
Automated Testability Enhancements for Logic Brick Libraries∗

Jason G. Brown, Brian Taylor, R. D. (Shawn) Blanton, and Larry Pileggi
Center for Silicon System Implementation

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh PA 15213
{jgbrown, briant, blanton, pileggi}@ece.cmu.edu

Abstract

Circuit fabrics composed of highly regular structures, called
logic bricks, have been described recently for improving
yield. An automated logic brick design flow based on a
SAT formulation of the brick routing has been developed
to minimize wire length and the number of vias while main-
taining several design-for-manufacturability constraints. In
this work, testability enhancements are imposed into a logic
brick to reduce the likelihood of (i) feedback bridges to
improve test and (ii) equivalent faults to improve diagno-
sis. This is accomplished by adding constraints to the SAT
formulation of the logic brick routing that restricts cer-
tain wires from being routed in close proximity, thus mak-
ing bridges between them unlikely. Application to several
brick designs resulted in critical-area reductions for tar-
geted bridges with little degradation in terms of additional
wire length and via count.

1 Introduction

The testability of an IC is a measure of the ease or cost
associated with determining if any defects adversely affect
its correct functionality and performance. Design for testa-
bility (DFT) techniques are design methods that are em-
ployed specifically to improve the testability of a hardware
product [1–3]. DFT techniques in the 1940s and 50s used
switches and instruments to “scan” the voltage/current at in-
ternal nodes of a circuit (i.e., analog scan). Modern tech-
niques are similar in the sense that they make design modi-
fications that improve access to the circuit for enhanced con-
trollability and observability of internal circuit nodes. Other
examples of DFT focus on electromechanical characteristics
of the product-tester interface [4]. DFT can also consider
other aspects of test however that include, for example, the
size, shape, and spacing of the probe locations.

DFT can be employed to meet two objectives for test.
First, as already alluded to above, the circuit can be designed

∗The authors acknowledge the support of the Focus Center for Circuit
and System Solutions (C2S2), one of five research centers funded under the
Focus Center Research Program, a Semiconductor Research Corporation
Program.

so that difficult-to-detect defects are made easier to detect.
A difficult-to-detect defect is one that affects a circuit node
that is difficult to control or observe. Adding probe points
to the circuit is a traditional approach for making defects af-
fecting these locations easier to detect [1–3]. The scan DFT
methodology [1] enables the flip-flops of an IC to be con-
figured into one or more shift registers under a special test
mode of operation. Direct control of the flip-flops through
the shift operation reduces test development and applica-
tion cost and enables high fault coverage. JTAG boundary
scan [1] is a DFT standard that uses a shift register to pro-
vide direct access to chip inputs and outputs using only four
I/O pins (clock, input, output, and control). This strategy
lessens the need for probing I/O pins.

The second, less focused upon, objective of DFT is to
design the circuit’s layout so that difficult-to-detect defects
are unlikely. Several works however have examined how
the physical layout of a design can affect testability [5–7].
Levitt and Abraham [5] described layout-level DFT, where
modifications to a standard cell library are performed to re-
duce the likelihood of stuck-open faults. The authors of [5]
presented a study in which a 15% increase in chip area led
to a 35% increase in fault coverage. Sudbrock et al. [6]
proposed a “testability check” that occurs during test gen-
eration. If the check indicates that certain faults require
high test cost (e.g., test generation time), the layout gener-
ation is repeated until the cost is below a given threshold.
Xu, Kundu, and Ferguson [7] proposed a strategy called
Physical DFT that involves modifying the physical design
of a circuit to shift the distribution of faults towards those
that are most likely to be detected without modifying the
logic-level structure. Specifically, Carafe [8], an inductive
fault analysis tool developed at the University of Califor-
nia, Santa Cruz, is used to identify and simulate the most
likely open and bridge defect sites and to determine which
ones are not detected by a given test set. To make these de-
fects less likely, redundant spacing is added between wires
to prevent bridges, and redundant vias and increased wire
thicknesses are added to prevent opens. Iizuka, Ikeda, and
Asada [9] described a strategy for improving the yield of
standard cells that do not lie on a critical path of a design.
Based on the notion that standard cells not on the critical

1978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



path can have degraded performance, these cells are po-
tentially modified to improve overall yield. Yield improve-
ments are made by simply widening the cell and spreading
wires to reduce critical area. Therefore, based on a desired
performance for a given cell, the cell with minimum criti-
cal area can be selected from the augmented standard cell
library. Results show a 24% average reduction in critical
area for six standard cells, but incurred an average cell area
overhead of 26%.

In this paper, a strategy is proposed to improve the
testability of a set of regularized standard cells called logic
bricks. The rest of this paper is organized as follows. Sec-
tion 2 describes the construction of logic bricks using SAT.
Section 3 describes how testability enhancements are in-
cluded in the logic brick routing to minimize critical area
(Section 3.1), and reduce the likelihood of difficult-to-detect
defects and equivalent faults (Section 3.2). Finally, Sec-
tion 4 summarizes our strategy, improvements made, and
overhead incurred for enhancing the testability of logic
bricks.

2 Logic Bricks

Researchers have developed a circuit fabric composed of
highly regular structures called logic bricks [10]. A logic
brick consists of a set of interconnected logic primitives
(NAND, NOR, etc.) that has six to ten inputs and one or two
outputs. A brick is designed so that all wires on a given layer
are unidirectional, have fixed pitch, and are wide enough to
avoid notches and landing pads, characteristics which are all
intended to improve manufacturability.

A brick layout is created in two phases consisting of
(1) transistor placement and (2) routing. Transistor place-
ment is performed using an extended branch-and-bound
technique that minimizes wire length and cell area, both
of which are estimated during brick creation. Routing for
a logic brick is accomplished by transforming the problem
to a SAT formulation [11]. A grid is used to represent the
routing space, and each grid segment is a potential location
for a wire to exist. A Boolean variable xi,j is associated
with each grid segment, where x represents the layer of the
grid segment (e.g., metal1), i, j represent the x-y location
of the segment within the grid, and the value xi,j = 1(0)
indicates the segment is filled (empty). Also, each occu-
pied grid segment (i.e., xi,j = 1) has an array of bits �xi,j

to indicate the net identifier of the net passing through that
segment, where xi,j,k represents the kth bit of �xi,j . A set
of routing rules are defined that constrain the values of the
Boolean variables in order to create a valid routing. For
example, for two grid segments xa,b and xc,d that share
an endpoint (i.e., adjacent segments), if both segments are
filled (xa,b = 1, xc,d = 1), then they must have the same net
identifier, that is, �xa,b = �xc,d. Routing rules, like the ones
just described, are all mapped to a set of constraints that rep-

resent a SAT formulation of the brick routing. A traditional
SAT solver is used to identify a routing that satisfies all the
constraints.

The focus of our work here is to improve logic brick de-
signs for test and diagnosis by adding new constraints to the
SAT formulation that allow us to minimize critical area, and
reduce the likelihood of difficult-to-detect feedback bridges
and equivalent faults.

3 Testability Enhancements

Additional routing rules can be included in the SAT formu-
lation to improve the testability of the logic brick. Sec-
tion 3.1 describes how the critical area of a logic brick is
minimized, and Section 3.2 describes how “forbidden pairs”
of nets involved in difficult-to-detect defects and equivalent
faults are identified and made improbable through design.

3.1 Critical Area Minimization

Critical area [12] (CA) is a metric that represents the defect
sensitivity of a design and includes the regions of the layout
where a spot defect of radius r is assumed to cause a circuit
failure. Here, we describe a strategy that minimizes the to-
tal critical area of logic bricks in order to maximize yield.
A set of critical-area variables are defined, each of which
represents an interaction between two grid segments. For
example, as shown in Figure 1, if grid segments i, j and k, l
are both filled (xi,j = xk,l = 1) and the net identifiers are
not the same (�xi,j �= �xk,l), the corresponding critical-area
variable v is asserted.

Figure 1: A critical-area variable v is equal to 1 if two grid seg-
ments are filled (xi,j = 1 and xk,l = 1) and their net identifiers
are not equal (�xi,j �= �xk,l).

Tseitin transformations [13] are used to create conjunctive
normal form (CNF) constraints within the SAT formula for
these variables. The critical-area variable v is defined by:

xi,j ∩ xk,l ∩ (�xi,j �= �xk,l) → v

xi,j → v, xk,l → v, (�xi,j = �xk,l) → v

Additional constraints are added to the SAT formula
to ensure the number of active critical-area variables is
bounded by some value b. However, since all critical-area
variables do not represent equal amounts of critical area,
critical area is more accurately calculated by using pseudo-
Boolean constraints [14] to weight each critical-area vari-
able. A pseudo-Boolean constraint has the form:

2



n∑

i=1

aivi ≤ b

where ai and b are integers, and vi is a Boolean variable.
Using pseudo-Boolean constraints, a critical-area variable
vi can be weighted by an integer ai and a summation of
critical-area variables can be bounded by b.

For a routing grid of r rows and c columns, there are
rc grid locations and therefore rc(rc − 1) critical-area vari-
ables to represent all possible interactions between two grid
segments. A set of constraints is added to the SAT for-
mula to create the Tseitin transformation for each critical-
area variable, and a weight is determined as a function of
the Euclidean distance between the two grid segments. The
sum of the weighted critical-area variables is bounded by
a constant value b and included as a SAT constraint. The
SAT solver minisat+ [15], which allows the use of pseudo-
Boolean constraints, is used to determine a routing for a set
of logic bricks with critical-area constraints. For the three
logic brick designs shown in Figure 2, minimal-CA con-
straints are included in the SAT formula. Table 1 shows the
reduction in total critical area that is achieved through this
critical-area minimization approach. Over three designs, the
average critical area reduction is 10.3%.

Figure 2: Logic-level schematics for three logic brick designs.

Total CA (µm2)
No minimal-CA Minimal-CA

constraints constraints
Brick 1 329.0 279.8
Brick 2 601.6 581.8
Brick 3 1531.8 1336.7

Table 1: CA reductions for three logic brick designs.

3.2 Forbidden pairs

The likelihood of a defect is a function of physical design.
For example, the proximity of a pair of nets determines the

likelihood of a bridge between them. A logic brick consist-
ing of six logic gates is shown in Figure 3a. Assume a de-
fect involving wires L and Z , and another involving M and
Z , both of which cause difficulties for test. In the original
physical design (shown in Figure 3b), all three wires exist
in close proximity and therefore have some non-negligible
probability to bridge. However, in the modified physical de-
sign (shown in Figure 3c), these three wires are not routed
in close proximity and therefore are quite unlikely to short.
The modified version of the brick design is presumably
easier to test since these two difficult-to-detect defects are
made, through design, unlikely.

(a)

(b) (c)

Figure 3: (a) Logic-level schematic of a six-gate logic brick, (b)
the original physical design for the brick where L, M , and Z are
routed in close proximity, and (c) the modified physical design
where L, M , and Z are not routed in close proximity and therefore
are unlikely to bridge.

A forbidden pair is a pair of nets that causes difficul-
ties for test when routed in close proximity. These forbid-
den pairs are prevented from being routed in close proximity
by adding routing rules to the SAT formulation. Given two
nets A and B whose net identifiers are represented with bit
vectors {Am−1 . . . A1A0} and {Bm−1 . . . B1B0}, respec-
tively, no neighboring grid segments (i.e., two segments that
are likely to bridge) are allowed to have these two net iden-
tifiers. For grid segment i, j, all neighboring segments are
identified. The objective is to ensure that if segment xi,j has
net identifier A, then each neighboring segment xp,q does
not have net identifier B:

�xi,j = {Am−1 . . . A1A0} → �xp,q �= {Bm−1 . . . B1B0}
m−1⋂

k=0

(xi,j,k ⊕ Ak) →
m−1⋃

k=0

(xp,q,k ⊕ Bk)

3



Since x → y = x ∪ y:

m−1⋃

k=0

(xi,j,k ⊕ Ak) ∪ (xp,q,k ⊕ Bk)

For example, if A = 100 and B = 001, the routing rule
instantiates to:

xi,j,2 ∪ xi,j,1 ∪ xi,j,0 ∪ xp,q,2 ∪ xp,q,1 ∪ xp,q,0

This routing rule is instantiated for every grid segment xi,j

and every neighboring grid segment xp,q . The set of neigh-
boring grid segments is identified based on an assumed
maximum defect radius of 0.25µm, a distance based on the
critical dimension of the fabrication technology utilized.

The following sub-sections describe how routing rules
are used to improve the testability of logic brick designs by
reducing the likelihood of feedback bridges (Section 3.2.1)
and equivalent faults (Section 3.2.2).

3.2.1 Feedback Bridges

Bridges that create structural feedback can cause circuit os-
cillation or intermediate voltage values, and therefore make
testing difficult. However, at the transistor level, defects
that make testing difficult can be easily identified. Routing
rules can then be added to the logic brick SAT formulation
to ensure that those defects are unlikely. In other words,
if two nets in a logic brick cause feedback when they are
bridged, they are identified as a forbidden pair. By examin-
ing the transistor-level representation of a given logic brick,
the difficult-to-detect feedback bridges are those that have
odd parity and have no fanout along the feedback path. If a
feedback bridge has odd parity, circuit oscillation may occur
and if there is no fanout along the feedback path, there is no
way to propagate an error without sensitizing the feedback
path. Pairs of lines that meet this criteria are identified as
forbidden pairs.

The logic-level representations of three logic bricks an-
alyzed are shown in Figure 2. Table 2 shows the number of
potential bridges, the number of feedback bridges, and the
number of forbidden pairs that are identified for each brick.

Brick No. of No. of No. of
design bridges feedback bridges forbidden pairs

1 12 6 4
2 42 10 6
3 182 30 19

Table 2: The total number of bridges, feedback bridges, and for-
bidden pairs for three logic-brick designs.

Table 3 compares the routing of three logic bricks using
the original SAT-based router [11] (no DFT) and the mod-
ified router that includes DFT routing rules to ensure for-
bidden pairs are never routed in adjacent tracks. The results
show an average increase in wire length (measured in num-
ber of grid segments) of 7.6% and an average increase in

the number of vias by 13.0%. However, the average reduc-
tion of critical area (CA) associated with forbidden pairs is
61.5% across the three designs. Serendipitously, the total
CA of logic brick 1 is reduced by 14.5%. The total CA of
logic-brick designs 2 and 3 however increases by 3.9% and
11.4%, respectively.

Total wire No. of Total CA Forbidden-pair CA
Brick type length vias (µm2) (µm2)

Brick 1 (no DFT) 35 7 279.8 91.0
Brick 1 (DFT) 38 8 239.1 36.6
Brick 2 (no DFT) 51 10 581.8 239.5
Brick 2 (DFT) 57 12 604.7 97.8
Brick 3 (no DFT) 169 21 1336.7 464.4
Brick 3 (DFT) 173 22 1489.1 160.5

Table 3: DFT routing rules reduce the CA associated with forbid-
den pairs but cause an increase in wire length and vias.

Figure 4 shows the effects that forbidden-pair CA re-
ductions have on wire length, the number of vias, and over-
all CA of logic brick 3. Plot point “0” of each curve rep-
resents the logic brick design created with no DFT con-
straints, and each subsequent point includes an additional
set of constraints. Point “1” includes a set of routing rules
to ensure wires from a forbidden pair are never adjacent.
Point “2” includes the same set of rules as point 1, but also
restricts any diagonal adjacencies between forbidden pairs.
Finally, point “3” includes the same set of rules as point 2,
but also ensures there are no adjacencies within two routing
tracks. In each graph, there is a steep decline in forbidden-
pair CA for the first set of routing rules added without a sig-
nificant increase in vias, wire length, or total CA. Although
the forbidden-pair CA continues to decrease as more routing
rules are added, the reduction is not quite as significant and
the increase in wire length, vias, and total critical becomes
substantial. Therefore, it seems the first set of routing rules
is highly effective while the additional routing rules do not
provide favorable improvements, at least for this particular
logic-brick design.

Figure 4: The effect that reducing forbidden-pair CA has on the
number of vias, wire length and total CA for logic brick 3.

4



3.2.2 Equivalent Faults

A faulty logic brick produces output values that differ from
the fault-free design. Each fault has an output response that
deviates from the expected response. Equivalent faults have
identical responses while non-equivalent faults have unique
responses. A fault that generates a unique failure response
to all possible input patterns to the brick, in theory, will be
easier to diagnose since only one fault can cause that re-
sponse. However, if several faults share the same response,
they are virtually impossible to distinguish. Given a set
of indistinguishable faults, if all but one of those faults is
highly unlikely, diagnosis is improved.

For a given brick design, the failing response for
each bridge is derived. Equivalent-fault partitions are then
formed based on each fault’s response to all possible input
combinations of the brick. For each partition containing
n > 1 faults, the forbidden pairs for each combination of
n − 1 faults are identified. Any set of forbidden pairs that
can be made highly unlikely would lead to a single likely
fault with the given response. Since there may be several
partitions of equivalent faults, a selection of forbidden pairs
is made that distinguishes each partition while minimizing
the number of forbidden pairs.

For example, as depicted in Table 4, faults F1 and F2

cause the response 111, so either fault F1 or F2 should be
made unlikely in order to diagnose the cause of the erro-
neous response. In other words, if a circuit generates the
failure response 111, the failure can be diagnoed accurately
if either either F1 or F2 are made improbable. Moreover,
since faults F3, F4, and F5 cause the response 001, any two
of these faults should be made unlikely in order to improve
diagnosis.

Index Fault Response Signals
- None 110 n/a

F1 And-bridge{A, C} 111 A, C
F2 C stuck-at-1 111 C, V dd
F3 And-bridge{A, B} 001 A, B
F4 Or-bridge{A, B} 001 A, B
F5 A stuck-at-1 001 A, V dd
F6 Dom-bridge{A, B} 100 A, B
F7 B stuck-at-0 100 B, Gnd

Table 4: Failure responses and signals involved for an example set
of faults.

The selection of n − 1 signal pairs from each parti-
tion can be described as a traditional minimum vertex cover
problem, a well-known NP-hard problem. A graph G(V, E)
is created and for each bridge fault involving a unique pair
of signal lines, a vertex is added to the graph to represent the
signal pair. Several faults can involve the same set of signal
lines, so one vertex may represent several bridge faults. If
two faults share the same output response (i.e., are equiva-
lent faults), an edge is created between the two vertices. The
solution to the minimum vertex cover problem is a minimal
subset of vertices V ′ that removes all edges from G when

V ′ is eliminated, thus ensuring that the remaining faults pro-
duce unique failure responses. In other words, the set of
vertices V ′ is a minimal set of forbidden pairs.

For example, Figure 5 is a graph that represents the set
of faults from Table 4. Since three faults involve signal lines
A and B, there is one vertex F3,4,6 that represents these
three faults. An edge connects vertices F1 and F2 because
those faults both create the response 111. Likewise, an edge
connects F3,4,6 to F7 due to the response 100 and F5 due
to the response 001. A minimum vertex cover includes ver-
tices F2 and F3,4,6. Therefore, the forbidden pairs (C, V dd)
and (A, B) will enable accurate diagnosis of the responses
from Table 4. Since the identification of an optimal set of
forbidden pairs is an NP-hard problem, this is included as
part of the SAT formulation used for brick routing.

Figure 5: The minimum vertex cover of graph G(V, E) represents
the minimum set of forbidden pairs.

The minimal set of forbidden pairs to distinguish faulty
responses of a logic brick is not necessarily the best set,
however. The minimal set of forbidden pairs may be an
unsatisfiable problem, even though there may exist a set
of forbidden pairs that can distinguish the equivalent fault
universe. Therefore, the set of equivalent faults are in-
cluded as part of the SAT formulation used for brick rout-
ing. To simplify this discussion, a forbidden pair i is rep-
resented using a variable Pi that corresponds to fault Fi.
The variable Pi represents all the routing rules required to
make fault Fi unlikely. For each failing response, a dis-
junction of all combinations of n − 1 faults is created. For
the example shown in Table 4, the additional constraint is
(P1 ∪ P2) ∩ (P3,4,6 ∪ P5) ∩ (P3,4,6 ∪ P7). Although the
solution to this SAT formulation will not necessarily be the
minimum number of forbidden pairs (i.e., the solution to the
minimum vertex cover problem), it will produce a routing
for the brick that completely distinguishes the given fault
universe.

Table 5 shows the critical area (assuming a defect
size of 0.25µm) of each equivalent fault in logic brick 1
from Figure 2. For one set of equivalent faults (response
10111011), there is no critical area and therefore is an un-
likely response altogether. For response 10101010, only
fault F7 has critical area and therefore can be confidently
diagnosed to be uniquely F7. Although routing rules are in-
cluded to reduce the likelihood of equivalent faults, faults
F10 and F11 both have critical area and have the response
11111111. However, since F11 has nearly 25 times as much
critical area as fault F10, the response 11111111 can most

5



likely be diagnosed to be F11.

Index Fault Response CA (µm2)
F1 A stuck-at-1 10111011 0
F2 Bdom-bridge{A, B} 10111011 0
F3 Cdom-bridge{A, C} 10111011 0
F4 OR-bridge{B, Z} 10111011 0
F5 A stuck-at-0 10101010 0
F6 B stuck-at-0 10101010 0
F7 D stuck-at-1 10101010 47.5
F8 Cdom-bridge{C, D} 10101010 0
F9 C stuck-at-0 11111111 0
F10 D stuck-at-0 11111111 2.6
F11 Z stuck-at-1 11111111 63.5

Table 5: Failure responses and CA (defect radius = 0.25µm) for
equivalent faults of logic brick 1 of Figure 2.

3.3 Routing Time Overhead

As shown in Table 6, for the three logic bricks designs ex-
amined, the additional routing rules increased the number
of clauses by 10% on average. The run-time increased by
88% but never exceeded more than 38 seconds. Likewise,
the memory usage increased by 18% but never exceeded 30
MB. Since the creation of a logic brick does not require a
significant amount of run-time or memory, this overhead is
concluded to be acceptable.

No. of Run-time Memory
Brick type clauses (sec) (MB)

Brick 1 (no DFT) 17,591 0.07 4.91
Brick 1 (DFT) 18,891 0.08 5.04

Brick 2 (no DFT) 33,821 1.03 6.14
Brick 2 (DFT) 36,875 2.93 6.79

Brick 3 (no DFT) 92,995 22.87 21.21
Brick 3 (DFT) 105,334 37.97 29.71

Table 6: DFT routing rules incur a small overhead in run-time and
memory.

4 Summary

In past years, many researchers have proposed circuit fab-
rics that exhibit extreme regularity to improve manufactura-
bility and predictability. Recently, a heterogeneous fabric
composed of highly regular structures called logic bricks
has been proposed. The regularity of these structures is im-
posed by converting layout restrictions to a SAT formula-
tion, thus enabling a SAT-based design flow.

In this work, an automatic method has been described
that uses a SAT-based design flow to improve the testabil-
ity of logic bricks by modifying the physical design. By
preventing certain wires from being routed in close proxim-
ity, bridges involving those wires are made unlikely. Based
on this idea, difficult-to-detect feedback bridges are identi-
fied from the logic brick netlist and constraints are added
to the SAT formulation to ensure these defects are unlikely.

Also, a strategy to reduce the likelihood of equivalent faults
is described. Given a set of equivalent faults, all but one
is made unlikely, thus allowing one to confidently attribute
a diagnosed failure response to the most probable fault.
For a few example logic-brick designs, the critical area as-
sociated with difficult-to-detect feedback bridge faults can
be reduced by 61.5% with a 7.6% increase in wire length
and a 13.0% increase in vias for several brick designs. A
10% reduction in total critical area over the same logic
brick designs is also achieved. Applying these DFT strate-
gies to a logic brick library ensures that an entire design is
more testable. This approach is cost-effective for improving
front-end testability since a brick library typically consists
of only 20-30 bricks.

References
[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems

Testing and Testable Design. IEEE Press, 1990.

[2] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing
for Digital, Memory, and Mixed-signal VLSI Circuits. Kluwer Aca-
demic Press, 2000.

[3] L. T. Wang, C. E. Stroud, and N. A. Touba, System-on-chip Architec-
tures: Nanometer Design for Testability. Morgan Kaufmann, Nov.
2007.

[4] L. Scheffer, L. Lavagno, and G. Martin, EDA for IC System Design,
Verification, and Testing. CRC Press, 2006.

[5] M. E. Levitt and J. A. Abraham, “Physical Design of Testable VLSI:
Techniques and Experiments,” IEEE Journal of Solid-state Circuits,
vol. 25, pp. 474–481, April 1990.

[6] J. Sudbrock et al., “Defect-oriented Test and Layout Generation for
Standard-cell ASIC Designs,” in Euromicro Conference on Digital
System Design, pp. 79–82, Sept. 2005.

[7] J. Xu, R. Kundu, and E. J. Ferguson, “A Systematic DFT Procedure
for Library Cells,” in IEEE VLSI Test Symposium, pp. 460–466, April
1999.

[8] A. L. Jee and F. J. Ferguson, “CARAFE: An Inductive Fault Analy-
sis Tool for CMOS VLSI Circuits,” in IEEE VLSI Test Symposium,
pp. 92–98, April 1993.

[9] T. Iizuka, M. Ikeda, K. Asada, “Timing-driven Cell Layout Decom-
paction for Yield Optimization by Critical Area Minimization,” in
Design, Automation and Test in Europe, pp. 1–6, March 2006.

[10] V. Kheterpal, et al., “Design Methodology for IC Manufacturability
Based on Regular Logic-Bricks,” in Design Automation Conference,
pp. 353–358, June 2005.

[11] B. Taylor and L. Pileggi, “Exact Combinatorial Optimization Meth-
ods for Physical Design of Regular Logic Bricks,” in Design Automa-
tion Conference, pp. 344–349, June 2007.

[12] W. Maly and J. Deszcka, “Yield Estimation Model for VLSI Artwork
Evaluation,” Electronics Letters, pp. 226–227, March 1983.

[13] G. S. Tseitin, “On the Complexity of Derivation in Propositional
Calculus,” Studies in Constructive Mathematics and Mathematical
Logic, pp. 115–125, 1970.

[14] F. A. Aloul et al., “Generic ILP versus specialized 0-1 ILP: An Up-
date,” in IEEE International Conference on Computer-aided Design,
pp. 450–457, Nov. 2002.

[15] N. Een and N. Sorensson, “MiniSat - a SAT Solver with Conflict-
clause Minimization,” in International Conference on Theory and
Applications of Satisfiability Testing, 2005.

6


	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index




