busdef) standards; these must be identical
between two communicating IPs. Two identical bus
definitions from different vendors, or two bus definitions
with very slight version number differences, cannot be used
for communication between IP blocks.

b) Interface changes, revision control and
synchronization issues

A common problem with sub-system integration is the
challenge of maintaining a consistent top-level design when
sub-systems are being modified and supplied in various
stages of development. Changes that modify the interface of
a sub-system will impact the integration level of the design;
interfaces that are added need to be connected, interfaces
that are removed need to be disconnected, and knock-on
effects of these changes need to be processed. Keeping the
whole design synchronized to changes occurring in a sub-
design is a significant integration challenge.

c) Configurable designs issues
Some changes to sub-designs (such as the addition of a

new bus interface) have an immediate and obvious impact
on integration; other changes are more subtle -- a change in
the base address of a component will definitely change the
memory map of the whole system and may change the
hardware decoding of bridges outside the sub-system. To
add to the level of complexity, the subsystem may not be
delivered as a fixed configuration; it may be possible to
modify certain parameters which impact the content of the
sub-system and again synchronization of those changes in
higher levels of hierarchy. Worst case scenario, some IPs
(such as bridges) modify their configuration not by user
input, but by examination of design context (e.g. a memory
controller may modify the number of address bits it
provides based on the size of memory connected to it).
Extreme care must be taken where such design context
information is gathered from outside the sub-system.

d) Hierarchical manipulation issues
The IP-XACT specification’s representation of hierarchy

as components with design views is a rigorous method of
documenting existing structures and is well suited to
delivery of sub-systems. However, being rigorous, it lacks
some of the freedom and ease-of-use that is desirable when
creating new designs. Restructuring hierarchy, by moving
components from one design to another through existing
hierarchical boundaries, will have an impact on the source
design, the destination design, and all other designs that are
touched by the changes to the external interfaces making
these changes. All of these changes need to be synchronized
between IP-XACT design files and component files for each
hierarchical level. This is a non-trivial refractoring operation
that does not lend itself to simple repartitioning of a whole
system in the way that could be easily implemented in the
labeling approach mention above.

3) Implementation Experience

Nx-Builder [4] and Platform Express implement hierarchy

as a collection of designs that can instantiate components
and other designs. Being based on an Eclipse framework,
related designs are grouped together into a container called a
Project. During 2007, NXP and Mentor Graphics worked
together to extend this concept to sub-system design.
Projects were given the ability to reference designs existing
in other projects, thus creating the ability for sub-systems to
be developed as separate projects and then integrated in a
controlled manner. This approach was adopted in preference
to an import mechanism, which would allow designs to be
brought together in a single project because it was felt to be
preferable to keep each of the subsystems self-contained and
simply refer to them from an integration project.

Project cross referencing has allowed NXP to design large
systems consisting of multiple sub-systems but has
highlighted consistency issues and areas for further
development. The consistency issues exist where two
projects that are to be combined have non-identical libraries
of components available. The areas of further development
are in the question of configurability of sub-designs;
allowing designers to modify soft IP while restricting the
ability to modify hard sub-systems, or at-least identifying
that back-end files such as synthesis and layout files, can no
longer be reused for sub-systems that have been modified.

IV. SUGGESTED EXTENSIONS

The process of configuring (configurable) IP is addressed
differently by all IP providers. This topic is not addressed by
IP-XACT or any other standard today and therefore a further
opportunity for standardization exists.

For sub-systems there is also the topic of configurability.
How should leaf IP parameters be exposed to designers to
modify IP in soft subsystems, while restricting the ability to
modify hard sub-systems, or at-least identifying that back-
end files such as synthesis and layout files can no longer be
reused for sub-systems that have been modified?

It will become important to understand the impact of a
parameter value change. A parameter classification will help
understand whether subsystems may retain configurability
options after delivery.

V. CONCLUSION

IP-XACT has initially been used to document IP to
introduce automation for integration of subsystems. We
illustrate how IP-XACT has become an enabler for creating
uniformity in the way of working for cooperating design
teams. It facilitates and documents subsystem design data.
An important aspect is the ability to integrate subsystems
while retaining separation of source data which is needed for
efficient intakes of subsequent subsystem releases.

Making best use of the standard, the EDA tool industry
contributes tools to increase automation for the design data
exchange and integration process. At NXP, teams at
different sites develop subsystems with a specialized
functional area. Subsystems are created using reusable IP for
modem, compression, audio and display functions.
Application is found in all TV, car infotainment and mobile
communication SoC flagship products.

ACKNOWLEDGMENT
The authors would like to acknowledge the teams in

Mentor Graphics and NXP Semiconductors who have
contributed to this paper, to Platform Express and to
Nx-Builder methodology and development.

REFERENCES
[1] Neal Wingen, “What If You Could Design Tomorrow’s System

Today?”, DATE conference, March 2007: pages 835-840
[2] Christopher K. Lennard, “Industrially proving the SPIRIT consortium

specifications for design chain integration”, DATE conference, March
2006, Volume: 2, pages: 1- 6

[3] Geoff Mole , “Philips Semiconductors Next Generation Architectural
IP ReUse Developments for SoC Integration”, IP SoC conference,
December 2004

[4] Denis Bussaglia, "Automated Implementation Flows based on IP-level
constraints and synthesis intent in XML". IP SoC Conference,
December 2005

[5] Wido Kruijtzer, "Industrial IP Integration Flows based on IP-XACT
Standards", Proceedings DATE 2008

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

