
Efficient Implementation of Native Software Simulation for MPSoC

Patrice Gerin, Xavier Guérin, Frédéric Pétrot

System-Level Synthesis Group

TIMA Laboratory

46, Av Félix Viallet, 38031 Grenoble, France

Abstract

Efficient and precise simulation models at a high ab-

straction level are required in order to perform early de-

sign validations and architecture explorations of Multi-

Processor System-On-Chip (MPSoC) platforms. Although

native software simulation approaches provide interesting

capabilities, they quickly become unsuitable when complex

hardware architecture have to be considered.

In this paper, we present a SystemC-based MPSoC plat-

form implementation that allows native software simulation

while keeping details of the underlying hardware model.

The key contribution of this work is a realistic memory map-

ping modelling that makes possible the simulation of Oper-

ating Systems and software applications on complex hard-

ware models with multiple processors and DMA devices.

This method also allows the reuse of different software com-

ponents for the target processor(s). Experimental results

show the efficiency of the proposed method to validate soft-

ware on complex hardware architectures.

1. Introduction

Multi-Processor System-On-Chip (MPSoC) architec-

tures face important constraints such as performance or

power consumption. Unfortunately, the increasing com-

plexity of these systems (in terms of number and hetero-

geneity of embedded processors) conflicts with short time-

to-market.

Besides, the part of embedded processors in such sys-

tems becomes too important to fully take advantage of their

programmability. In this context efficient and precise simu-

lation platforms are needed to allow the early validation of

the application and perform architecture explorations.

MPSoC architectures considered in this work are made

of hardware and software nodes connected to a commu-

nication network (Fig. 1). A hardware node is a compo-

nent that does not provide any programming capabilities. A

communication network connects all the nodes together and

provides the so called inter-communication of the MPSoC.

Figure 1. MPSoC and SW Node Architecture

Software nodes on which we focus in this paper provide

the execution environment for the software tasks of MPSoC

applications. The software is organised in layers which are

the multi-threaded application layer, the Operating System

(OS) and libraries layer (that supports the application ex-

ecution) and the Hardware Abstraction Layer (HAL) that

hides the hardware specificities. The hardware part of a

software node called processor sub-system contains one or

more processors with their peripherals (memories, interrupt

controller, DMA ...).

As most of the design time is spent in software vali-

dation, fast and precise simulation platforms are required.

Current methods to achieve simulation performance and

flexibility are based on native execution of the software. A

native simulation approach consists of compiling and exe-

cuting the software code on the host machine processor in-

stead of using Instruction Set Simulator (ISS) of the target

processor to interpret the cross-compiled source code.

Our objective is a MPSoC simulation platform able to

model different architectures and on which applications and

Operating Systems can be executed natively while keeping

details of the underlying hardware. As the source code is

compiled for the host machine’s processor, there is no con-

sideration of a target hardware architecture platform.

The contribution of this paper is a methodology to im-

978-3-9810801-3-1/DATE08 © 2008 EDAA

plement SystemC MPSoC platforms model with memory

mapping and hardware considerations for native software

simulations. This approach allows a complete portability of

the software components (OS, application and libraries) to

the target platform.

The rest of this paper is organized as follows: Section

2 gives a review of related works. Section 3 presents the

basic concepts used by our approach. Section 4 gives key

ideas for native simulation and technical details of the im-

plementation. Experiments in section 5 shows the interest

of our approach for MPSoC simulation through a Motion-

JPEG application.

2. Related Works

In the past few years, different frameworks have been

proposed for System Level Design. [5] [9] or [14] are some

of them. Most of the recently proposed approaches are

based on native simulation to achieve high simulation per-

formances and flexibility. However, native approaches are

suitable only for high level simulation and show their lim-

its if the underlying hardware have to be considered with

more details. A typical example is the memory accesses

from native software for which the host machine’s simu-

lator has no control. This problem is addressed in [9] ;

Their framework solves this by the source code instrumen-

tation which allows to catch and remap memory accesses.

In our approach, we use annotations for time performance

modelling but a non-annotated one can also be executed on

the simulation environment, keeping the interaction with

the underlying hardware. Considering the lack of Operat-

ing System model for the System Level Design raised in

[11] and [7], different propositions have been presented in

[4, 7, 8, 11, 13]. In these approaches, native simulation of

software tasks is made over an abstract model of the Oper-

ating System. Compared to these approaches that introduce

the final Operating System only at low level Instruction Set

Simulators (ISS) based platforms, we propose, in this paper

a hardware executable model able to handle a real Operat-

ing System very early in the design flow. Thus, an important

part of the Operating System can be validated on such native

platform.

The native simulation of a real Operating System has

also been proposed in [3] but hardware resources like mem-

ories where considered local to the processors. This restric-

tion is not suitable for Multi-Processors architectures where

shared resources (memories, synchronization resources ...)

become significant.

Finally, in most current approaches based on abstract

hardware models, the interaction between the native soft-

ware and the hardware model is generally kept implicit. We

propose to fill this lack by allowing SystemC [2] hardware

platform implementation providing detailed hardware view

for native software execution.

Figure 2. a) VP and b) TA levels

3. Basic Concepts

This work takes place in aMPSoC design flow composed

of three abstraction levels : A low level implementation of

MPSoC architecture called Virtual Prototype (Fig. 2.a) pro-

vides detailed and time accurate simulations at the expense

of the simulation speed. At the opposite side, a System

Level executable model allows very fast simulation speed

but with very low timing accuracy. In this paper we focus

on an intermediate abstract level called Transaction Accu-

rate (Fig. 2.b).

The Transaction Accurate model represented in Fig. 2.b

abstracts the processor sub-system of the software node and

the Hardware Abstraction Layer, providing a HAL API to

the software part of the application and a hardware interface

to the other.

3.1 Hardware Abstraction Layer API

A Hardware Abstraction Layer API is a set of functions

that allows software to interact with hardware devices at an

abstract level rather than at a detailed hardware level. This

abstraction layer hides the details of the physical hardware

to the software that runs on it. HAL is especially impor-

tant in our approach for early design of portable Operating

System for different hardware platforms. This portability

remains valid for the Transaction Accurate model since the

HAL is completely hermetic. Our HAL API is similar to the

eCos Operating System HAL API [1] which is well defined

and provides a strict separation from the upper software lay-

ers needed by our approach. Each of the HALAPI functions

is defined as C macros and can be implemented by C func-

tions or assembly code as needed. We identified two classes

of APIs to provide a suitable HAL interface. These classes

are processor and platform dependent.

3.1.1 Processor HAL API

The processor HAL API abstracts the specificities of the

processor. Typical APIs for context management are

HAL CONTEXT [INIT|LOAD|SWITCH|SAVE], for low
level interrupt management HAL IT [MASK|UNMASK]or
HAL CPU TO PLATFORM and HAL PLATFORM TO CPU

for endianess. HAL SPIN [LOCK|UNLOCK] provides
low-level synchronization API which is essential for multi-

processor support.

3.1.2 Platform HAL API

In an heterogeneous architecture, processors can have dif-

ferent endianess. A reference endianess must be defined to

allow communication between these processors. The refer-

ence endianess is attached to the platform and can be known

with PLATFORM IS [BIG|LITTLE] ENDIAN.

The platform HAL API also provides the abstrac-

tion of the platform memory mapping which is unusual

in HAL. A classical way to define memory mapping

of platform devices is very often hard coded addresses

which is not suitable in native simulation. Therefore

PLATFORM GET ADDRESS(symbol) HAL API has to

be used to get the address of a symbol defined by the plat-

form. This point is detailed in section 4.

3.2 Transaction Accurate Level

The executable model of the Transaction Accurate level

is written in SystemC as proposed in [6], defining a unified

methodology to implement both hardware/software compo-

nents. Using this approach, we are able to define a model

which provides a SystemC view of a software API on one

side and a hardware interface on the other. At Transaction

Accurate level, the HAL API is provided through SystemC

software ports as depicted in Fig. 3 (1). The implemen-

tation of this API is made by SystemC modules which are

interconnected through their ports.

The HAL API supports upper software layers execution.

The C source code of these layers (composed of the Operat-

ing System, the libraries and the application) are compiled

for the host machine and encapsulated in a dynamic library

as depicted in the Fig. 3 (2). As SystemC is a C++ library, a

wrapper (3) is needed to adapt the C HAL API view of the

software dynamic library. At initialization time, this wrap-

per will act as a program loader by linking the dynamic li-

brary to the simulation executable.

Functions provided by the embedded software in the dy-

namic library can be called through the wrapper. This is

typically the case of the Operating System BOOT function.

From the application point of view, the functions provided

by the API can be called as usual. The fact that they are not

really implemented (in C or assembly) but emulated within

SystemC is completly transparent. The wrapper will con-

vert these C calls to SystemC port accesses (C++ method

Figure 3. Transaction Accurate software API

calls) and transfer execution to the connectedmodule. Thus,

the implementation of the C HAL macros at Transaction

Accurate level consists only in function calls which are han-

dled by the wrapper and redirected to the SystemC simula-

tion model.
The following source code shows an implementation of

the HAL SPIN LOCK API for a SPARC processor and for
native simulation.

// SPARC implementation

#define HAL_SPIN_LOCK(spin) \

{ \

register uint32_t res; \

do { \

__asm__ ("lda [%1]0x20,%0 ":"=r"(res):"r"(spin)); \

} while (res != 0); \

}

// NATIVE implementation

#define HAL_SPIN_LOCK(spin) \

__wrapper_hal_spin_lock(spin)

4. Native Simulation for MPSoC

4.1 Key Ideas

The first key idea in this work is to keep the low level

hardware details for software native simulation, such as

shared resources between processors (e.g. variables in

memory or synchronization mechanisms).

The following draws up a list of essential issues to

model an efficient and accurate native software simulation

at Transaction Accurate level:

Memory representation: As mentioned in the related

works section, memories are usually considered private for

each processor. This simplification is not suitable in multi-

processors architectures or more generally in architectures

where multiple masters can access the same memory space.

Software execution: The Transaction Accurate model of

the platform should be able to model multiple executions of

Figure 4. Simplified SW Node Architecture

the same software binary code, which is the basis of Sym-

metric Multi Processor-like architectures.

Synchronization: The support for a spinlock mechanism

in a multi-processor architecture is necessary to guarantee

the access to shared resources.

4.2 Memory Representation

Fig. 4 depicts a Transaction Accurate executable model

using SystemC. In this figure, three memory mappings are

represented :

1. The memory mapping of the processor sub-system (a

CROSSBAR in this example). At Virtual Prototype

level, this memory mapping is specified by the archi-

tecture designers.

2. Thememorymapping obtained by the software compi-

lation for the host machine (Application + OS + Libs).

This mapping is host machine dependent and defined

at the dynamic library creation.

3. The memorymapping seen by the SystemC executable

process which handles the simulation of the designed

architecture. This mapping is also host machine de-

pendent.

Host machine memory representations (2) and (3) are

classical mappings of executable software. The mapping

can be summarized to three memory segments which are

.text containing the binary code, .data for initialized pro-

gram data and .bss for data to be zeroed.

The main difficulty is to manage two memory mapping

point of views which are the host machine dependent and

the user defined platform mappings (dynamic library and

executable can be considered as onemapping). The solution

which consists in using the target memory mapping in the

sub-system model and using remapping techniques in the

memory component is not suitable because of total overlap-

pings between these two memory spaces. The value of an

address cannot be used to determine which memory space

is concerned.

The solution is to perform the memory mapping at exe-

cution time. The mapping addresses given to the CROSS-

BAR component correspond to valid addresses in the Sys-

temC process memory space. This explains the need of a

HAL API to get the addresses of platform devices.

Hardware devices must implement their internal regis-

ters in contiguous memory (e.g. array of integer). The

memory mapping is built during the initialization phase of

the simulation by requesting the start address and the size of

the register array of each components. The memory map-

ping consistency is ensured by the host machine. Memory

components that provide a memory address space are im-

plemented using the same approach. In Fig. 4, the heap

memory of the platform is allocated in the simulation exe-

cutable address space.

The .bss and .data sections of the software application

have to be accessible by hardware components (e.g. DMA

devices). During native compilation of software code, sym-

bols identifying the beginning and the end of the .bss and

.data sections are automatically created by the compiler

(e.g. bss start and end for .bss section). These symbols

are used by the MEMORY component and provided to the

platformmapping to make these sections accessible through

the CROSSBAR.

4.3 Software Execution

Software execution is supported by a SystemC module

of the Transaction Accurate model called Execution Unit

(EU) in Fig 5. This EU which acts as an abstract processor

is connected to a boot port of the SystemC HAL API from

where the entry point function provided in the dynamic li-

brary can be called (1). All the software is then executed

sequentially (2) within the caller EU module context.

Since software code is executed in SystemCwithout time

consideration, the application dynamic library has to be an-

notated in order to “consume” SystemC simulation time.

Ongoing work on this subject aims at providing a trans-

parent solution to insert annotations at compile time, but

the proposed TA model does not depend on the annotation

technique. The annotation approach used in [9], consisting

in inserting C lines in an intermediate source code, as well

as the approach based on “assembly level” C code [10] are

adapted to our simulation model.

Although software annotation is a key component of our

Figure 5. Software Execution on TA Model

approach, this is not mandatory and non annotated software

can still be simulated on the proposed simulation platform

(as if the target processor had infinite frequency). Special

care should be taken to avoid simulation deadlock (for ex-

ample in case of an active waiting infinite loop in the soft-

ware code).

Several EU can be connected to the same boot port of

the HAL API, which give to our simulation platform the

Symmetric Multi-Processor capability. As the software ap-

plication has no notion of the SystemC module on which it

execute, the wrapper must redirect the C HAL API call to

the correct port of the SystemC HAL API (3). To do this,

we use the sc get curr simcontext() SystemC function that

handles different information like the current active module

which can be used to identify the corresponding port.

4.4 Synchronization

As the platform provides a real processor parallelism en-

vironment, low level synchronization must be provided to

protect shared resources accesses as well as for Virtual Pro-

totype platforms. Since the HAL SPIN [LOCK|UNLOCK]
API are processors specifics, they will be implemented

by the Execution Unit SystemC module. The implemen-

tation will depend on the processor and communication

we want to model. If the processor and the communi-

cation components do not support the test-and-set mech-

anism, additional dedicated components must be provided

in the hardware platform model (e.g. the SEMRAM hard-

ware semaphore in Fig. 5). As explained in section 3.2,

the HAL SPIN LOCK(spin) HAL macro is defined as a

hal spin lock(spin) C function call. When caught by the

C/C++ wrapper, this call is redirected to the correct Exe-

cution Unit through the corresponding SystemC HAL API

port. The EU implementation of the spinlock is given be-

low.

void EU::__hal_spin_lock(spin) \

{ \

register uint32_t res; \

do { \

crossbar.read(UINT32,spin,res); \

} while (res != 0); \

}

If test-and-set are supported by the hardware, EU will

used protected access provided by the communicationmod-

ule to test-and-set the semaphore directly in standard mem-

ory.

In these sections, we have presented the three key ideas

that give our platforms the capacity to accurately model

MPSoC architecture in terms of processors parallelism and

memory representation. Interrupts have not been addressed

in this paper but are already supported by our simulation

platform and have been presented in [3].

5. Motion-JPEG Case Study

5.1 Hardware Architecture

The processor sub-system of the software node (Fig. 6)

is a generic UMA (UniversalMemoryAccess) platform that

embeds a configurable number of processors, a global mem-

ory, a hardware semaphore RAM (SEMRAM) and some

hardware terminals (TTY). Externals components are the

traffic generator (TG) that takes its data from a MJPEG

movie file and the viewer (RAMDAC).

The software node sub-system is implemented at the

Transaction Accurate level according to the approach pre-

sented in this paper.

Figure 6. MJPEG Hardware Platform

5.2 Software Architecture

Motion JPEG (M-JPEG) is a multimedia format where

each video frame of a digital video sequence is separately

Figure 7. Functional Model of MotionJPEG

compressed as a JPEG image. The MJPEG decoder appli-

cation defines five initial software tasks and two hardware

tasks (additionnal tasks are created for color images). Each

software task is a POSIX thread and is part of a process net-

work that reads the data stream from the TG and sends the

uncompressed images to the RAMDAC viewer.

This application is executed on a POSIX compliant

Operating System that supports SMP architectures called

Mutek [12]. This OS come with a light C library. Maths

and communication libraries have been added.

5.3 Approach Analysis

We first used this platform to validate evolutions imple-

mented in the Mutek Operating System. Since the soft-

ware is compiled natively, we naturally take advantage of

the debugging tools available on the host machine. Com-

bined with the Transaction Accurate model, we were able

to validate complex synchronization mechanisms which are

not possible in classical native software simulations due to

the lack of hardware consideration. With low level ISS

based simulation environments, Operating System valida-

tion quickly becomes a huge task.

The effective hardware/software interaction is illustrated

here through the use of a DMAdevice to move data from the

heap to the RAMDAC. SystemC waveforms can be used to

display mixed hardware and software information. In Fig.

8, a blocking communication is presented when no DMA

is used (1). With DMA, the LIBU thread starts the DMA

(2) which performs the transfer (3) and another thread is

activated (4).

Figure 8. DMA transfert at TA level

This DMA example gives a good overview of the TA

platform to closely model hardware and software interac-

tions capabilities.

6. Conclusion

We proposed in this paper a SystemC-based implemen-

tation methodology for MPSoC platforms that allows na-

tive simulation of the software with detailed hardware mod-

els. This platform improves flexibility and simulation speed

needed for architecture exploration. The main shortcoming

of this solution is the need of software annotation to obtain

timing analysis. That being said, the approach does not de-

pend on the quality of this annotation. Future works will

consist of providing precise annotation techniques adapted

to multiprocessor architectures and then providing automa-

tion tools to assist architecture exploration on different

kinds of hardware platforms.

References

[1] ecos homepage, http://ecos.sourceware.org/.
[2] Systemc homepage, http://www.systemc.org/.
[3] A. Bouchhima, I. Bacivarov, W. Youssef, M. Bonaciu, and

A. A. Jerraya. Using abstract cpu subsystem simulation

model for high level hw/sw architecture exploration. In ASP-

DAC, 2005.
[4] A. Bouchhima, S. Yoo, and A. Jerraya. Fast and accu-

rate timed execution of high level embedded software using

hw/sw interface simulation model. In ASP-DAC, 2004.
[5] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao.

SpecC: Specification Language and Methodologie. Kluwer

Academic Publishers, Boston, March 2000.
[6] P. Gerin and al. Flexible and executable hardware/software

interface modeling for multiprocessor soc design using sys-

temc. In ASP-DAC, 2007.
[7] A. Gerstlauer, H. Yu, and D. D. Gajski. Rtos modeling for

system level design. In DATE, 2003.
[8] M. A. Hassan, K. Sakanushi, Y. Takeuchi, and M. Imai. Rtk-

spec tron: A simulation model of an itron based rtos kernel

in systemc. In DATE, 2005.
[9] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leu-

pers, and H. Meyr. A sw performance estimation framework

for early system-level-design using fine-grained instrumen-

tation. In DATE, 2006.
[10] M. Lajolo, M. Lazarescu, and A. Sangiovanni-Vincentelli.

A compilation-based software estimation scheme for hard-

ware/software co-simulation. In CODES’99.
[11] R. L. Moigne, O. Pasquier, and J.-P. Calvez. A generic rtos

model for real-time systems simulation with systemc. In

DATE, 2004.
[12] F. Petrot and P. Gomez. Lightweight implementation of the

posix threads api for an on-chip mips multiprocessor with

vci interconnect. In DATE, 2003.
[13] H. Posadas, J. Ádamez, P. Sánchez, E. Villar, and F. Blasco.

Posix modeling in systemc. In ASP-DAC, 2006.
[14] W. Tibboel, V. Reyes, M. Klompstra, and D. Alders.

System-level design flow based on a functional reference for

hw and sw. In DAC, 2007.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

