
Dynamic Voltage Scaling of Supply and Body Bias

Exploiting Software Runtime Distribution

Sungpack Hong

EE Department

Stanford University

Sungjoo Yoo, Byeong Bin,

Kyu-Myung Choi, Soo-Kwan Eo

Samsung Electronics

Taehwan Kim

EECS

Seoul National University

ABSTRACT

This paper presents a method of dynamic voltage scaling (DVS)

that tackles both switching and leakage power with combined

Vdd/Vbs scaling and gives minimum average energy consumption

exploiting the runtime distribution of software execution. We

present a mathematical formulation of the DVS problem and an

efficient numerical solution. Experimental results show that the

presented method shows up to 44% further reduction in energy

consumption compared with existing methods. Especially, when the

leakage power consumption is significant, i.e. when temperature is

high, the presented method is proven to be the most effective.

1. Introduction
Dynamic voltage scaling (DVS) is one of the most effective

methods in reducing both switching and leakage power

consumption. There have been two classes of DVS methods: inter-

task and intra-task DVS. Inter-task DVS methods [1][2] determines

the performance level at a task granularity while intra-task DVS

methods at finer granularities [3][4][5].

In intra-task DVS, workload estimation plays a central role since

the performance level (normalized w.r.t. maximum frequency) in

the middle of task execution is dynamically determined, mostly, by

X/T, where X is the estimated remaining workload and T is the time

to deadline. Thus, the accuracy of workload estimation determines

the quality of intra-task DVS method.

Several methods of workload estimation have been proposed:

worst case execution time [3][4], average case execution path [5],

average energy execution path [6], and statistical methods [7].

Among them, the statistical method and average energy execution

path-based one are reported to give the best reduction in average

switching energy consumption since they provide global minimum

solutions based on mathematical formulations. However, the

leakage power consumption is not minimized by the methods since

they minimize only the switching energy based on the assumption

of P ~ f3 (P ~ CV2f ~ f3 since V ~ f).

Leakage power consumption has already become a real design

issue. Especially, excessive leakage power consumption at high

temperatures often causes significant product parametric yield drop

in reality1. Thus, DVS methods need to optimize leakage energy as

well as switching energy.

In order to reduce leakage energy consumption, we apply

combined Vdd/Vbs scaling [10][11] since body biasing (scaling Vbs)

1 Although the power consumption specification can be met at room

temperature, it cannot often be met due to significant leakage

power consumption at high temperatures in the product

specifications, e.g. 80 or 125℃.

is the most effective way to control leakage power consumption. In

our work, we extend the statistical DVS method (which originally

targets only dynamic energy) to tackle the reduction of both

switching and leakage energy by scaling both Vdd and Vbs. Note that

the statistical method covers the method based on average energy

execution path [6] as a simplified case.

We give a mathematical formulation of the problem of Vdd/Vbs

scaling based on the statistical information, i.e. the distribution of

software runtime. The formulation gives a multi-variable non-linear

function of total energy consumption. As a practical solution to

obtain the workload estimations for the minimum average energy

consumption, we present a numerical solution.

This paper is organized as follows. Section 2 reviews existing

DVS methods. Section 3 explains the mathematical formulation of

statistical DVS based on combined Vdd/Vbs scaling. Section 4 gives

a total power function for combined Vdd/Vbs scaling. Section 5

presents a numerical solution to the problem. Section 6 reports

experimental results and Section 7 concludes the paper.

2. Related Work
In [3], an intra-task DVS method called runtime voltage hopping

is presented to exploit workload variation to reduce the energy

consumption. In this work, the workload variation is a slack which

is calculated, at the hopping point, as the difference between the

expected worst-case execution time and the real program runtime of

already executed software code. In [4], the remaining workload is

estimated to be the execution cycle of worst-case execution path

from a performance setting point in the software program to the end

of program. The execution cycle of average-case execution path is

estimated to be the remaining workload in [5]. The concept of

virtual execution path is presented in [6] to estimate workloads for

minimum average energy consumption. The method uses the worst-

case execution cycles of remaining basic blocks to predict the

remaining workload assuming P ~ f3. In [13] and [14], methods of

DVS based on combined Vdd/Vbs scaling are presented. In these

works, the relationship between power and frequency can be an

arbitrary one. However, those works do not consider the runtime

distribution of software execution, but is based on the worst-case

execution cycle.

The above methods have a common assumption in estimating the

remaining workload. They all assume the worst-case execution

cycle (of the entire remaining program or of each basic block).

However, in reality, it is rare to encounter the worst-case execution.

Since minimizing energy consumption is mostly an optimization

problem for average cases (e.g. the battery lifetime of mobile device

is mostly evaluated in an average sense after running an extensive

set of benchmarks and use cases), it is required to tackle DVS

problems statistically to reduce average energy consumption while

meeting the given deadline constraints. In [7], a statistical method

based on the runtime distribution of software execution cycle (not

978-3-9810801-3-1/DATE08 © 2008 EDAA

the worst-case execution cycle) is presented. This method enables to

obtain the estimation of remaining workload that yields the

minimum average energy consumption. However, this method is

based on the assumption of P ~ f3. Thus, it does not minimize the

entire energy consumption, especially, when the leakage power is

not negligible.

3. Mathematical Formulation of Statistical

DVS based on Combined Vdd/Vbs Scaling
Figure 1 illustrates the intra-task DVS based on runtime

distribution. We divide the entire software program into chunks of

code called program regions (PR’s), shown as rectangles in the

figure, and set operating frequency at the beginning of each PR

(called performance setting point) based on the estimation of

remaining workload, X. For instance, in the beginning of program

region N0 in the figure, we set frequency to be X0/T where X0 is the

estimated remaining workload and T the time to deadline.

N0

Probability, p0(W0) Probability, p1(W1)

Exec. cycles Exec. cycles

N1

x0 x1

w0 w1

Figure 1 Intra-task DVS with runtime distribution

Each program region has a distribution of its runtime (execution

cycles), i.e. a probability distribution function (PDF) as illustrated

in Figure 12. The distribution results from both data dependency

(e.g., data dependent number of loop iterations) and underlying

hardware architecture (e.g., cache misses, variable latency

instructions, etc.). In this case, our problem is to calculate the

estimated workload x0 that will give the minimum average energy

consumption of all the remaining program regions.

In [7], the authors formulate the problem mathematically with

two assumptions. The first assumption is P ~ f3. The second

assumption is the independence between X0 and X1. Thus, X0 can be

calculated assuming that X1 has been already obtained (thus,

assuming that it is a constant) in the bottom-up traversal of PR’s

from the leaf PR (i.e. the end of program). At each program region,

x0 is obtained by solving δE(X0)/δX0 = 0. However, when applying

combined Vdd/Vbs scaling, the two assumptions do not hold any

more. The average energy consumption function E(X0,X1) becomes

more complicated as follows (the details are omitted for page limit).

0

111

10

001

00

01

00

0

00

10

)(
)(

)
)(

(

)()(

),(dw

dwwpT
XX

wXw

wXT

XX
P

wpT
X

w

T

X
P

XXE ∫
∫

⋅⋅
−

⋅
−

+⋅⋅⋅

=
 (1)

where P(f) is the total power function (when Vdd/Vbs scaling is

applied) with a normalized frequency f as the input argument, p0(w0)

and p1(w1) are the PDF’s of program regions N0 and N1 as

exemplified in Figure 1. In Eqn. (1), the total power function P(f) is

no longer a simple function (such as P ~ f3), but more complicated

one (which will be presented in Section 4). In Eqn. (1), in order to

2 In reality, the X-axis of PDF is quantized into multiple bins as

explained in Section 5.

obtain the minimum average energy consumption E, X0 cannot be

determined independently from X1. They need to be determined

simultaneously. In the case of n program regions, n workload

estimations { X0, X1, …, Xn } for the minimum average energy

consumption need to be obtained simultaneously. Thus, the original

bottom-up traversal method in [7] cannot be applied in this case.

In summary, given n program regions (and their PDF’s), we need

to find a set of workload estimations { X0, X1, …, Xn } giving the

global minimum of average energy consumption. Since the total

power function is not an analytical function, we need numerical

solutions to find the global minimum. In this paper, we present a

numerical solution to this problem.

4. Total Power Function in Combined

Vdd/Vbs Scaling
This section presents the total power function and its dependency

on temperature when combined Vdd/Vbs scaling is applied. Given a

frequency requirement, we can obtain a pair of Vdd and Vbs values

that give the minimum total (switching and leakage) power

consumption. In this section, we present our total power function

and associated pair of Vdd and Vbs values following the method in

[3].

Switching power PSW is calculated as follows.

PSW = Ceff * Vdd
2 * f (2)

where the effective capacitance Ceff is given in Table 1. Leakage

power PLeak is obtained as follows.

PLeak = (Vdd * Isub + |Vbs| * Ij) * Lg (3)

where the subthreshold current Isub is given as

Isub = K3 * e(K4 * Vdd) * e(K5 * Vbs) (4)

The parameters Ij, Lg, K3, K4, and K5 are given in Table 1. The

threshold voltage Vth and inverter delay tinv is modeled as follows.

Vth = Vth1 – K1*Vdd – K2 *Vbs (5)

tinv = Ld * K6 / (Vdd – Vth)
alpha (6)

The operating frequency f is determined to be 1/(Ld*tinv), where

Ld is the logic depth of critical path. Table 1 summarizes all the

parameters used when deriving the total power function for

combined Vdd/Vbs scaling based on the method and parameters in

[9][10].

Table 1 Power parameters [9][10]

K1 0.163 K6 5.26e-12 Vth1 0.244

K2 0.153 K7 -0.144 Ij 4.8e-10

K3 5.38e-7 Vdd0 1 Ceff 1.11e-9

K4 1.83 Vbs0 0 Ld 35

K5 4.19 alpha 1.5 Lg 4e6

Cr 1e-6 Cs 4e-6

Figure 2 (a) shows the total power function and the

corresponding pair of Vdd and Vbs values. Vdd (Vbs) ranges between

0.5v and 1.28v (-1.0v and 0v)3. As shown in the figure, the total

power is not an analytical function of frequency.

3 Note that the frequency range is between 1GHz and 6GHz. This

range is higher than the critical frequency in [3].

02468101214161820
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Freq (GHz)Power (W) -1.5-1-0.500.511.5 Voltage (V)

PSW PLeak Vdd Vbs
0102030405060708090

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Freq (GHz)Power (W) 25℃50℃75℃100℃(a) Total power function at 50C

(b) Temperature dependency of total power consumption

Figure 2 Total power function in combined Vdd/Vbs scaling

Figure 2 (b) shows the trend of total power consumption as

temperature varies. We model the temperature dependency of

leakage power as follows [12].

I(Temp) = Is * exp(- A / (Temp + 273 – B)) (7)

where Is is the leakage power at room temperature and parameters A

and B are 606.53 and 192.02, respectively [12].

In our experiments, we use the total power function presented in

this section. Note that the presented method in Section 5 does not

necessarily depend on the total power function presented in this

section. Thus, any total power functions, e.g., those obtained from

slower processors or real measurements, can be used in the

presented method.

5. Presented Numerical Method
In this section, first we explain our terminology, a numerical

solution based on an iterative improvement, and how to calculate

energy consumption with arbitrary total power function under

software runtime distribution.

5.1 Terms and Notations
Node: Since we divide the whole program into a set of program

regions, we consider the entire program as a graph where nodes

correspond to program regions and arcs to the control dependency

between nodes. Thus, we use two terms, node and program region,

interchangeably. In our notations, Ni is the node with index i. N0 is

the node corresponding to the entry program region.

Runtime Distribution: We regard the runtime distribution of

program region Ni a random variable wi. We obtain the runtime

distribution by extensive profiling to be explained in Section 6. In

reality, we have the PDF of wi as a function with M bins (M=32 in

our experiments). wi
k denotes the representing value (execution

cycle) of k-th bin, and p(wi
k) is the probability of the bin.

Remaining Execution Cycles: We profile the maximum (WTi),

average (ATi) and minimum (BTi) numbers of execution cycles from

the beginning of node Ni to the end of program.

Time to Deadline: Ti is a random variable representing the

remaining time to deadline at the beginning of node Ni. By

definition, the remaining time to deadline at the entry node T0

equals to the given deadline D. The distribution of Ti is represented

as a PDF with L bins (L=256 in our experiments). Ti
j is the

representing value (time to deadline) of j-th bin, and q(Ti
j) is the

probability of the bin. Note that the distribution of T0 is trivial as

follows.

−=

=
=

)1(~10

0.1
)(0

Lj

Lj
Tq j (8)

We explain how to calculate PDF q(Ti
j) in Section 5.3.

Estimated Workload: We denote the estimated workload of node

Ni as Xi, which is the variable we want to determine for each node

so that the average energy consumption under runtime distribution

is minimized for the whole program.

Performance Setting Point (PSP): The PSP is a code location

where the performance level of processor is adjusted. Each program

region has a PSP at its beginning. In terms of software code, we

insert, at the PSP, a function for performance setting, PS() as

follows4.

PS(i) { // for node Ni

 Ti = Get_Time_to_Deadline();

 fmin = Get_Min_Required_ Freq(i,Ti);

 f = max(Xi/Ti, fmin); // Xi was calculated at design time.

 Set_Freq_Voltages(f); /* Adjust Vdd and Vbs as in Figure 2 */

}

As shown above, in order to meet the given deadline, function

PS() first calculates the minimum required frequency fmin by calling

function Get_Min_Required_Freq(). The details of this routine can

be found in [7] and we omit the details here. Note that the presented

DVS method satisfies the given deadline. In our work, we insert

PSP’s manually at the boundaries of compute-intensive loop

iterations. Automatic insertion of PSP’s will be an interesting topic

and we will investigate it in our future work.

5.2 Workload Estimation
Now we present the numerical solution to obtain the set of

workload estimation Xi’s such that the average total energy

consumption (as illustrated in Eqn. (1)) is minimized. Figure 3

gives a pseudo code of the presented solution.

1 Find_All_Workload_Estimations() {

2 X
i
= WT

i
; /* for all i = 0 ~ N-1 */ /* Initial Solution */

3 E
best

= Calculate_Average_Energy(); /* In Section 5.4 */

4 Do { /* Main Loop */

5 for i = 0 to N-1

6 { Xi = Find_Single_Workload_Estimation(i, BTi, WTi); }

7 E = Calculate_Average_Energy();

8 if (E < E
best

) { E
best

= E; Save_Current_Estimations(); }

9 else break; /* No improvement in the while loop */

10 } while (loop_count++ < MAX_COUNT)

11 }

Figure 3 An iterative solution

The basic idea of presented solution is that we tackle one variable

(workload estimation of a node) at a time iteratively until there is no

further reduction in average total energy consumption. First, all the

workload estimations Xi’s are set to the worst-case remaining

4 Note that we take also voltage transition delay into account in our

implementation of PS() as in [7].

execution cycles WTi’s as the initial solutions (line 2 in Figure 3).

Then, the expected energy consumption for this solution is

calculated as will be explained in Section 5.4 (line 3). In the main

loop (lines 4–10), we obtain the workload estimation of each node

that gives the minimum average energy consumption while

assuming the other workload estimations are set to the current set of

Xi’s (line 6). Function Find_Single_Workload_Estimation(), which

gives the workload estimation, will be explained later in this

subsection. The function returns a new workload estimation Xi (line

6). Once all the nodes are processed, we calculate total energy

consumption with new workload estimations (line 7), and update

the best case if there is any improvement (line 8). This main loop is

repeated for a given number of iterations (MAX_COUNT, line 10).

Figure 4 shows the pseudo code of function Find_Single_

Workload_Estimation(). The function sweeps candidate values of

workload estimation within the given range of possible workload

estimation (between minimum and maximum remaining cycles, i.e.,

BTi and WTi). For each candidate value, first we update the PDF’s

of time to deadline Ti for all the other remaining nodes (line 4 in the

figure). It is because Ti’s for the remaining nodes (nodes to be

executed after node Ni) change depending on how much cycles node

Ni spends. Thus, depending on the choice of Xi, the PDF’s of time

to deadline Ti’s for all the remaining nodes need to be updated

consequently. We explain how to update the PDF’s of time to

deadline Ti (in function Update_PDF_Time_to_Deadline_

Recursively()) in Section 5.3.

1 Find_Single_ Workload_Estimation(i, MIN, MAX) {

2 E
best

= MAX_VAL;

3 for Xi = MIN to MAX step STRIDE {

4 Update_PDF_Time_to_Deadline_Recursively(i, Xi);

5 E = Calucate_Average_Energy();

6 if (E < E
best

) E
best

= E; X
best

= X
i
;

7 }

8 return Xbest ; }
Figure 4 Function to find single workload estimation

Figure 5 illustrates an example result of such a sweep (lines 3—7

in Figure 4) to find the workload estimation. As shown in Figure 5,

the sweep locates the workload estimation (inside the rectangle in

the figure) giving the minimum average energy consumption.

9.10E+019.20E+019.30E+019.40E+019.50E+019.60E+019.70E+019.80E+019.90E+011.00E+02
0 50000 100000 150000 200000Workload estimationEstimated Energy .

Fmax
reached

Algorithm fails

���� Too small

estimations

Too big

estimations ����

Figure 5 An example of single workload estimation

5.3 Derivation of the PDF’s of Time to Deadline
The PDF of time to deadline of node N0, T0 is trivial as shown in

Eqn. (8). Figure 6 shows the pseudo code of PDF derivation for the

other nodes. Figure 7 illustrates the PDF updating. Assuming that

the PDF updating is applied to two nodes N0 and N1 (N1 starts to

execute after N0 finishes), the figure shows the runtime distribution

(in PDF) of N0, p(w0) and its PDF of time to deadline T0, q(T0) in

the upper part. The figure illustrates how to derive node N1’s PDF

of time to deadline q(T1) from the two PDF’s, p(w0) and q(T0).

Suppose that X0 = 12 in the loop of Figure 4 (lines 4—6) and that

function Update_PDF_Time_to_Deadline_Recursively(0,12) is

called (line 4 in Figure 4).

1 Update_PDF_Time_to_Deadline (i,Xi) {

2 Ti+1
l=0.0; /* l = 1 ~ L */

3 for j = 1 to L {

4 for k = 1 to M {

5 Tused = wi
k / (Xi /Ti

j) ;

6 Tremain = Ti
j – Tused;

7 prob = q(Ti
j)*p(wi

k);

8 l = Get_Bin_Index_T(Tremain);

9 Ti+1
l = Ti+1

l + prob;

10 } } }

11

12 Update_PDF_Time_to_Deadline_Recursively (i, Xi) {

13 for (m = i to N) {

14 Update_PDF_Time_to_Deadline(m, Xm)

15 } }
Figure 6 Functions to update the PDF, q(Ti)

Now we calculate the PDF of node N1’s time to deadline, q(T1).

Since T0
L = 12 as shown in the middle of Figure 7, we set frequency

at N0 to 1 (=X0/T0
L). Considering the execution cycle of node N0, w0,

we can have different probabilities for different w0
k values. For

instance, the probability that node N0 takes w0
2 (= 3) clock cycles,

p(w0
2=3) is 0.4 as shown in Figure 7. In this case, since node N0

takes 3 cycles (=w0
2/(X0/T0

L) as in line 5 of Figure 6), only 9 cycles

(=12-3) remains as the time to deadline for node N1 (line 6 in Figure

6). Thus, the probability that T1 has 9 cycles of time to deadline,

q(T1
3=9) becomes 0.4 (=p(w0

2)* q(T0
L) = 0.4*1.0) as the two arrows

in Figure 7 illustrates (also, line 7 in Figure 6). All the probabilities

of the other bins for T1 are calculated in the same way.

w 0

p (w 0)

1 05

0 .2

0 .4
0 .3

0 .1

T 0

q (T 0)

1 05

1 .0

T 1

q (T 1)

1 05

0 .2

0 .4
0 .3

0 .1

w 0
1

w 0
2

w 0
3

w 0
4

T 1
1

T 1
2

T 1
3

T 1
4

Figure 7 Updating the PDF of time to deadline

Based on function Update_PDF_Time_to_Deadline(), function

Update_PDF_Time_to_Deadline_Recursively() in Figure 4 can be

easily implemented as shown in Figure 6 (lines 12—15).5

5.4 Calculating Average Energy Consumption
When the workload estimations are once determined, function

5 For simplicity, we assume a sequential chain of nodes in this

explanation. However, in the case that there are multiple children

or parents for a node (i.e. conditional branches), the above

algorithm should be slightly modified to include branch

probability and breadth-first iteration as in [7]. However, the

extension is trivial and hence omitted for brevity here.

Calculate_Average_Energy() gives the average total energy

consumption for the workload estimations. First, the energy

consumption of node Ni can be calculated as follows.

)()(

)()(

i

ii

i

i

i

X

Tw

T

X
P

NbyconsumedtimefreqPowerEnergy

⋅=

⋅=
 (9)

where, Xi is a constant in this case while wi and Ti are random

variables with their PDF’s, p(wi) and q(Ti). The average energy

consumption of node Ni , ei can be calculated as follows.

)()()()(
1 1

j

i

k

i

L

j

M

k i

j

i

k

i

j

i

i
i Tqwp

x

Tw

T

x
Pe ⋅⋅⋅=∑∑

= =

 (10)

In consquence, the average total energy consumption of the

whole program is calculated by summing the ei’s each multiplied by

the probability of executing the corresponding node to account for

conditional branches [7].

5.5 Consideration of Temperature Conditions
In order to consider that the power–frequency characteristic

changes as temperature, we propose a simple approach to adapt the

presented method to varying temperature conditions. First, we select

a number of representative temperatures (e.g. 25, 50, 75, 100 ℃),

and establish the total power function PK(f) for each of those cases.

We make a set of workload estimations for each representative

temperature. Note that these calculations are all done at design time.

During the runtime, the DVS algorithm obtains temperature

information by consulting the thermal sensor and chooses the

appropriate set of workload estimations based on the current

temperature. Then, it performs performance setting as explained

above.

6. EXPERIMENTS
In our experiments, we assume the processor power model

presented in Section 4. We assume discrete frequencies that range

between 1GHz and 6GHz with 500MHz step. For each frequency

step, a set of Vdd/Vbs is applied to give an optimal Vdd/Vbs scaling as

explained in Section 4. From the set of discrete frequencies, we

select a frequency level, which is the lowest but higher than or

equal to the frequency calculated in function PS(), as the required

performance level. We also prepare the power models at four

different temperature conditions, 25, 50, 75, and 100℃.

Voltage transition time is assumed to be 200µs. The energy

consumption of voltage transition, Es is modeled as follows [4].

Es = |∆Vdd|
2*Cr + |∆Vbs|

2*Cs (11)

The runtime overhead of performance setting function call PS() and

that of voltage/frequency transition are assumed to be 1k cycles and

50µs, respectively6. The delay overhead of voltage transition is also

taken into account in function PS() as in [7] when checking whether

the deadline constraint can be met.
When software execution finishes before the deadline, we apply

power and/or clock gating. If the remaining time is less than 1ms,

we apply only clock gating. Thus, in this case, leakage power is

6 Regarding the voltage transition overhead, 50µs, we take a

conservative approach that processor does not perform

computation during the transition. The runtime overhead of

function PS() is negligible in our examples (in reality also) since

the spacing between two consecutive PSP’s is in the order of

millisecond as shown in Table 2.

consumed from the end of software execution to the deadline. If the

remaining time is longer than 1ms, we apply power gating, after the

1ms period of clock gating, until the deadline. We assume also that

processor power gating takes 1ms.

We apply the presented method to four multimedia software

applications: H.264 decode, MPEG4 decode/encode, and MP3

decode. We insert PSP’s manually at the boundaries of sets of loop

iterations in the source code of the applications as in [7]7 . We

obtain the distribution of software runtime after running

representative benchmarks for each application on the PC

(Pentium4, 2.8GHz). For H.264 and MPEG4, we use the same

benchmarks that are used in [7]. Table 1 gives the summary of

applications. Note that we set practical deadlines on the applications

to account for the real multi-task software execution environment.

For instance, OS consumes a portion of processor cycles for its

housekeeping operation, e.g. timer.

Table 2 Software programs used in the experiments

Application # PSP’s Deadline

H.264 Decode (H.264) 5 30 ms (33 fps)

MPEG4 Decode (MPEG4-d) 5 30 ms (33 fps)

MPEG4 Encode (MPEG4-e) 10 40 ms (25 fps)

MP3 Decode (MP3) 6 20 ms8

Figure 8 shows the runtime distribution (PDF) of five nodes for

H.264 and MPEG4-d, respectively. It shows the ratio of maximum

to minimum execution cycle for each node (X-axis). It also shows

the relative portion (numbers in rectangles) of execution cycles of

each node to the total execution cycle. For instance, the fourth

program region of H.264 has the ratio of 6.09 (maximum execution

cycle is 6.09 times bigger than minimum execution cycle) and

consumes 9.3% of total execution cycle. As shown in the figure,

H.264 gives more runtime distribution than MPEG4-d. This fact is

reflected in the experimental results in Figure 9. 5.72 3.88 4.75 6.09 5.01
00.050.10.150.20.25

1 2 3 4 5 01234
567 13.14

2.60 2.12 2.29 2.0400.10.20.30.4
0.50.6

1 2 3 4 5 02468
101214Probability Probabilitymax/min max/min

Node# Node#

18.7% 25.0% 21.7% 9.3% 25.3%

4.0% 20.1% 24.4% 23.0% 30.0%

(a) (b)

Figure 8 Runtime distributions of H.264 (a) and MPEG4-d (b)

Figure 9 shows the comparison of energy consumption for the

four software applications. We apply three methods of workload

estimation: worst-case remaining execution cycle-based method

7 To find suitable PSP locations is another interesting problem, but

is beyond the scope of this paper. Practically, however,

programmers can easily identify a few candidates among major

loops and functions in their codes.

8 In the case of MP3 application, the deadline of 20ms is set

assuming a multi-task software execution environment where

most of processor cycles are consumed by other compute-

intensive user programs, e.g. web browsing, game, multimedia

searching, etc.

(WT), e.g. [13], average remaining execution cycle-based method

(AT), and the proposed one (Ours). The results are normalized to

the WT method. In order to analyze the effectiveness of those

methods, four different temperatures are assumed as shown in the

figure. The figure also shows the energy reduction (%) of our

method compared with the best of WT and AT, i.e. min(WT, AT).

The presented method gives up to 44% reduction in energy

consumption.

Figure 9 Energy consumption comparison

Figure 10 explains how the presented method gives better energy

efficiency than the other two. The figure shows the frequency

change of the three methods during the execution of H.264 decode

application for three frames. As shown in the figure, WT starts at a

high frequency since it assumes the worst-case execution for the

remaining execution. However, as the program run advances,

performance level drops rapidly and the program finishes earlier

than the other two cases. AT shows the opposite behavior. In the

beginning, assuming the average execution cycle as the remaining

workload, it starts with a very low frequency level. However, due to

the too optimistic estimation in the beginning, the performance level

needs to be increased at the end of execution to meet the given

timing constraint, in this case, 30ms for one frame decoding. We

call each of the above frequency settings early and late high

frequency setting, respectively. As shown in Figure 2, at high

temperatures, high frequency levels suffer from the penalty of large

leakage power. Thus, both WT and AT suffer from this penalty. The

presented method takes a balanced approach. As shown in Figure

10, it starts a performance level between those of WT and AT and

keeps the balanced position to the end of execution thereby

avoiding the penalty of high frequency.

Figure 10 Comparison of frequency settings

The results of Figure 9 are explained by both (1) the difference of

early and late high frequency settings between WT and AT and (2)

the runtime distribution shown in Figure 8. In H.264 and MP3, WT

suffers from large energy consumption at high temperatures. It is

because (1) their runtime distribution (H.264’s is shown in Figure

8) has high max/min ratio (thus, worst-case estimation can be too

pessimistic) and (2) the penalty of its early high frequency becomes

dominant at high temperatures.

In contrast, in the cases of MPEG4-d and MPEG4-e, AT gives

inferior results to the others as temperature increases. The max/min

ratio is small in these cases (MPEG4-d’s max/min ratio is shown in

Figure 8). Thus, the penalty of early high frequency in WT

diminishes since the workload estimation based on worst-case

execution cycle gives more accurate estimation than in the case of

high max/min ratio. However, AT still suffers from the penalty of

late high frequency settings thereby giving inferior results.

7. CONCLUSION
In this paper, we presented a DVS problem based on Vdd/Vbs

scaling and software runtime distribution. We explained the

problem mathematically and presented a numerical solution to solve

this problem. The experimental results show that the presented

method gives significant energy reduction, up to 44%, especially

when temperature is high and leakage power dominates. Currently,

we are working on applying the presented method to multi-

processor DVS and on developing adaptive methods that exploit the

dynamically varying software runtime distribution.

8. REFERENCES
[1] D. Kwon and T. Kim, “Optimal Voltage Allocation Techniques

for Variable Voltage Processors”, DAC, 2003.

[2] K. Choi, W. Lee, R. Soma, and M. Pedram, “Dynamic Voltage

and Frequency Scaling under a Precise Energy Model Considering

Variable and Fixed Components of the System Power Dissipation”,

ICCAD, 2004.

[3] S. Lee and T. Sakurai, “Run-time Voltage Hopping for Low-

Power Real-Time Systems”, DAC, 2000.

[4] A. Azevedo, et. al., “Profile-Based Dynamic Voltage

Scheduling Using Program Checkpoints”, DATE, 2002.

[5] D. Shin and J. Kim, “Optimizing Intra-Task Voltage Scheduling

using Data Flow Analysis”, ASPDAC, 2005.

[6] J. Seo, T. Kim, and K. Chung, “Profile-Based Optimal Intra-

Task Voltage Scheduling for Hard Real-Time Applications”, DAC,

2004.

[7] S. Hong, et. al. “Runtime Distribution-Aware Dynamic Voltage

Scaling”, ICCAD, 2006.

[8] R. Jejurikar and R. Gupta, “Dynamic Slack Reclamation with

Procrastination Scheduling in Real-time Embedded Systems”,

DATE, 2005.

[9] R. Jejurikar, C. Pereria, R. Gupta, “Leakage Aware Dynamic

Voltage Scaling of Real-Time Embedded Systems”, DAC, 2004.

[10] S. Martin, K. Flautner, T. Mudge, D. Blaauw, “Combined

Dynamic Voltage Scaling and Adaptive Body Biasing for Lower

Power Microprocessors under Dynamic Workloads”, ICCAD, 2002.

[11] L. Yan, J. Luo, N. Jha, “Joint Dynamic Voltage Scaling and

Adaptive Body Biasing for Heterogeneous Distributed Real-Time

Embedded Systems”, TCAD, 2005.

[12] W. Liao, F.Li, L.He, “Microarchitecture Level Power and

Thermal Simulation Considering Temperature Dependent Leakage

Model”, ISPLED, 2003.

[13] P. Huang, S. Ghiasi, “Leakage-aware Intraprogram Voltage

Scaling for Embedded Processors”, DAC, 2006.

[14] P. Huang, S. Ghiasi, “Efficient and Scalable Compiler-

Directed Energy Optimization for Realtime Application", DATE,

2007.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

