
Efficient Symbolic Simulation of Low Level Software

Tamarah Arons, Elad Elster, Shlomit Ozer, Jonathan Shalev and Eli Singerman
Intel Israel Design Center

E-mail: firstname.lastname@intel.com

Abstract

Symbolic execution has long been a staple technique for
formal hardware verification. Its application to software re-
quires methods for dealing with software specific complex-
ities. In this paper we elaborate methods for the efficient
symbolic simulation of embedded software; some methods
are new, others are improvements of existing methods. Us-
ing these techniques we have been able to symbolically exe-
cute real life microcode of thousands of lines, allowing for-
mal methods to become an integral part of microcode vali-
dation in Intel Corporation.

1 Introduction

Symbolic execution, which has been successfully used
in the formal verification of hardware [4], is now also being
applied to software of various levels [6]. Such software may
be a higher level abstraction of RTL [9], more general C
programs [3], or various types of low-level software [7]. We
have developed the MICROFORMAL tool-suite, originally
used in the formal verification and analysis of microcode,
and currently being extended for the verification of other
embedded software. The MICROFORMAL tool-suite sup-
ports formal property verification, formal equivalence veri-
fication [1], and the extraction of feasible paths to serve as a
coverage metric [2]. In this paper we focus not on the indi-
vidual applications, but on their shared underlying symbolic
simulation technology.

In order to symbolically execute real microcode pro-
grams, some of which are thousands of lines long, with
broad branching, we developed a variety of methods for
dealing with complexity in software simulation. Our ba-
sic theory remains that of [1], but our methodology has, of
necessity, become significantly more sophisticated.

One significant contribution is a theory of configurable
merge points suitable for large programs. Merge points
(Sec. 3) unify simulation branches, allowing the simula-
tion of significantly larger programs. We discuss a system
of implicit and explicit merge points, which significantly

1. normalize: (REG2≥0)? goto reduce;
2. in norm: REG2 := -REG2;
3. reduce: (REG2≤10)? goto e norm;
4. in red: REG2 := 10;
5. e norm: goto REG1;

6. start: REG1 := e flow;
7. (EAX < EBX)? goto eax s;
8. REG2 := EBX;
9. goto normalize;
10. eax s: REG2 := EAX;
11. goto normalize;
12. e flow: EAX := REG2;

Figure 1. Example program.

speeds up simulation. We present novel methods to cache
and re-use simulation information, particularly SAT-queries
(Sec. 5). We describe an algorithm for the effective resolu-
tion of indirect jumps in Sec. 4.

The paper is structured as follows: We first give a brief
overview of symbolic simulation. We then detail the afore-
mentioned methods. Finally we give results and compare
our methods with those in the literature.

2 Symbolic Simulation

Symbolic simulation of software is similar to that of
hardware. A formal definition of our semantics can be
found in [1]. Here we give a brief, intuitive, explanation.

In symbolic simulation a program is simulated, but the
initial states (variables such as registers) do not have a con-
crete initial value, but rather a symbolic value. During the
course of the simulation these are updated to be symbolic
expressions over the initial values and constants that appear
in the program. When a conditional jump occurs, we use
a SAT solver to determine which of the condition and its
negation is satisfiable in the symbolic state. When both are
satisfiable we create a new path containing a new symbolic
state. The symbolic simulation effectively creates a tree of

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



(a)

start

normalize

eax_s

reduce

in_norm

normalize

reduce

in_norm

reduce

e_norm

in_red

e_norm

in_red

reduce

e_norm

in_red

e_norm

in_red

e_norm

e_flow

e_norm

e_flow e_flowe_flow

e_norm

e_flow

e_norm

e_flow e_flowe_flow (b)

start

normalize

eax_s

in_norm

reducereduce

in_red

e_norm

in_red

e_norm e_norme_norm

e_flowe_flowe_flowe_flow (c)

start

normalize

eax_s

in_norm

reduce

in_red

e_norm

e_flow

Figure 2. Symbolic simulation of program start. (a) No merge points (b) Explicit merge point at
normalize (c) Explicit and implicit merge points. Shaded and plain diamonds denote explicit and
implicit merge points, respectively.

simulation paths, which branch at conditional gotos. Each
path has a symbolic final state, and a condition under which
it is followed.

We demonstrate this on the first five lines of the nor-
malize procedure, lines 1–5 of Fig. 1. Procedure normal-
ize takes two inputs REG1, the return address, and REG2,
a value to be “normalized” to the range [0, 10]. REG2 is
updated to its absolute value. Any value exceeding ten is
replaced by ten.

At the start of the simulation there is single path, with
path condition TRUE. The jump at normalize may or
may not be taken, depending on the initial value REG20

of REG2. We therefore split the path into two, one path
with condition REG20 ≥ 0, and another with condition
REG20 < 0. These two paths are each split at reduce,
so that when e norm is reached, there are four simulation
paths.

We turn now to program start, at line 6. It normalizes the
smaller of EAX and EBX storing the result in EAX. Program
start generates two paths, jumping to normalize at lines 9
and 11, respectively. Continuing the simulation through the
normalize procedure results in a total of 8 paths – the full
normalize subtree, with four paths, is simulated for for each
call of normalize. See Fig. 2(a).

The parameter to normalize is passed in REG2 and the
return address in REG1, as is often the case in low level
software where procedures and call stack mechanisms are
not inbuilt. This requires the manipulation of labels within
expressions, discussed in Sec. 4.

We use a stack based model of memory similar to that
of [9]. We employ expression renaming and sub-expression
sharing, similar to that of [8, 3].

Loops and Simulation Tracking Symbolic simulation
sometimes takes unexpectedly long. One common reason
is that a loop is being simulated. Alternatively, the sim-
ulator may have reached a complex subprogram in an un-
expected manner. We track simulation progress, allowing
the user to understand why simulation is taking a long time,
and possibly add assumptions to prune irrelevant branches.
This is done by periodically generating graphical control-
flow graphs (CFG), similar in format to those of Fig. 2(c).
The new paths (relative to the previously outputed CFG) are
colored, indicating which part of the program is currently
being simulated.

When a loop is identified, MICROFORMAL exits, provid-
ing information about the loop and how it was reached. We
support a number of unsound methods of reducing the num-
ber of loop iterations: The user may specify the maximum
number of times a location may be visited. The tool then
generates an appropriate constraint on the initial state to en-
sure this. Alternatively, the user may explicitly overwrite a
counter value, or replace a loop with other code.

3 Merge Points

Merge points are explained in depth in [9] and are used
by many [6, 7]. Methods which convert if-then-else state-
ments and simple loops into conditional assignments effec-
tively merge variable values by unifying the path simulators
[10]. However, such local merges are ineffective in pro-
grams with conditional jumps to large sub-procedures. Our
semantics is closer to [9], maintaining multiple explicit sim-
ulation paths which are merged together at various points.

The simulation tree of Fig. 2(a) includes two duplicate



subtrees each rooted at normalize. Although normalize is
called with different parameters, its symbolic simulation is
identical whether it is called from line 9 or 11. Simulation
can be sped up by simulating it once only. To do this we use
merge points, locations at which multiple simulation paths
are merged into a single simulation path. The merge of sim-
ulation paths at location l is defined as follows:

Let P be a set p1, p2, . . . , pn of simulation paths waiting
at location l with path conditions c1, . . . , cn and final states
s1, . . . , sn, respectively. Every state si is defined as a set of
variables v1, . . . , vm; we denote the value of variable vj in
state s by s.vj . The merged condition C, and merged state
S, of P are defined as:

C =
∨n

i=1 ci

S = {vj : j = 1 . . . m} where

vj =




IF c1 THEN s1.vj ;
· · ·

IF cn−1 THEN sn−1.vj ;
ELSE sn.vj

Both the ci and the vj are typically symbolic (rather
than constant) expressions.

Returning to our example of Fig. 1, we define a merge
point at location normalize. We start simulation at instruc-
tion 6 (start) with initial state s0 = {REG1= REG10, REG2=
REG20, EAX= EAX0, EBX= EBX0} and path condition
TRUE. Two paths, p1 with condition (EAX0 < EBX0), and
p2 with condition !(EAX0 < EBX0) reach normalize. The
merge state at normalize is built as

C = (EAX0 < EBX0)∨!(EAX0 < EBX0)

S =




EAX = EAX0; EBX = EBX0;
REG1 = e flow;
REG2 = (EAX0 < EBX0) ?EAX0 : EBX0




We note that in this case C can be simplified to TRUE, as all
the paths reach the merge point. However, typically only a
subset of the simulation paths reach a merge point.

The simulation from the merge point continues nor-
mally, with some variables being represented as conditional
expressions over the variables of paths reaching the merge
point. The simulation (Fig. 2(b)) takes roughly half as long
as the original (Fig. 2(a)), with half as many steps being
simulated.

3.1 Configurable Merge Points

Existing merge point algorithms use rigid definitions of
where merges should occur. Typically, every location is a
merge point. In [9] this is refined by giving different prior-
ities to merge points, based on fan-in. We deal with code
which is thousands of lines long, with thousands of simula-
tion paths. In our case it is not effective to merge at every
location, nor is fan-in priority sufficient. We developed a
2-tiered system of configurable merge points.

l1 : c? goto l2;
· · ·

l2 · · · · · ·
l3 : complex code

· · ·

l1 : c? goto l2;
· · ·

l3 : complex code
· · ·

l2 · · ·
goto l3;

Figure 3. (a) l2 precedes l3 (b) l3 precedes l2

The user defines sets of implicit merge points by the cri-
teria which they fulfill. A frequently used, and effective,
heuristic is that the target of any direct jump (conditional or
not) is an implicit merge point. Using this heuristic, the lo-
cations normalize, reduce, e norm and eax s are the implicit
merge points of program start. The user does not list the
relevant merge points, but rather updates the formal defini-
tions (templates [1]) of the relevant operations. This method
is therefore very scalable, requiring little user intervention.

In addition, the user may define a set of explicit merge
points. Each of these merge points is defined explicitly, by
label. Most explicit merge points also qualify as implicit
merge points; their benefit is synchronization. The merges
at explicit merge points are delayed until no further implicit
merges can be performed. While implicit merge points may
synchronize between paths which are very similar, their
multiplicity frequently allows one branch to progress faster
than another. The rarer explicit merge points function as
synchronization points for these diverged simulations, with
all paths waiting for others to catch up.

We demonstrate the benefit of synchronization points on
the code snippet of Fig. 3. Assume l1, l2 and l3 are all im-
plicit merge points, and that the code following l3 is com-
plex and for performance reasons should be simulated once
only. If l2 lies between l1 and l3 (Fig. 3(a)), then merging
the simulation points in the order in which they occur in the
code will give adequate performance. However, if l2 is a
procedure placed after l3 (Fig. 3(b)), then code order will
result in l3 being merged before l2 and the complex com-
putation is simulated twice. The simulator cannot predict at
l1 that the two paths will converge at l3 (rather than l2) and
no heuristic will always give the correct simulation order.
The user can provide this information about the program
structure by defining l3 as an explicit merge point. This
synchronizes all the simulation paths at this point, guaran-
teeing efficient performance.

Explicit merge points should be placed at the beginning
of what is, semantically, a new algorithm or significant pro-
cedure in the program. They are also sometimes placed just
before loops or other computationally intensive pieces of
code in order to ensure that that code is simulated only once.
In practice, most explicit merge points are identified and
added when code simulation for a specific program takes
too long. The graphical control-flow graph generated of the



Let x1, . . . , xn be the set of explicit merge points
Let m1, . . . ,mp be the set of implicit merge points

Procedure simulate with merges()
Simulate all open paths
For i = 1 . . . MAX ITERATIONS

For j = 1 . . . n
do implicit merges()
If there are no open paths, terminate
If only one path reaches xj

change its status to open
If two or more paths reach xj

merge the paths into a new open path
Simulate all open paths

If any open paths remain, report a potential loop

Procedure do implicit merges()
For i = 1 . . . MAX IMPLICIT ITERATIONS

For j = 1 . . . p
If only one path reaches mj

change its status to open
If two or more paths reach mj

merge the paths into a new open path
Simulate all open paths

Figure 4. Merging algorithm

parts which have been simulated (Sec. 2) is used to manu-
ally identify potential merge points – often those with a high
fan-in, or known “signposts” in the expected execution. It is
typically easy for designers or validators viewing the CFG
to define labels for explicit merge points, as these are the
salient program stages with which they are familiar.

A simplified version of our algorithm is presented in
Fig. 4. A path is called terminated when it has reached the
end of the code. It is waiting if it is has reached a merge
point, and is called open if it is neither terminated nor wait-
ing. An open path can always be simulated. Since paths are
split at jumps, there may be many open paths at one time.

The effectiveness of a merge point is proportional to the
number of paths leading to it. Explicit merges have the
highest importance and their merges are therefore delayed
as long as possible to allow more incoming paths to be col-
lected. This also gives their synchronization effect. The less
important implicit merges are performed first.

MICROFORMAL simulates all open paths until they ei-
ther terminate or reach a merge point. When no open paths
remain, the next (in order of line number) implicit merge
point is chosen. If no paths are waiting at this point, nothing
is done. If only one path is waiting, the path simulation is
simply continued, without a merge being performed. If two
or more paths reach the merge point, they are merged and

the resultant state is simulated until all its paths terminate
or reach merge points. Once no more implicit merges can
be done, an explicit merge point is merged. This process
continues until either all paths are terminated, or a maxi-
mal number of iterations have been completed. The latter
case generally indicates a loop in the simulated code – sim-
ulation is halted, and the user is given a trace of the path
leading to the loop.

The handling of implicit and explicit merge points is
symmetric, and our merging algorithm could be parameter-
ized to an arbitrary number of priority levels if necessary.

We now demonstrate merge points on our example. We
assume that normalize, being that start of a procedure, has
been identified as an explicit merge point. The program is
simulated until one path reaches eax s and the other nor-
malize. Location eax s is an implicit merge point, i.e. of
less importance, and so it is considered first. Since only
one path reaches eax s, a merge does not take place, instead
the path continues simulating to normalize. At this point
all paths are at explicit merge points, and the merge at nor-
malize is performed. We then continue simulating, merging
two paths at each of the implicit merge points reduce and
e norm. This simulation is shown in Fig. 2(c).

In this example every statement is simulated once only.
This is an ideal situation, and is not typically the case. Had
normalize not been defined as an explicit merge point, it
would have been merged before eax s (as it occurs before
eax s in the code) and so all of procedure normalize would
have been simulated twice.

3.2 Effectiveness of Merge Points

Fig. 5 demonstrates the effectiveness of merge points on
various flows. The number of paths indicates the degree
of branching in the symbolic simulation (without merge
points). The longest path is the number of statements simu-
lated on the longest simulation path. These are not instruc-
tions of the original program but rather statements in the our
compiled program which is significantly longer [1]. Each of
these statements is comparable to a simple C statement.

We note that for some programs implicit merge points
suffice. This is true particularly of flows which are linear,
with few jumps, or which are particularly small. There are
even cases where the overhead of explicit merges slightly
outweighs their benefit (P3). There are other programs
where implicit merge points provide relatively little bene-
fit (P4). For larger programs (P1, P2) a combination of both
implicit and explicit merge points is best.

4 Indirect Jumps

An indirect jump is a jump to a target expression, rather
than to a simple label. These are particularly problematic



Program Number of Longest Number of explicit Simulation time (seconds) by type of merge points
paths path merge points None Implicit Explicit Implicit and explicit

P1 3040 80645 5 45000+ 23050 5040 2816
P2 2784 39709 1 19769 547 1696 286
P3 767 20932 3 10357 2188 6252 2206
P4 130 20606 3 1790 1643 918 888

Figure 5. The effect of implicit and explicit merge points on simulation times

for symbolic simulation, as the simulator does not have a
clean set of labels to jump to. Instead, it must analyze an
expression, and deduce what the possible jump targets may
be. The expression complexity is aggravated by the pres-
ence of merge points, which combine the variable values
from different paths. The result is frequently a complex ex-
pression including both labels and computational / control
expressions.

Like [6] we treat control values (labels in a program) as
a special type during simulation. However, unlike [6] we
allow their manipulation within complex expressions; most
of our standard operations including shift, mask, sub-vector
extraction, if-then-else and logical operators can be applied
to registers containing control values.

A depth first search of the target expression is performed,
and all labels are extracted as potential targets. For each po-
tential target we a build a predicate asserting that the target
expression resolves to this potential target, given the path
condition at this point.

A SAT solver is used to evaluate the feasibility of each
of these potential targets. A successful resolution of the
indirect jump is reached if a set of feasible targets is found
that covers all initial states leading to the indirect jump. The
completeness of the set is checked using the SAT solver.

The jump target condition may be very large, and in-
clude a number of both viable and non-viable targets. For
example, assume we jump to expression e = [(c)? in-
valid target:(f(l1))?l2 : l3] where c is an arbitrary condi-
tions which does not contain labels, invalid target is an ex-
pression which neither contains labels, nor resolves to one,
and f(l1) is some expression over l1. We generate three
predicates, e = l1, e = l2, e = l3, of which only the last
two are possibly satisfiable if l1 is distinct from l2, l3. We
also check completeness: (e = l2 ∨ e = l3) = e. The solu-
tion set is complete only if c is unsatisfiable as invalid target
is not a viable target.

5 Caching SAT Solver Calls and Jump Tar-
gets

A SAT solver is used to check the viability of potential
jumps (Sec. 2) and the feasibility of jump targets (Sec. 4).

Program Simulation time (seconds) Percentage hits
No caching Caching in SAT cache

P1 4020 2816 40
P2 1621 286 85
P3 2634 2206 16
P4 933 888 18

Figure 6. The effect of caching

As the number of path simulators increases, the size and
complexity of the path conditions also increases, and calls
to the SAT solver, which always include the path condition,
take a greater portion of the simulation time. In long flows,
over half the time can be spent in calls to the SAT solver.

In order to reduce the time spent on SAT solving, we
cache SAT query results. The same expression is sometimes
sent repeatedly to the SAT solver. Frequently we check
an expression of which a sub-expression has already been
queried; use of the cached values sometimes allows us to
conclusively evaluate the satisfiability of the larger expres-
sion. For example, if we already found that a is unsatisfi-
able, then we need not call the SAT solver to check the sat-
isfiability of a∧b. Our data structure identifies syntactically
identical expressions as such, as well as some equivalent ex-
pressions (a ∧ b and b ∧ a will share the same expression,
due to operand re-ordering).

In theory, some of the benefits from caching could have
been obtained by using incremental SAT. We found that do-
ing the caching ourselves was preferable – it could be done
at a word, rather than a bit level, saving the need to bit-
synthesize expressions which could be solved through the
cache. Furthermore, the memory overhead of the caching
was extremely low, as the expressions were stored in any
event, and only their evaluation had to be added.

Different indirect jumps in the same simulation often
reach the same targets. When a jump is analyzed, its feasi-
ble targets are cached. In the analysis of subsequent jumps,
the feasibility of potential targets is checked in the order of
how recently they were placed in the cache. This frequently
allows us to check only a subset of the potential targets.

The efficiency of caching on the four programs of Fig. 5



can be seen in Fig. 6. (All simulations in Fig. 5 used
caching, we disable caching to measure its effect.) The
cache hit rate differs widely during different programs, de-
pending on the degree to which expressions are repeated.
In general, the larger and more complex a program is, the
more effective caching is.

6 Conclusion

The MICROFORMAL system has been under intensive
research (in collaboration with academia) and development
at Intel Corporation since 2003. With increased usage the
requirement that it operate efficiently and automatically on
a wide range of microcode programs grew stronger. The
methods listed in this paper were all developed after the
tool was already in use, in order to boost performance and
increase automation. We compare them with other methods
documented in the literature.

The merge algorithm gave MICROFORMAL a very sig-
nificant boost, allowing us to simulate a number of previ-
ously intractable programs. The most similar work to it is
that of [9], where all locations are merge-points, and pri-
ority between them is determined according to fan-in. In
our tests, treating implicit merge points according to fan-in
priority as opposed to the priority determined by the line
number resulted in a performance degradation in most pro-
grams. Fan-in is a good, generic heuristic. However, in our
programs, where control flows primarily from top to bot-
tom, code sequence priority reduces path divergence.

The major advantage of our method over this is that the
user may configure which locations should be merge points
and the use of explicit merge points as a synchronization
mechanism. The programs in [9] are relatively small, with
a maximum of 5275 locations simulated. In such programs
implicit merge points generally suffice. The benefit of using
expert knowledge of program semantics (the identification
of explicit merge points) for synchronization is far more sig-
nificant in large programs (paths of length 35000+) where
simulation paths become desynchronized. So, our implicit
merge points can be considered a specialization of [9] for
the type of software that we simulate, while explicit merge
points are an improvement necessitated by larger programs.

Like [3], our verification is both path- and context-
sensitive. [3] exploit the natural function-level abstraction
boundaries, such as procedure calls, of high-level software
like C/C++. Our code has no such clear abstraction bound-
aries. While merge points can be seen as an attempt to use
abstraction boundaries, there is no clear definition of which
variables might be modified at any such boundary.

Our jump resolution and label handling is more general
than any we have seen in the literature. Like [6], we treat
control values (labels in a program) as a special type dur-
ing simulation. However, unlike [6] we allow their manip-

ulation within complex expressions; most of our standard
operations including shift, mask, sub-vector extraction, if-
then-else and logical operators can be applied to registers
containing control values. When an indirect jump is exe-
cuted, the target expression must evaluate to a control value
for each initial state.

The caching of SAT queries and jump targets gives a very
significant speed-up (averaging 35 – 40 percent). While the
use of a SAT-solver to prune infeasible paths during sym-
bolic execution is not new [5] we believe that the caching of
such values to avoid the querying of related expressions is.

We are continually searching for new methods to get MI-
CROFORMAL to run more efficiently in its various applica-
tions. Our current focus is on adapting MICROFORMAL to
other types of embedded software and on identifying meth-
ods to re-use information from one run in subsequent runs.

References

[1] T. Arons, E. Elster, L. Fix, S. Mador-Haim, M. Mishaeli,
J. Shalev, E. Singerman, A. Tiemeyer, M. Y. Vardi, and L. D.
Zuck. Formal verification of backward compatibility of mi-
crocode. In Proc. 17th Intl. Conference on Computer Aided
Verification (CAV’05), pages 185–198, July 2005.

[2] T. Arons, E. Elster, T. Murphy, and E. Singerman.Embedded
software validation: Applying formal techniques for cover-
age and test generation. In Seventh International Workshop
on Microprocessor Test and Verification, 2006. (MTV ’06),
pages 45–51, December 2006.

[3] D. Babic and A. J. Hu.Structural abstraction of software ver-
ification conditions. In Proc. 19th Intl. Conference on Com-
puter Aided Verification (CAV’07), pages 366–378, 2007.

[4] R. E. Bryant. Symbolic simulation techniques and applica-
tions. In DAC ’90: Proceedings of the 27th ACM/IEEE con-
ference on Design automation, pages 517–521, New York,
NY, USA, 1990. ACM Press.

[5] E. M. Clarke, D. Kroening, and K. Yorav. Behavioral con-
sistency of C and Verilog programs using bounded model
checking. In DAC ’03: Proceedings of the 40th conference
on Design automation, pages 368–371, 2003.

[6] D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. Ra-
jan. Embedded software verification using symbolic execu-
tion and uninterpreted functions. Int. J. Parallel Program.,
34(1):61–91, 2006.

[7] D. W. Currie, A. J. Hu, and S. Rajan.Automatic formal veri-
fication of dsp software.In DAC ’00: Proceedings of the 37th
conference on Design automation, pages 130–135, 2000.

[8] C. Flanagan and J. B. Saxe.Avoiding exponential explosion:
generating compact verification conditions. In POPL’01,
pages 193–205, 2001.

[9] A. Koelbl and C. Pixley. Constructing efficient formal mod-
els from high-level descriptions using symbolic simulation.
Int. J. Parallel Program., 33(6):645–666, 2005.

[10] S. Minato. Generation of BDDs from hardware agorithm
desciptions. In Intl. Conf. on Computer-Aided Design (IC-
CAD’96), 1996.


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




