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ABSTRACT 

This paper presents a method of dynamic voltage scaling (DVS) 

that tackles both switching and leakage power with combined 

Vdd/Vbs scaling and gives minimum average energy consumption 

exploiting the runtime distribution of software execution. We 

present a mathematical formulation of the DVS problem and an 

efficient numerical solution. Experimental results show that the 

presented method shows up to 44% further reduction in energy 

consumption compared with existing methods. Especially, when the 

leakage power consumption is significant, i.e. when temperature is 

high, the presented method is proven to be the most effective. 

 

1. Introduction 
Dynamic voltage scaling (DVS) is one of the most effective 

methods in reducing both switching and leakage power 

consumption. There have been two classes of DVS methods: inter-

task and intra-task DVS. Inter-task DVS methods [1][2] determines 

the performance level at a task granularity while intra-task DVS 

methods at finer granularities [3][4][5]. 

In intra-task DVS, workload estimation plays a central role since 

the performance level (normalized w.r.t. maximum frequency) in 

the middle of task execution is dynamically determined, mostly, by 

X/T, where X is the estimated remaining workload and T is the time 

to deadline. Thus, the accuracy of workload estimation determines 

the quality of intra-task DVS method. 

Several methods of workload estimation have been proposed: 

worst case execution time [3][4], average case execution path [5], 

average energy execution path [6], and statistical methods [7]. 

Among them, the statistical method and average energy execution 

path-based one are reported to give the best reduction in average 

switching energy consumption since they provide global minimum 

solutions based on mathematical formulations. However, the 

leakage power consumption is not minimized by the methods since 

they minimize only the switching energy based on the assumption 

of P ~ f3 (P ~ CV2f ~ f3 since V ~ f ).  

Leakage power consumption has already become a real design 

issue. Especially, excessive leakage power consumption at high 

temperatures often causes significant product parametric yield drop 

in reality1. Thus, DVS methods need to optimize leakage energy as 

well as switching energy.  

In order to reduce leakage energy consumption, we apply 

combined Vdd/Vbs scaling [10][11] since body biasing (scaling Vbs) 

                                                                 

1 Although the power consumption specification can be met at room 

temperature, it cannot often be met due to significant leakage 

power consumption at high temperatures in the product 

specifications, e.g. 80 or 125℃. 

is the most effective way to control leakage power consumption. In 

our work, we extend the statistical DVS method (which originally 

targets only dynamic energy) to tackle the reduction of both 

switching and leakage energy by scaling both Vdd and Vbs. Note that 

the statistical method covers the method based on average energy 

execution path [6] as a simplified case. 

We give a mathematical formulation of the problem of Vdd/Vbs 

scaling based on the statistical information, i.e. the distribution of 

software runtime. The formulation gives a multi-variable non-linear 

function of total energy consumption. As a practical solution to 

obtain the workload estimations for the minimum average energy 

consumption, we present a numerical solution.  

This paper is organized as follows. Section 2 reviews existing 

DVS methods. Section 3 explains the mathematical formulation of 

statistical DVS based on combined Vdd/Vbs scaling. Section 4 gives 

a total power function for combined Vdd/Vbs scaling. Section 5 

presents a numerical solution to the problem. Section 6 reports 

experimental results and Section 7 concludes the paper.  

2. Related Work 
In [3], an intra-task DVS method called runtime voltage hopping 

is presented to exploit workload variation to reduce the energy 

consumption. In this work, the workload variation is a slack which 

is calculated, at the hopping point, as the difference between the 

expected worst-case execution time and the real program runtime of 

already executed software code. In [4], the remaining workload is 

estimated to be the execution cycle of worst-case execution path 

from a performance setting point in the software program to the end 

of program. The execution cycle of average-case execution path is 

estimated to be the remaining workload in [5]. The concept of 

virtual execution path is presented in [6] to estimate workloads for 

minimum average energy consumption. The method uses the worst-

case execution cycles of remaining basic blocks to predict the 

remaining workload assuming P ~ f3. In [13] and [14], methods of 

DVS based on combined Vdd/Vbs scaling are presented. In these 

works, the relationship between power and frequency can be an 

arbitrary one. However, those works do not consider the runtime 

distribution of software execution, but is based on the worst-case 

execution cycle. 

The above methods have a common assumption in estimating the 

remaining workload. They all assume the worst-case execution 

cycle (of the entire remaining program or of each basic block). 

However, in reality, it is rare to encounter the worst-case execution. 

Since minimizing energy consumption is mostly an optimization 

problem for average cases (e.g. the battery lifetime of mobile device 

is mostly evaluated in an average sense after running an extensive 

set of benchmarks and use cases), it is required to tackle DVS 

problems statistically to reduce average energy consumption while 

meeting the given deadline constraints. In [7], a statistical method 

based on the runtime distribution of software execution cycle (not 

978-3-9810801-3-1/DATE08 © 2008 EDAA 

 



the worst-case execution cycle) is presented. This method enables to 

obtain the estimation of remaining workload that yields the 

minimum average energy consumption. However, this method is 

based on the assumption of P ~ f3. Thus, it does not minimize the 

entire energy consumption, especially, when the leakage power is 

not negligible.  

3. Mathematical Formulation of Statistical 

DVS based on Combined Vdd/Vbs Scaling 
Figure 1 illustrates the intra-task DVS based on runtime 

distribution. We divide the entire software program into chunks of 

code called program regions (PR’s), shown as rectangles in the 

figure, and set operating frequency at the beginning of each PR 

(called performance setting point) based on the estimation of 

remaining workload, X. For instance, in the beginning of program 

region N0 in the figure, we set frequency to be X0/T where X0 is the 

estimated remaining workload and T the time to deadline.  

N0

Probability, p0(W0) Probability, p1(W1)

Exec. cycles Exec. cycles

N1

x0 x1

w0 w1
 

Figure 1 Intra-task DVS with runtime distribution 

Each program region has a distribution of its runtime (execution 

cycles), i.e. a probability distribution function (PDF) as illustrated 

in Figure 12. The distribution results from both data dependency 

(e.g., data dependent number of loop iterations) and underlying 

hardware architecture (e.g., cache misses, variable latency 

instructions, etc.). In this case, our problem is to calculate the 

estimated workload x0 that will give the minimum average energy 

consumption of all the remaining program regions.  

In [7], the authors formulate the problem mathematically with 

two assumptions. The first assumption is P ~ f3. The second 

assumption is the independence between X0 and X1. Thus, X0 can be 

calculated assuming that X1 has been already obtained (thus, 

assuming that it is a constant) in the bottom-up traversal of PR’s 

from the leaf PR (i.e. the end of program). At each program region, 

x0 is obtained by solving δE(X0)/δX0 = 0. However, when applying 

combined Vdd/Vbs scaling, the two assumptions do not hold any 

more. The average energy consumption function E(X0,X1) becomes 

more complicated as follows (the details are omitted for page limit).  
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where P(f) is the total power function (when Vdd/Vbs scaling is 

applied) with a normalized frequency f as the input argument, p0(w0) 

and p1(w1) are the PDF’s of program regions N0 and N1 as 

exemplified in Figure 1. In Eqn. (1), the total power function P(f) is 

no longer a simple function (such as P ~ f3), but more complicated 

one (which will be presented in Section 4). In Eqn. (1), in order to 

                                                                 

2 In reality, the X-axis of PDF is quantized into multiple bins as 

explained in Section 5. 

obtain the minimum average energy consumption E, X0 cannot be 

determined independently from X1. They need to be determined 

simultaneously. In the case of n program regions, n workload 

estimations { X0, X1, …, Xn } for the minimum average energy 

consumption need to be obtained simultaneously. Thus, the original 

bottom-up traversal method in [7] cannot be applied in this case.  

In summary, given n program regions (and their PDF’s), we need 

to find a set of workload estimations { X0, X1, …, Xn } giving the 

global minimum of average energy consumption. Since the total 

power function is not an analytical function, we need numerical 

solutions to find the global minimum. In this paper, we present a 

numerical solution to this problem. 

4. Total Power Function in Combined 

Vdd/Vbs Scaling 
This section presents the total power function and its dependency 

on temperature when combined Vdd/Vbs scaling is applied. Given a 

frequency requirement, we can obtain a pair of Vdd and Vbs values 

that give the minimum total (switching and leakage) power 

consumption. In this section, we present our total power function 

and associated pair of Vdd and Vbs values following the method in 

[3].  

Switching power PSW is calculated as follows.  

PSW = Ceff * Vdd
2 * f            (2) 

where the effective capacitance Ceff is given in Table 1. Leakage 

power PLeak is obtained as follows. 

PLeak = (Vdd * Isub + |Vbs| * Ij) * Lg                (3) 

where the subthreshold current Isub is given as 

Isub = K3 * e(K4 * Vdd) * e(K5 * Vbs)                (4) 

The parameters Ij, Lg, K3, K4, and K5 are given in Table 1. The 

threshold voltage Vth and inverter delay tinv is modeled as follows. 

Vth = Vth1 – K1*Vdd – K2 *Vbs                (5) 

tinv = Ld * K6 / (Vdd – Vth)
alpha                (6) 

The operating frequency f is determined to be 1/(Ld*tinv), where 

Ld is the logic depth of critical path. Table 1 summarizes all the 

parameters used when deriving the total power function for 

combined Vdd/Vbs scaling based on the method and parameters in 

[9][10]. 

Table 1 Power parameters [9][10] 

K1 0.163 K6 5.26e-12 Vth1 0.244 

K2 0.153 K7 -0.144 Ij 4.8e-10 

K3 5.38e-7 Vdd0 1 Ceff 1.11e-9 

K4 1.83 Vbs0 0 Ld 35 

K5 4.19 alpha 1.5 Lg 4e6 

Cr 1e-6 Cs 4e-6   

Figure 2 (a) shows the total power function and the 

corresponding pair of Vdd and Vbs values. Vdd (Vbs) ranges between 

0.5v and 1.28v (-1.0v and 0v)3. As shown in the figure, the total 

power is not an analytical function of frequency.  

                                                                 

3 Note that the frequency range is between 1GHz and 6GHz. This 

range is higher than the critical frequency in [3]. 
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Figure 2 Total power function in combined Vdd/Vbs scaling 

Figure 2 (b) shows the trend of total power consumption as 

temperature varies. We model the temperature dependency of 

leakage power as follows [12]. 

I(Temp) = Is * exp(- A / (Temp + 273 – B))          (7) 

where Is is the leakage power at room temperature and parameters A 

and B are 606.53 and 192.02, respectively [12]. 

In our experiments, we use the total power function presented in 

this section. Note that the presented method in Section 5 does not 

necessarily depend on the total power function presented in this 

section. Thus, any total power functions, e.g., those obtained from 

slower processors or real measurements, can be used in the 

presented method.  

5. Presented Numerical Method 
In this section, first we explain our terminology, a numerical 

solution based on an iterative improvement, and how to calculate 

energy consumption with arbitrary total power function under 

software runtime distribution. 

5.1 Terms and Notations 
Node: Since we divide the whole program into a set of program 

regions, we consider the entire program as a graph where nodes 

correspond to program regions and arcs to the control dependency 

between nodes. Thus, we use two terms, node and program region, 

interchangeably. In our notations, Ni is the node with index i. N0 is 

the node corresponding to the entry program region. 

Runtime Distribution: We regard the runtime distribution of 

program region Ni a random variable wi. We obtain the runtime 

distribution by extensive profiling to be explained in Section 6. In 

reality, we have the PDF of wi as a function with M bins (M=32 in 

our experiments). wi
k denotes the representing value (execution 

cycle) of k-th bin, and p(wi
k) is the probability of the bin.  

Remaining Execution Cycles: We profile the maximum (WTi), 

average (ATi) and minimum (BTi) numbers of execution cycles from 

the beginning of node Ni to the end of program. 

Time to Deadline: Ti is a random variable representing the 

remaining time to deadline at the beginning of node Ni.  By 

definition, the remaining time to deadline at the entry node T0 

equals to the given deadline D. The distribution of Ti is represented 

as a PDF with L bins (L=256 in our experiments). Ti
j is the 

representing value (time to deadline) of j-th bin, and q(Ti
j) is the 

probability of the bin. Note that the distribution of T0 is trivial as 

follows. 
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We explain how to calculate PDF q(Ti
j) in Section 5.3.  

Estimated Workload: We denote the estimated workload of node 

Ni as Xi, which is the variable we want to determine for each node 

so that the average energy consumption under runtime distribution 

is minimized for the whole program. 

Performance Setting Point (PSP): The PSP is a code location 

where the performance level of processor is adjusted. Each program 

region has a PSP at its beginning. In terms of software code, we 

insert, at the PSP, a function for performance setting, PS() as 

follows4. 

PS(i) { // for node Ni 

       Ti = Get_Time_to_Deadline(); 

        fmin = Get_Min_Required_ Freq(i,Ti); 

        f =  max(Xi/Ti, fmin);  // Xi was calculated at design time. 

       Set_Freq_Voltages(f);  /* Adjust Vdd and Vbs as in Figure 2 */ 

}           

As shown above, in order to meet the given deadline, function 

PS() first calculates the minimum required frequency fmin by calling 

function Get_Min_Required_Freq(). The details of this routine can 

be found in [7] and we omit the details here. Note that the presented 

DVS method satisfies the given deadline. In our work, we insert 

PSP’s manually at the boundaries of compute-intensive loop 

iterations. Automatic insertion of PSP’s will be an interesting topic 

and we will investigate it in our future work. 

5.2 Workload Estimation 
Now we present the numerical solution to obtain the set of 

workload estimation Xi’s such that the average total energy 

consumption (as illustrated in Eqn. (1)) is minimized. Figure 3 

gives a pseudo code of the presented solution. 

1 Find_All_Workload_Estimations() {

2 X
i
= WT

i
;    /*  for all i = 0 ~ N-1 */     /* Initial Solution */

3 E
best

= Calculate_Average_Energy();   /* In Section 5.4 */

4 Do {    /* Main Loop */

5 for i = 0 to N-1 

6 { Xi = Find_Single_Workload_Estimation(i, BTi, WTi); }

7 E = Calculate_Average_Energy();

8 if  (E < E
best

) { E
best

= E; Save_Current_Estimations(); }

9 else break;  /* No improvement in the while loop */

10 } while ( loop_count++ < MAX_COUNT)

11 }
 

Figure 3 An iterative solution 

The basic idea of presented solution is that we tackle one variable 

(workload estimation of a node) at a time iteratively until there is no 

further reduction in average total energy consumption. First, all the 

workload estimations Xi’s are set to the worst-case remaining 

                                                                 

4 Note that we take also voltage transition delay into account in our 

implementation of PS() as in [7]. 



execution cycles WTi’s as the initial solutions (line 2 in Figure 3). 

Then, the expected energy consumption for this solution is 

calculated as will be explained in Section 5.4 (line 3). In the main 

loop (lines 4–10), we obtain the workload estimation of each node 

that gives the minimum average energy consumption while 

assuming the other workload estimations are set to the current set of 

Xi’s (line 6). Function Find_Single_Workload_Estimation(), which 

gives the workload estimation, will be explained later in this 

subsection. The function returns a new workload estimation Xi (line 

6). Once all the nodes are processed, we calculate total energy 

consumption with new workload estimations (line 7), and update 

the best case if there is any improvement (line 8). This main loop is 

repeated for a given number of iterations (MAX_COUNT, line 10). 

Figure 4 shows the pseudo code of function Find_Single_ 

Workload_Estimation(). The function sweeps candidate values of 

workload estimation within the given range of possible workload 

estimation (between minimum and maximum remaining cycles, i.e., 

BTi and WTi). For each candidate value, first we update the PDF’s 

of time to deadline Ti for all the other remaining nodes (line 4 in the 

figure). It is because Ti’s for the remaining nodes (nodes to be 

executed after node Ni) change depending on how much cycles node 

Ni spends. Thus, depending on the choice of Xi, the PDF’s of time 

to deadline Ti’s for all the remaining nodes need to be updated 

consequently. We explain how to update the PDF’s of time to 

deadline Ti (in function Update_PDF_Time_to_Deadline_ 

Recursively()) in Section 5.3. 

1 Find_Single_ Workload_Estimation(i, MIN, MAX) {

2 E
best

= MAX_VAL;

3 for Xi = MIN to MAX step STRIDE {

4 Update_PDF_Time_to_Deadline_Recursively(i, Xi );

5 E = Calucate_Average_Energy();

6 if (E < E
best

) E
best

= E; X
best

= X
i
;

7 } 

8 return Xbest ; }  
Figure 4 Function to find single workload estimation 

Figure 5 illustrates an example result of such a sweep (lines 3—7 

in Figure 4) to find the workload estimation. As shown in Figure 5, 

the sweep locates the workload estimation (inside the rectangle in 

the figure) giving the minimum average energy consumption. 
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Figure 5 An example of single workload estimation 

5.3 Derivation of the PDF’s of Time to Deadline 
The PDF of time to deadline of node N0, T0 is trivial as shown in 

Eqn. (8). Figure 6 shows the pseudo code of PDF derivation for the 

other nodes. Figure 7 illustrates the PDF updating. Assuming that 

the PDF updating is applied to two nodes N0 and N1 (N1 starts to 

execute after N0 finishes), the figure shows the runtime distribution 

(in PDF) of N0, p(w0) and its PDF of time to deadline T0, q(T0) in 

the upper part. The figure illustrates how to derive node N1’s PDF 

of time to deadline q(T1) from the two PDF’s, p(w0) and q(T0). 

Suppose that X0 = 12 in the loop of Figure 4 (lines 4—6) and that 

function Update_PDF_Time_to_Deadline_Recursively(0,12) is 

called (line 4 in Figure 4). 

1 Update_PDF_Time_to_Deadline (i,Xi) {

2 Ti+1
l=0.0;    /*   l = 1 ~ L  */

3 for j = 1 to L {

4 for k = 1 to M {

5 Tused = wi
k / (Xi /Ti

j ) ;

6 Tremain = Ti
j – Tused;

7 prob = q(Ti
j)*p(wi

k);

8 l = Get_Bin_Index_T(Tremain);

9 Ti+1
l = Ti+1

l + prob; 

10 } } }

11

12 Update_PDF_Time_to_Deadline_Recursively (i, Xi) {

13 for (m = i to N) {

14 Update_PDF_Time_to_Deadline(m, Xm)

15 } }  
Figure 6 Functions to update the PDF, q(Ti) 

Now we calculate the PDF of node N1’s time to deadline, q(T1). 

Since T0
L = 12 as shown in the middle of Figure 7, we set frequency 

at N0 to 1 (=X0/T0
L). Considering the execution cycle of node N0, w0, 

we can have different probabilities for different w0
k values. For 

instance, the probability that node N0 takes w0
2 (= 3) clock cycles, 

p(w0
2=3) is 0.4 as shown in Figure 7. In this case, since node N0 

takes 3 cycles (=w0
2/(X0/T0

L) as in line 5 of Figure 6), only 9 cycles 

(=12-3) remains as the time to deadline for node N1 (line 6 in Figure 

6). Thus, the probability that T1 has 9 cycles of time to deadline, 

q(T1
3=9) becomes 0.4 (=p(w0

2)* q(T0
L) = 0.4*1.0) as the two arrows 

in Figure 7 illustrates (also, line 7 in Figure 6). All the probabilities 

of the other bins for T1 are calculated in the same way. 
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Figure 7 Updating the PDF of time to deadline 

Based on function Update_PDF_Time_to_Deadline(), function 

Update_PDF_Time_to_Deadline_Recursively() in Figure 4 can be 

easily implemented as shown in Figure 6 (lines 12—15).5 

5.4 Calculating Average Energy Consumption  
When the workload estimations are once determined, function 

                                                                 

5  For simplicity, we assume a sequential chain of nodes in this 

explanation. However, in the case that there are multiple children 

or parents for a node (i.e. conditional branches), the above 

algorithm should be slightly modified to include branch 

probability and breadth-first iteration as in [7]. However, the 

extension is trivial and hence omitted for brevity here.  



Calculate_Average_Energy() gives the average total energy 

consumption for the workload estimations. First, the energy 

consumption of node Ni can be calculated as follows. 
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where, Xi is a constant in this case while wi and Ti are random 

variables with their PDF’s, p(wi) and q(Ti). The average energy 

consumption of node Ni , ei can be calculated as follows. 
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In consquence, the average total energy consumption of the 

whole program is calculated by summing the ei’s each multiplied by 

the probability of executing the corresponding node to account for 

conditional branches [7]. 

5.5 Consideration of Temperature Conditions 
In order to consider that the power–frequency characteristic 

changes as temperature, we propose a simple approach to adapt the 

presented method to varying temperature conditions. First, we select 

a number of representative temperatures (e.g. 25, 50, 75, 100 ℃), 

and establish the total power function PK(f) for each of those cases. 

We make a set of workload estimations for each representative 

temperature. Note that these calculations are all done at design time. 

During the runtime, the DVS algorithm obtains temperature 

information by consulting the thermal sensor and chooses the 

appropriate set of workload estimations based on the current 

temperature. Then, it performs performance setting as explained 

above. 

6. EXPERIMENTS 
In our experiments, we assume the processor power model 

presented in Section 4. We assume discrete frequencies that range 

between 1GHz and 6GHz with 500MHz step. For each frequency 

step, a set of Vdd/Vbs is applied to give an optimal Vdd/Vbs scaling as 

explained in Section 4. From the set of discrete frequencies, we 

select a frequency level, which is the lowest but higher than or 

equal to the frequency calculated in function PS(), as the required 

performance level. We also prepare the power models at four 

different temperature conditions, 25, 50, 75, and 100℃. 

Voltage transition time is assumed to be 200µs. The energy 

consumption of voltage transition, Es is modeled as follows [4]. 

Es = |∆Vdd|
2*Cr + |∆Vbs|

2*Cs             (11) 

The runtime overhead of performance setting function call PS() and 

that of voltage/frequency transition are assumed to be 1k cycles and 

50µs, respectively6. The delay overhead of voltage transition is also 

taken into account in function PS() as in [7] when checking whether 

the deadline constraint can be met. 
When software execution finishes before the deadline, we apply 

power and/or clock gating. If the remaining time is less than 1ms, 

we apply only clock gating. Thus, in this case, leakage power is 

                                                                 

6  Regarding the voltage transition overhead, 50µs, we take a 

conservative approach that processor does not perform 

computation during the transition. The runtime overhead of 

function PS() is negligible in our examples (in reality also) since 

the spacing between two consecutive PSP’s is in the order of 

millisecond as shown in Table 2. 

consumed from the end of software execution to the deadline. If the 

remaining time is longer than 1ms, we apply power gating, after the 

1ms period of clock gating, until the deadline. We assume also that 

processor power gating takes 1ms. 

We apply the presented method to four multimedia software 

applications: H.264 decode, MPEG4 decode/encode, and MP3 

decode. We insert PSP’s manually at the boundaries of sets of loop 

iterations in the source code of the applications as in [7]7 . We 

obtain the distribution of software runtime after running 

representative benchmarks for each application on the PC 

(Pentium4, 2.8GHz). For H.264 and MPEG4, we use the same 

benchmarks that are used in [7]. Table 1 gives the summary of 

applications. Note that we set practical deadlines on the applications 

to account for the real multi-task software execution environment. 

For instance, OS consumes a portion of processor cycles for its 

housekeeping operation, e.g. timer. 

Table 2 Software programs used in the experiments 

Application # PSP’s Deadline 

H.264 Decode (H.264) 5 30 ms (33 fps) 

MPEG4 Decode (MPEG4-d) 5 30 ms (33 fps) 

MPEG4 Encode (MPEG4-e) 10 40 ms (25 fps) 

MP3 Decode (MP3) 6 20 ms8 

Figure 8 shows the runtime distribution (PDF) of five nodes for 

H.264 and MPEG4-d, respectively. It shows the ratio of maximum 

to minimum execution cycle for each node (X-axis). It also shows 

the relative portion (numbers in rectangles) of execution cycles of 

each node to the total execution cycle. For instance, the fourth 

program region of H.264 has the ratio of 6.09 (maximum execution 

cycle is 6.09 times bigger than minimum execution cycle) and 

consumes 9.3% of total execution cycle. As shown in the figure, 

H.264 gives more runtime distribution than MPEG4-d. This fact is 

reflected in the experimental results in Figure 9. 5.72 3.88 4.75 6.09 5.01
00.050.10.150.20.25

1 2 3 4 5 01234
567 13.14

2.60 2.12 2.29 2.0400.10.20.30.4
0.50.6

1 2 3 4 5 02468
101214Probability Probabilitymax/min max/min

Node# Node#

18.7% 25.0% 21.7% 9.3% 25.3%

4.0% 20.1% 24.4% 23.0% 30.0%

(a) (b)

 

Figure 8 Runtime distributions of H.264 (a) and MPEG4-d (b) 

Figure 9 shows the comparison of energy consumption for the 

four software applications. We apply three methods of workload 

estimation: worst-case remaining execution cycle-based method 

                                                                 

7 To find suitable PSP locations is another interesting problem, but 

is beyond the scope of this paper. Practically, however, 

programmers can easily identify a few candidates among major 

loops and functions in their codes. 

8  In the case of MP3 application, the deadline of 20ms is set 

assuming a multi-task software execution environment where 

most of processor cycles are consumed by other compute-

intensive user programs, e.g. web browsing, game, multimedia 

searching, etc.  



(WT), e.g. [13], average remaining execution cycle-based method 

(AT), and the proposed one (Ours). The results are normalized to 

the WT method. In order to analyze the effectiveness of those 

methods, four different temperatures are assumed as shown in the 

figure. The figure also shows the energy reduction (%) of our 

method compared with the best of WT and AT, i.e. min(WT, AT). 

The presented method gives up to 44% reduction in energy 

consumption.  

 
Figure 9 Energy consumption comparison  

Figure 10 explains how the presented method gives better energy 

efficiency than the other two. The figure shows the frequency 

change of the three methods during the execution of H.264 decode 

application for three frames. As shown in the figure, WT starts at a 

high frequency since it assumes the worst-case execution for the 

remaining execution. However, as the program run advances, 

performance level drops rapidly and the program finishes earlier 

than the other two cases. AT shows the opposite behavior. In the 

beginning, assuming the average execution cycle as the remaining 

workload, it starts with a very low frequency level. However, due to 

the too optimistic estimation in the beginning, the performance level 

needs to be increased at the end of execution to meet the given 

timing constraint, in this case, 30ms for one frame decoding. We 

call each of the above frequency settings early and late high 

frequency setting, respectively. As shown in Figure 2, at high 

temperatures, high frequency levels suffer from the penalty of large 

leakage power. Thus, both WT and AT suffer from this penalty. The 

presented method takes a balanced approach. As shown in Figure 

10, it starts a performance level between those of WT and AT and 

keeps the balanced position to the end of execution thereby 

avoiding the penalty of high frequency. 

 

Figure 10 Comparison of frequency settings  

The results of Figure 9 are explained by both (1) the difference of 

early and late high frequency settings between WT and AT and (2) 

the runtime distribution shown in Figure 8. In H.264 and MP3, WT 

suffers from large energy consumption at high temperatures. It is 

because (1) their runtime distribution (H.264’s is shown in Figure 

8) has high max/min ratio (thus, worst-case estimation can be too 

pessimistic) and (2) the penalty of its early high frequency becomes 

dominant at high temperatures.  

In contrast, in the cases of MPEG4-d and MPEG4-e, AT gives 

inferior results to the others as temperature increases. The max/min 

ratio is small in these cases (MPEG4-d’s max/min ratio is shown in 

Figure 8). Thus, the penalty of early high frequency in WT 

diminishes since the workload estimation based on worst-case 

execution cycle gives more accurate estimation than in the case of 

high max/min ratio. However, AT still suffers from the penalty of 

late high frequency settings thereby giving inferior results. 

7. CONCLUSION 
In this paper, we presented a DVS problem based on Vdd/Vbs 

scaling and software runtime distribution. We explained the 

problem mathematically and presented a numerical solution to solve 

this problem. The experimental results show that the presented 

method gives significant energy reduction, up to 44%, especially 

when temperature is high and leakage power dominates. Currently, 

we are working on applying the presented method to multi-

processor DVS and on developing adaptive methods that exploit the 

dynamically varying software runtime distribution. 
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