
Performance Analysis of SoC Architectures
Based on Latency-Rate Servers

Jelte Peter Vink
Eindhoven University of Technology

Eindhoven, the Netherlands
E-mail: jelte.peter.vink@philips.com

Kees van Berkel
NXP Semiconductors Research

Eindhoven, the Netherlands
E-mail: kees.van.berkel@nxp.com

Pieter van der Wolf
NXP Semiconductors Research

Eindhoven, the Netherlands
E-mail: pieter.van.der.wolf@nxp.com

Abstract
This paper presents a method for static performance

analysis of SoC architectures. The method is based on a
network calculus theory known as LR servers. This network
calculus is extended and applied to make it support SoC
performance analysis. Performance requirements of subsys-
tems are elegantly captured as traffic flows and associated
latency constraints. The SoC infrastructure is modeled as
a set of LR servers to validate that the worst-case delays
in handling the traffic flows meet the latency constraints.
A multi-channel DVB-T set-top box case study demonstrates
the power of the method. Key architecture choices, such as
schedule or interconnect variant, can be varied easily to
support exploration of architecture options.

1. Introduction
At the heart of consumer products for mobile communica-

tions and digital entertainment is typically a complex System-
on-Chip (SoC) that performs a broad range of functions.
These functions are implemented by subsystems on the SoC,
where a subsystem may contain one or more IP blocks
like programmable processors and / or dedicated hardware
blocks. The subsystems are connected by a SoC infrastructure
consisting of interconnect and memory.

A SoC architect has many design options for a SoC archi-
tecture that need to be explored. Simulation-based approaches
to architecture exploration typically require large efforts for
building models of the SoC architectures and have long
execution times. Also they do not provide guarantees that
performance requirements are met under all circumstances,
e.g. for all video content and for all possible interactions in
the SoC infrastructure.

We propose a method for static performance analysis that
can be used for early exploration of SoC architectures. The
method can be used for worst-case analysis, so that the
required performance can be guaranteed. Models can be
constructed quickly and evaluated with short execution times.
The method supports the SoC architect in gaining insight in
the design problem at hand by providing valuable feedback
for the metrics of interest, such as the required size of a
queue in the SoC infrastructure. It helps him to set budgets
for execution times, bandwidths, latencies etc that need to be
met in downstream design activities to satisfy performance
requirements.

Our method for static performance analysis is based on
network calculus theory [1] [2]. Performance requirements

of subsystems are captured as a set of traffic flows with
associated latency constraints. The SoC infrastructure is mod-
eled as a set of interconnected network elements. We then
verify for the specified traffic flows whether the worst case
delays incurred by the SoC infrastructure satisfy the latency
constraints associated with these traffic flows.

The aim of this paper is to show that an extended form
of the “Latency-Rate Servers” network calculus [2] can be
applied for fast exploration of SoC architectures. We extend
and apply the basic network calculus theory in order to make
it support the performance analysis of SoC architectures.
We show that the extended network calculus is sufficiently
expressive to capture SoC architectures in concise models.
We present a realistic design case of industrial complexity
to show how different architecture options, such as schedule
or interconnect variant, can be modeled and evaluated early,
enabling the SoC architect to identify the valid options that
meet the required deadlines.

In section 2 we introduce a network calculus theory known
as Latency-Rate servers. In section 3 we discuss related work.
In section 4 we present our performance analysis method.
In section 5 we discuss a multi-channel DVB-T set-top box
case study and we present the results of the analysis method.
Finally, in section 6 we draw conclusions.

2. Latency-Rate servers
In network calculus, traffic can be characterized by an upper

bound. In its basic form, this upper bound is a monotonously
increasing function c(t) = σ + ρ · t, where σ represents the
burstiness constraint in words and ρ the rate of the traffic
stream in words

s . In Figure 1, b1 is a traffic stream on a
particular link during a particular time interval. b1 is upper
bounded by c1. Network calculus provides an elegant way to
describe bounds on traffic for a sliding window of arbitrary
size with just two parameters (i.e. (σ, ρ)).

Fig. 1. Traffic modeling of an LR server, if the input is between c1
and c2 then the output of the LR server is between c1 and c3

978-3-9810801-3-1/DATE08 © 2008 EDAA

Data is sent by making use of packets. If a packet with size
L words is transferred over a link with capacity C words

s , it
takes L

C s to transfer that packet.

Fig. 2. A system consisting of a Latency-Rate server, 3 producers and
4 consumers [2] (“Qi” denotes a queue)

For modeling and analyzing communication networks, Stil-
iadis and Varma [2], [3] have introduced a network element
called Latency-Rate server (LR server). In Figure 2 a model
of the internal structure of an LR server is shown. More than
one producer transmits traffic (represented by σi and ρi) to
an LR server. This traffic is temporarily stored in queues. A
multiplexer combines the traffic according to an arbitration
policy. Finally, the traffic is demultiplexed and each packet is
sent to a consumer.

The behavior of an LR server is determined by the latency
(Θi) and the allocated service rate in words

s (ρi) for input
traffic stream i. An LR server guarantees an output service
rate ρi, a time period Θi after receiving packets of stream i
(see Figure 1). So, if b1 is between c1 and c2 (i.e. ρ · t), then
b2 has a lower bound of c3 (i.e. ρ · (t−Θ)).

The delay of a packet of stream i (i.e. Di) for a chain of
m LR servers is upper bounded by (see Figure 1)

Di ≤
σi
ρi

+
m∑
j=1

Θj
i (1)

The maximum backlog in words of the kth LR server in
a chain of LR servers for stream i (i.e. Qki) is upper bounded
by (see Figure 1)

Qki ≤ σi + ρi ·
k∑
j=1

Θj
i (2)

This determines the required queue size for the kth LR
server.

3. Related work
Cruz has pioneered a network calculus [1], originally

intended for computer networks. He made a mathematical
framework for deriving worst-case bounds on the performance
(e.g. the delay). He assumed that R(t) represents the instan-
taneous rate in words

s of a stream flowing on a link at time t.
Then, this traffic can be upper bounded by a monotonously
increasing function c(t), such that

∫ t2
t1
R(t) ≤ c(t2 − t1),

(∀t1, t2 : 0 ≤ t1 ≤ t2), where c(t) = σ + ρ · t. Stiliadis and
Varma extended this work and introduced the LR server as
an abstract network element.

Chakraborty and Thiele define bounds for arrival curves
and service curves of traffic streams in [4]. They present

a task-level model that captures some properties of stream
processing applications and supports investigation of task
interactions. Jersak et al. [5] also focus on the task interaction.
Their event streams are somewhat similar to the traffic model
we employ.

In our paper, the focus is on the traffic between the
subsystems and the SoC infrastructure, where we assume that
the deadlines have been specified for the subsystems and
do not depend on the interaction between subsystems. The
techniques in [4] may be used for deriving such deadlines. Our
techniques can then be applied to derive the actual execution
times of tasks in order to check that the deadlines can be met.

In [6] Henriksson applies network calculus for the analysis
of memory access latencies. He supports request-response
streams and pipeline degrees to obtain tight bounds in the
analysis. We adopt these concepts and derive expressions for
total delay.

4. Performance Modeling and Analysis
The method of Stiliadis is used as foundation for our

performance analysis method. The (σ, ρ) traffic model is used
to characterize traffic and LR servers are used for modeling
SoC infrastructures. This method was not originally devised
for SoC performance analysis. We observed that the method
of Stiliadis does not support
• the total delay for handling data consisting of multiple

packets starting from the first word of the first packet
until the last word of the last packet. Stiliadis only
derives delays for individual packets where delay is
defined as the time between last-word-in and last-word-
out.

• the total delay for sending a request to a subsystem and
receiving a response to that request.

• the total delay for sending requests, where the number
of outstanding requests is limited.

• a model of a memory system.
• SoC arbitration policies (e.g. TDMA).
In [6] the concepts of request-response stream and pipeline

degree are introduced and a DRAM model is derived. The
contribution of this paper consists of deriving expressions for
the total delays with support for three traffic characteristics
(dropping impulse assumption, request-response stream and
pipeline degree) and a SoC arbitration policy (TDMA).

For the performance analysis method, we have made the
following assumptions.
• There are no dependencies between the different traffic

streams of a subsystem.
• The input of a subsystem is according to specified traffic

characteristics.
• The output of a subsystem can always be delivered (e.g.

buffers are large enough to prevent overflow).

4.1 Dropping impulse assumption
Stiliadis assumes that a packet has been serviced when its

last word has left the server. Then, the arrivals and departures
of packets are considered as impulses (impulse assumption).
Therefore, he uses last-word-in, last-word-out to determine

the delay. Because the total delay is required for sending
packets from Subsystem 1 via LR servers to Subsystem 2,
first-word-in, last-word-out is required. Then, the arrival time
of the first packet in the first LR server is part of the total
delay. Therefore, a term L

C is added to the total delay of
Equation (1) [7].

4.2 Request-response streams

Subsystems interact via the SoC infrastructure. Stiliadis
only determined the maximum delay for a packet traveling
from one subsystem to another. In some cases, a subsystem
sends requests via the SoC infrastructure to another subsystem
and waits for responses from that subsystem. This type of
traffic stream is called a “request-response stream” [6]. An
example is a load request and a corresponding load response
from a memory system. We extend the method of Stiliadis
with request-response streams and derive an equation for the
delay of such streams.

Assume the situation of Figure 3. Subsystem 1 produces
requests and sends these requests via a chain of m LR
servers, with a total latency of

∑m
j=1 Θj

req, to Subsystem 2.
Subsystem 2 produces responses to the requests and sends
these responses via a chain of m′ LR servers, with a total
latency of

∑m′

j=1 Θj
resp, back to Subsystem 1. Furthermore,

Subsystem 2 requires Dproc s to produce a response, after
a request is received. Finally, for each request exactly one
response is generated.

Fig. 3. Request-response stream, Lreq = Lresp for clarity

Assume that the request flow b1 is characterized by σreq,
ρreq and packet size Lreq words. Furthermore, the response
flow b3 is characterized by σresp, ρresp and Lresp. Finally,
assume that Lreq

ρreq
= Lresp

ρresp
. Then, the number of requests and

responses per time unit is the same.
If the request flow is bounded by c1 and c2 (see Figure

3), the LR servers guarantee that these requests arrive at
Subsystem 2 (Lρ −

L
C) s before c4. Then, at most Dproc later,

the responses can be sent back to Subsystem 1. Therefore,
the response stream b3 is lower bounded by c6. The responses
arrive at Subsystem 1 before c8, because of the guarantees of
LR servers.

Then, the total delay for x words of requests (i.e. Dtotal)

is upper bounded by [7]

Dtotal ≤ t3 − t0

= (t1 − t0) + (t3 − t1)

=

(⌈
x

Lreq

⌉
· Lreq

ρreq
+

m∑
j=1

Θj
req −

Lreq

ρreq
+
Lreq

C

)

+

(
Dproc +

m′∑
j=1

Θj
resp +

Lresp

C

)
(3)

where d x
Lreq
e · Lreq

ρreq
is the delay for sending x words,∑m

j=1 Θj
req the latency of the first chain of LR servers, Lreq

ρreq

the improved delay bound as described in [2], Lreq

C the delay
of sending a request packet, Dproc the processing delay of
Subsystem 2,

∑m′

j=1 Θj
resp the latency of the second chain of

LR servers and Lresp

C the delay of receiving the last response.
The backlog of the LR servers can still be determined by

the original equation of Stiliadis (Equation (2)).

4.3 Pipeline degree

For most subsystems in SoC architectures, the number of
outstanding requests is limited. In [6] the pipeline degree
of a traffic stream is defined as the maximum number of
outstanding requests. A higher pipeline degree can decrease
the maximum delay of a traffic stream, but increases the
complexity of the subsystem. We introduce the pipeline
degree into the method of Stiliadis and derive an equation
for the delay.

Assume that n is the pipeline degree. Then, the (n+ k)th

request cannot be sent earlier than the kth response has
been received. Assume the same situation as in Figure 3,
but now the number of outstanding requests is limited. Then,
the maximum delay for x words of requests can be split
into periods of sending n requests and waiting until the first
response arrives (i.e. D1, see Figure 3). Therefore [7],

D1 ≤ Lreq

C
+

m∑
j=1

Θj
req +Dproc +

m′∑
j=1

Θj
resp +

Lresp

C
(4)

Dtotal ≤
⌈ x

n · Lreq

⌉
·D1 (5)

+

(⌈ x

Lreq

⌉
− n ·

(⌈ x

n · Lreq

⌉
− 1

)
− 1

)
· Lresp

ρresp

A maximum of n request packets of Lreq words (i.e. n ·
Lreq words) can be outstanding. Then, there are d x

n·Lreq
e

periods of D1. In total, d x
Lreq
e request packets have to be

processed by Subsystem 2. After d x
n·Lreq

e periods of D1, at
least n·(d x

n·Lreq
e−1)+1 response packets have been received

by Subsystem 1. Then, at most (d x
Lreq
e−n·(d x

n·Lreq
e−1)−1)

response packets still have to be received. This takes at most
Lresp

ρresp
s for each response packet.

The backlog of the LR servers can still be determined by
the original equation of Stiliadis (Equation (2)). σi is now
lower bounded by [1] [7]

σi ≥ ni · Li ·
(

1− ρi
C

)
(6)

4.4 DRAM memory model
A DRAM memory system has some specific characteristics

that are important for the performance analysis of SoC archi-
tectures. The method of Stiliadis assumes that the processing
delay of a packet is proportional to the size of the packet. In
case of a memory system, this proportionality does not hold
[8]. This can be taken care of by a so-called packet stretcher as
described in [6]. Using the model of a DRAM memory system
as described in [6], the DRAM controller can be modeled as
an LR server.

4.5 TDMA
A useful SoC arbitration policy is TDMA. TDMA uses a

periodic schedule. In each round, the input streams of an LR
server using TDMA are served in a Round Robin fashion.
The maximum number of packets of stream i (i.e. wi) that
the LR server can serve in a round is determined in advance.
Let assume that V streams share an LR server with TDMA as
arbitration policy and that the packets of stream i have a size
Li. Then, the maximum amount of service stream i receives
from the LR server (i.e. φi) is φi = wi · Li words.

The total amount of service the streams receive in one
round from the LR server is called a “frame”. The size of a
frame (i.e. F) is F =

∑V
i=1 φi words.

The latency of a packet is the maximum amount of time
between the moment the first word of that packet arrives in
the LR server and the moment that the last word of the packet
has left the LR server. Assume the LR server has a maximum
rate of C words

s . In the worst case scenario the packet has to
wait F−φi

C s before the stream is serviced. The packet itself
is serviced in Li

C s. Therefore, the latency of stream i for
TMDA is [7]

ΘTDMA
i =

F − φi + Li

C
(7)

The LR server with TDMA allocates a maximum rate of
φi

F · C to stream i.
In a similar way the Θi can be derived for other arbitration

policies (see [7]).

5. Multi-channel DVB-T set-top box case study
A multi-channel DVB-T set-top box case study is used to

illustrate the power of the performance analysis method. We
analyze the performance of several schedule and interconnect
variants.

5.1 System description
Digital video signals are received by an antenna (see

Figure 4) and sent via the Radio Front-End (RF) to the
DVB-T Channel Decoders (CDs). Four DVB-T CDs are used
to decode four different channels. Two decoded channels
are stored, two decoded channels are processed by H.264
decoders. The output of the H.264 decoders can be used for
dual screen or dual window functionality. The scope of this
case study is indicated by the dotted shape in Figure 4.

A possible implementation is shown in Figure 5. The four
DVB-T CDs are combined on one subsystem. To temporarily
store and exchange data between subsystems, an external

Fig. 4. Multi-channel DVB-T set-top box functional overview

DRAM memory system (indicated by DRAM controller and
DRAM) is used. The DRAM controller is modeled as an LR
server, using TDMA as arbitration policy. Each subsystem is
connected via a private link to the DRAM controller. The
output of the DRAM is sent back to the subsystems via a
bus. The burstiness of the input and the output of the DRAM
controller is constrained by using regulators (indicated by
“R”) (see [9]).

Fig. 5. Private links interconnect

5.2 Schedule variants
The first step is to characterize all traffic streams between

the subsystems and the memory system. One of the traffic
streams is the traffic of the DVB-T CD to perform the de-
coding. The four DVB-T CDs are mapped onto one processor
and are active alternately. A DVB-T CD outputs an interleaved
stream of so-called OFDM -symbols of 20 kB. In each active
period of a DVB-T CD, two OFDM -symbols have to be
loaded from the DRAM into on-chip buffers (ai and bi).
During an active period, a new OFDM -symbol is created in
an on-chip buffer (ci) which has to be written to the DRAM.

Fig. 6. Repeating pattern of Schedule 1, “S” represents sent read or
write request, “D” represents deadline of request, the read buffers (a1,
a2, b1 and b2) are used during “Use” and the write buffers (c1 and c2)
are filled during “Create”

One option is to load the OFDM -symbols when the
previous DVB-T CD is active (see Figure 6). This means

that 40 kB have to be loaded within 1
4 OFDM -period (i.e.

1
4 ·896 µs). When the DVB-T CD becomes active, the required
OFDM -symbols are available. When the next DVB-T CD
becomes active, the produced OFDM -symbol is written to
the DRAM. This variant is called Schedule 1. Assume that
Lreq = 8 bytes and Lresp = 128 bytes. ρreq represents the
rate of the read requests

ρreq ≥

⌈
2 · 20 kB

128 B

⌉
requests per

1
4
OFDM period (8)

The latency constraint is 2 blocks of 20 kB, i.e. 313 packets
of 128 bytes, within 1

4 OFDM -period. Hence, the lower
bound for the request rate ρreq is 313 · 8/(1

4 · 896 µs) =
11.2 MBps. The other traffic streams are determined in a
similar way.

An alternative schedule variant is to divide the active period
of a DVB-T CD into two equal parts. In the first part, the
two OFDM -symbols are loaded from the DRAM, in the
second part the produced OFDM -symbol is written to the
DRAM. Now, both operations have a deadline of 1

8 OFDM -
period. Therefore, the rates of this traffic are higher compared
to Schedule 1. This variant is called Schedule 2.

An overview of the traffic streams can be found in Table 1.
All traffic is to / from the DRAM. The σ of a traffic stream
can be calculated by Equation (6). Note that H.264 also needs
DRAM access for accessing private data.

Table 1. Overview of the characteristics of the traffic streams, “T”
represents an OFDM -period, “M” represents the DRAM

Schedule Between ρreq ρresp Deadline
(MBps) (MBps) (#requests

s
)

1 CD - Read 11.2 179 313 / 1
4

· T
1 CD - Write 89.7 157 / 1

4
· T

2 CD - Read 22.4 358 313 / 1
8

· T
2 CD - Write 179 157 / 1

8
· T

- CD - Write 16.0 28 / 1
4

· T
- H.264 - Read 0.500 8.00 28 / 1

2
· T

- Storage - Read 0.500 8.00 28 / 1
2

· T
- H.264 - Read 18.7 299 38880 / 1

60
- H.264 - Write 41.5 6480 / 1

50
- Video - Read 2.59 41.5 6480 / 1

50
- M - Refresh 1.02 1 / 7.81 · 10−6

A Mathematica model has been created to execute the per-
formance analysis. The input consists of values of σ, ρ, L and
n for each traffic stream and a model of the communication
infrastructure using LR servers. Then, Equations (2), (3), (4)
and (5) are used to calculate the maximum delay per traffic
stream and the required queue size per LR server. Different
TDMA-wheels, DRAM frequencies and pipeline degrees are
analyzed. Only results where the maximum delay for each
traffic stream meets the deadline are used. Per memory
frequency and per maximum pipeline degree the best solution
(i.e. the smallest queue size required for the LR server and
the regulators) is selected. The results are shown for Schedule
1 and 2 using the private links interconnect in Figures 7 and
8. Each pipeline degree has a unique color. Analyzing the
results of Schedule 1, we observe the following.
• For frequencies smaller than 150 MHz, no solution has

been found that guarantees all deadlines.

Fig. 7. Results of private links interconnect using Schedule 1

• By increasing the frequency, it is possible to meet
all deadlines with a lower pipeline degree and smaller
queues. If packets are processed faster, fewer packets
have to be in flight simultaneously.

• The queue size is monotonic in the pipeline degree and
the frequency.

• If the frequency gets higher, there is less benefit from
reducing the pipeline degree.

Fig. 8. Results of private links interconnect using Schedule 2

The deadlines for reading and writing the OFDM -symbols
are more strict for Schedule 2 compared to Schedule 1.
Therefore, a higher frequency and a higher pipeline degree
are required to meet all deadlines (see Figure 8).

5.3 Bus interconnect variant
An alternative interconnect is analyzed in combination with

Schedule 1. In a bus based interconnect variant (see Figure
9), all traffic to and from the memory system is transmitted
via one bus. Before transmitting data over the bus, a request
has to be sent to the bus arbiter. The requests are regulated
to constrain their burstiness. The bus arbiter (modeled as an
LR server with TDMA) determines the order on the bus. The

requests arriving at the DRAM controller are processed in a
First-Come First-Served fashion.

Fig. 9. Bus based interconnect

Using this interconnect variant, we get the results of Figure
10. With this bus based interconnect the traffic to and from
the memory system shares the same wires. Therefore, the
latencies of the traffic streams increase. To compensate this,
the frequency and the pipeline degree have to be significantly
higher compared to the architecture with private links to meet
all deadlines.

Fig. 10. Results of bus based interconnect using Schedule 1

5.4 Packet size
Until now, the read and write actions of the memory system

use blocks of 128 bytes. An alternative is to use blocks of
64 bytes. Then, the read and write actions have more overhead
in the memory system. The results are shown in Figure 11,
using private links interconnect and Schedule 1.

Fig. 11. Results of private links interconnect using Schedule 1 and
packets of 64 bytes

Due to the extra overhead in the memory system, a higher
frequency and a higher pipeline degree are required compared
to using blocks of 128 bytes to meet all deadlines. In cases

where all deadlines are met for a particular frequency and
pipeline degree, it is better to use blocks of 64 bytes than of
128 bytes, because substantially smaller queues are required.

6. Conclusion
We have shown that an extended form of the Latency-Rate

Server network calculus can be applied for fast exploration of
SoC architectures. Performance requirements of subsystems
are captured as a set of traffic flows, using a powerful and
elegant traffic model, and associated latency constraints. After
modeling the SoC infrastructure as a set of LR servers, it
can be verified whether the worst-case delays incurred by the
SoC infrastructure satisfy the latency constraints of the traffic
flows. Several extensions, such as request-response streams,
pipeline degree, and TDMA scheduling, were used to make
the network calculus support SoC performance analysis.

With a multi-channel DVB-T set-top box case study we
demonstrated that models of SoC architectures can be built
and evaluated quickly. The modelling time of a variant of
the case study was a couple of hours and the execution time
of the model is less than one second on a standard PC.
The case study illustrated that key architecture choices, such
as schedule or interconnect variant, can be varied easily to
support exploration of architecture options. The impact on
the required frequency, queue size and pipeline degree could
be evaluated, showing e.g. that the cheaper bus interconnect
requires a higher frequency than the private links interconnect.
We therefore conclude that the proposed method for static
performance analysis can support a SoC architect in gaining
early insight into the design problem at hand and in quickly
identifying the most promising design options.

References
[1] R. L. Cruz, “A calculus for network delay, part i: Network

elements in isolation and part ii: Network analysis.” IEEE
Transactions on Information Theory, vol. 37, no. 1, pp. 114–
141, 1991.

[2] D. Stiliadis and A. Varma, “Latency-rate servers: a general
model for analysis of traffic scheduling algorithms,” IEEE/ACM
Trans. Netw., vol. 6, no. 5, pp. 611–624, 1998.

[3] D. Stiliadis, “Traffic scheduling in packet-switched networks:
analysis, design, and implementation,” Ph.D. dissertation, 1996.

[4] S. Chakraborty and L. Thiele, “A new task model for streaming
applications and its schedulability analysis,” in DATE ’05:
Proceedings of the conference on Design, Automation and Test
in Europe. Washington, DC, USA: IEEE Computer Society,
2005, pp. 486–491.

[5] K. Richter, M. Jersak, and R. Ernst, “Performance analysis
for complex embedded applications,” International Journal of
Embedded Systems, Special Issue on Codesign for SoC, vol. 45,
no. 1/2, pp. 33–49, 2005.

[6] T. Henriksson, P. van der Wolf, A. Jantsch, and A. Bruce,
“Network calculus applied to verification of memory access
performance in SoCs,” ESTIMedia 2007, Oct 4-5 2007, Salzburg.

[7] J. P. Vink, “Performance Analysis of SoC Architectures based
on Network Calculi,” Master’s thesis, Eindhoven University of
Technology, 2007.

[8] “Mobile DDR SDRAM MT46H32M16LF,” Micron Technology,
Inc., 2004.

[9] A. K. Parekh and R. G. Gallager, “A generalized processor
sharing approach to flow control in integrated services networks:
the single-node case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp.
344–357, 1993.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

