
A Reconfigurable Application Specific Instruction Set Processor
for Convolutional and Turbo Decoding in a SDR Environment

Timo Vogt, Norbert Wehn

Microelectronic Systems Design Research Group
University of Kaiserslautern, 67663 Kaiserslautern, Germany

{vogt, wehn}@eit.uni-kl.de

Abstract
Future mobile and wireless communication networks re-

quire flexible modem architectures to support seamless ser-
vices between different network standards. Hence, a com-
mon hardware platform that can support multiple proto-
cols implemented or controlled by software, generally re-
ferred to as software defined radio (SDR), is essential.
This paper presents a family of dynamically reconfigurable
application-specific instruction-set processors (ASIP) for
the application domain of channel coding in wireless com-
munication systems. As a weakly programmable IP core, it
can implement trellis based channel decoding in a SDR en-
vironment. It features binary convolutional decoding, and
turbo decoding for binary as well as duobinary turbo codes
for all current and upcoming standards.

The ASIPs consist of a specialized pipeline with 15
stages and a dedicated communication and memory infra-
structure. Logic synthesis revealed a maximum clock fre-
quency of 400 MHz and a total area of 0.42 mm2 for a
65 nm technology. Simulation results for Viterbi and turbo
decoding demonstrate maximum throughput of 196 and 34
Mbps, respectively, and outperforms existing SDR based
approaches for channel decoding.

1 Introduction

In recent years, we have seen the emergence of an in-
creasing number of wireless protocols. Incorporating many
of these protocols, hand-held wireless devices represent al-
ready today a convergence of many disparate features, in-
cluding wireless communication, real-time multimedia, and
interactive applications, into a single platform. Next gen-
eration mobile communication networks will feature new
services, especially multi-access interoperability, with in-
creased data throughput. Thus flexibility becomes a domi-
nant aspect for the transceiver. To provide the flexibility
for supporting seamless services between various wireless
networks, there is a high demand for a common hardware
platform that can support multiple protocols implemented

or controlled by software, generally referred to as software
defined radio.

The focus of this paper is put on channel decoding in
mobile and wireless communications systems in the context
of SDR. Channel decoding is the central processing task of
the outer modem. Here convolutional codes (CC), binary
turbo codes (bTC), and duobinary turbo codes (dbTC) are
established techniques. The implementation complexity of
the encoding algorithms is negligible. The decoding algo-
rithms, however, have a very high computational complex-
ity. In [14] it was shown that channel decoding contributes,
depending on the implementation platform, about 40% to
the total computational complexity of the physical layer of
a UMTS or a WLAN 802.11a system. Similar results are
obtained by [19, 9, 7] for other systems. Hence, it is essen-
tial to provide efficient implementations for this task.

Most of today’s platforms for digital baseband process-
ing support one or just a few standards, with an embedded
channel decoder coprocessor engine especially designed
for the respective outer modem. E.g., the system-on-chip
“Greenside” platform from STMicroelectronics [21, 24] in-
tegrates two hardwired decoder coprocessors (COPRO in
Figure 1) for turbo and convolutional decoding of EDGE,
UMTS and CDMA2000. Other examples for dedicated co-
processors supporting CC and bTC for UMTS are [5, 3].
Such architectures are not suited for SDR since they do not
provide the required flexibility.

Recently, platforms for SDR [14, 18, 1, 10, 8, 20, 15]
were presented. Most of these platforms are single or multi-
ple SIMD (single-instruction multiple-data) vector process-
ing engines to support computationally intensive signal pro-
cessing tasks. However, in channel decoding algorithms,
calculations are not the bottleneck. Efficient internal data
management is key. Thus such architectures are not well
suited for channel decoding. An architecture optimized for
just this task is preferable, rather than utilizing the same
type of processor for the whole modem. This approach is
similar to today’s modems that use hardwired coprocessors
for channel decoding (see Figure 1). Our intention is to re-

978-3-9810801-3-1/DATE08 © 2008 EDAA

978-3-9810801-3-1/DATE08 © 2008 EDAA

Figure 1. Baseband modem system-on-chip “Greenside"
from STMicroelectronics [21, 24]

place the dedicated coprocessors, which are central building
blocks of the platform, by an ASIP which can be considered
as a weakly programmable processor. We will show that ef-
ficient utilization of application knowledge yields efficient
and flexible architectures, as confirmed in a design study on
a scalable reconfigurable channel decoder for future wire-
less handsets [12]. High performance combined with the
advantages of processors, namely instruction level flexibil-
ity and a programming model, are achieved by ASIPs.

In [16] the first ASIP targeting the channel coding do-
main of UMTS turbo codes was presented. It is based on a
customizable RISC processor, Tensilica’s Xtensa. The gain
in processing speed of this ASIP was limited by the classi-
cal RISC structure and its general memory architecture that
is fixed for the Xtensa platform. Total freedom in pipeline
and memory architecture design gives room for further im-
provement. Moreover, it allows to add application specific
run-time reconfigurability to the ASIP approach: thus the
flexibility requirements can be balanced between instruc-
tion level flexibility and reconfigurability.

An ASIP using this approach was proposed in [17], but it
only targets binary and duobinary turbo codes with a max-
imum of 8 states. Convolutional codes, which have in case
of large number of states similar computational complex-
ity as turbo codes, and turbo codes with 16 states are not
supported. The ASIP presented in this paper, named Flex-
iTreP (Flexible Trellis Processor), resolves this lack of code
support and furthermore achieves a higher data through-
put, as will be shown in Section 4. It is a revised and
strongly enhanced version of the processor introduced in
[22]. The enhancements are in both functionality and per-
formance. FlexiTreP now represents a whole family of pro-
cessors since it can be tailored to the application scenario by
design-time configurability. It combines run-time reconfig-
urability with design-time configurability. FlexiTreP now
implements turbo and convolutional decoding for all exist-
ing and emerging standards in the field of mobile wireless
communication systems. Moreover, detailed implementa-
tion results for FPGA and ASIC technologies are presented

Standard Codes States Rates Blocksizes Throughput

GSM CC 16,64 1/4...1/2 ...876 ...12 kbit/s
EDGE CC 64 1/4...1/2 ...870 ...62 kbit/s
UMTS CC 256 1/4...1/2 ...504 ...32 kbit/s

bTC 8 1/3 ...5114 ...2 Mbit/s
CDMA2000 CC 256 1/6...1/2 ...744 ...28 kbit/s

bTC 8 1/5...1/2 ...20730 ...2 Mbit/s
HSDPA bTC 8 1/2...3/4 ...5114 ...14.4 Mbit/s
LTE bTC 8 1/3 ...5114 ...100 Mbit/s
DAB CC 64 1/4 none ...1.1 Mbit/s
DVB-H CC 64 1/2...7/8 1624 ...32 Mbit/s
DVB-T CC 64 1/2...7/8 1624 ...32 Mbit/s
DVB-RCT dbTC 16 1/2,3/4 ...648 ...31 Mbit/s
IEEE802.11a/g CC 64 1/2...3/4 ...4095 ...54 Mbit/s
IEEE802.16 CC 64 1/2...7/8 ...4800 ...20 Mbit/s
(WiMAX) dbTC 8 1/3...7/8 ...4800 ...20 Mbit/s

Table 1. Selection of standards and channel codes

for a number of ASIP instances configured for different ap-
plication scenarios. The fabrication of an ASIP instance in
a 65nm ASIC technology is in progress.

2 Decoder Requirements
A careful analysis of channel codes incorporated in com-

munication standards reveals that most of them are using
binary convolutional and binary and duobinary turbo codes.
Although block sizes, polynomials, and coding rates differ
both within one coding scheme as well as between the cod-
ing schemes, it is possible to find commonalities for con-
volutional and turbo decoders which can be exploited for
the decoder’s architecture. The decoding algorithms of low
density parity check (LDPC) codes vary substantially from
CC and TC and are therefore not considered here.

Table 1 summarizes the relevant standards. Each stan-
dard has its own parameters for the channel encoder, such
as different constraint lengths, generator polynomials, and,
in case of turbo codes, different interleaving patterns. Thus,
the ASIP has to support a wide range of coding parameters.

Turbo decoding either utilizes the Soft-Output Viterbi
Algorithm (SOVA) or the Maximum Aposteriori Probabil-
ity (MAP) algorithm. Both of these algorithms process soft
intrinsic input and produce soft extrinsic output. However,
the SOVA has a degradation of at least 0.3dB in communi-
cations performance compared to the MAP algorithm, and
it also hits the noise floor earlier than its competitor. Hence,
the MAP algorithm is preferable over the SOVA. For convo-
lutionally encoded data, the standard decoding is performed
by the Viterbi Algorithm (VA). In contrast to SOVA and
MAP algorithm, it generates hard decision output values.

In summary, the following specifications were derived
which have to be provided by the ASIP to fullfil the flexi-
bility requirements for SDR systems:

• combined decoder for binary CC and binary and
duobinary TC decoding,

• VA and Max-Log-MAP decoding for CC,
• support of N = 16 . . .256 states for CC,

• support of N = 4 . . .16 states for bTC,
• support of N = 8 . . .16 states for dbTC,
• arbitrary feedback and generator polynomials,
• rate flexibility by internal depuncturing of punctured

codes,
• high throughput, low latency.
The throughput requirements vary strongly with the

communication protocols and standards. In a mobile ser-
vice like HSDPA, for instance, the maximum throughput for
the turbo decoder is 14.4 Mbps, but only 3.6 Mbps are im-
plemented today. We target a throughput of at least the max-
imum of HSDPA. If the required throughput is not achieved
by a single processor, e.g. in a WLAN system, FlexiTreP
can be configured for a multiprocessor decoder system.

3 Architecture
The ASIP is based on an architecture for hard and soft

output convolutional decoding, first published in [22]. Here
the decoding algorithm is programmable, and the code
structure of the convolutional code is dynamically recon-
figurable. The new ASIP presented in this paper inhibits
the same concept but is extended to implement binary and
duobinary turbo decoding. The interface is now well de-
fined for a network-on-chip approach [23], and additional
pipeline stages allow to implement interleaving and deinter-
leaving of extrinsic data. Hence, the iterative decoding pro-
cess required for turbo decoding can now be implemented
directly by the ASIP. Furthermore, the ASIP was extended
for MAP decoding of duobinary codes with 16 states, and
it now also features depuncturing functionality for nearly
arbitrary punctering schemes. This functionality is unique
for a channel decoder since it is usually performed before
channel decoding. Since FlexiTreP implements this task in-
herently during decoding, overall processing time, latency,
memory area, and energy is reduced.

Two major guidelines governed the design of the ASIP:
first, an optimization for turbo decoding since this is the
more demanding task, and second, a maximum reutilization
of both computational hardware and memory for turbo and
convolutional decoding.

The ASIP constitutes a weakly programmable IP block
in a multi-core system. As such, it will always serve as a
slave to a master processor (similar to the baseband modem
in Figure 1). The interface, depicted in Figure 2, can be
split into a system, a data-in and data-out, and a configura-
tion interface. The input and output data can be streamed
to and from the ASIP to support a data-flow process. Two
special signals control the global data flow (sleep, wakeup).
If in sleep mode, the datapath pipeline and all internal mem-
ories besides the currently accessed I/O memories are pow-
ered down. The configuration interface is used to write
the channel code parameters to the Dynamically Reconfig-
urable Channel Code Control (DRCCC) unit, to load a new

Figure 2. FlexiTreP general architecture, consisting of an
interface, memories, a dynamically reconfigurable channel
code control, a program control, and an instruction pipeline
with 15 stages.

program, or to load a new deinterleaver table into the IL
memory. The configuration interface is, in contrast to the
data input and output interfaces, memory mapped.

As already mentioned, flexible data routing and data
management is key for channel decoding. Thus the ASIP
is based on a distributed memory concept, composed of
various memories allocated to specific pipeline stages. Be-
sides the channel value (CV) memory for the input and the
hard decision (HD) memory for the output data, two addi-
tional memories are reserved to store internal data only: a
state metrics memory (SMM) and a last-in-first-out (LIFO)
which serves as buffer for channel and a-priori values. The
soft decision (SD) memory serves for internal data storage,
namely the a-priori values for turbo decoding or the deci-
sion bits of the local survivors of the Viterbi decoder, as
well as for data output. Note that all memories are switched
off when not accessed to reduce power consumption.

The DRCCC unit defines the structure of the convolu-
tional (component) code that is in use. It controls the inter-
nal data routing of the datapath and is look-up-table (LUT)
based. The unit includes a shadow and a working config-
uration. The working registers hold the configuration that
is actually in use. The shadow registers allow for loading
a new configuration without effecting the actual data pro-
cessing. The content of the shadow registers is transferred
to the working registers by a special instruction within one
clock cycle, thus allowing a fast context switch between
different codes. Moreover, the DRCCC unit allows for ef-
ficient multi-context instructions, reducing the instruction
width from 65 to 24 bits which considerably saves area and
energy.

The datapath pipeline consists of 15 stages and is de-
picted in detail in Figure 3. The first two stages are in-
struction fetch (FE) and instruction decode (DC). The third
stage (AD) generates the addresses for the memory accesses
in subsequent pipeline stages. The IL-pipeline stage ac-
cesses the IL memory, if necessary, to perform interleaving
of the a-priori information upon read in the next pipeline
stage (MEM). The DRCCC controls in the CV stage if one

design-time run-time

code classes x
code structure x

decoding algorithm x x
memories x x

Table 2. Run-time and design-time configurability of
FlexiTreP.

or three a-priori values are written to the a-priori register
(APR) for binary or duobinary turbo codes, respectively.
The CV stage also reads the channel values that are needed
to compute the branch metrics. Note that the channel val-
ues themselves are not interleaved since Berrou’s turbo de-
coding scheme is implemented [4]. All values required
for the branch metric calculation are buffered in the LIFO
buffer during the first recursion. They are retrieved from
this buffer during the second. The buffering reduces en-
ergy consumption since memory access to the larger CV
and AP/SUR memories are replaced by buffer accesses. The
Viterbi algorithm does not utilize the LIFO buffer. The fol-
lowing pipeline stages perform the data manipulation re-
quired for turbo, MAP, or Viterbi decoding. The BM1 stage
computes up to 16 branch metrics in parallel, or performs
the trace back operation of the VA (not shown in Figure 3).
The branch metrics are shuffled according to the DRCCC
in stage BM2 and are utilized in SM to compute up to 16
state metrics in parallel [22]. The state metrics are directly
forwarded from the output register of the SM pipeline stage
to its input. Simultaneously they can be stored to the SMM
for later use. This allows for fast computation of the met-
ric recursions. In case of N > 16, a load store architecture
is implemented: intermediate state metrics are loaded from
the SMM to a pipeline register, processed, and then written
back from the pipeline register to the SMM. A single trel-
lis recursion with N = 256 states can thus be computed in
16 consecutive steps. The soft-output computation of the
Log-MAP algorithm is pipelined due to critical path reduc-
tion and is located in stages LLR1 to LLR4. The SAT-stage
computes the extrinsic information and saturates these val-
ues to eight bit. The stages LLR1 to SAT are idle during
VA-operation. Finally, either the soft or the hard decoded
output values are stored to a memory.

4 Results

The FlexiTreP pipeline architecture was modelled in
LISA and verified with the ProcessorDesigner tool-set from
Coware Inc [6]. This model is parametrizable to support
the full set of codes as discussed before, or only a subset.
Thus we provide design-time and run-time configurability
(see Table 2).

Various VHDL instances of the FlexiTreP pipeline gen-
erated by the ProcessorGenerator tool were synthesized
with the Synopsys Design Compiler. A 65 nm low power

Figure 3. FlexiTreP: overall pipeline architecture config-
ured for CC and TC decoding using the MAP algorithm

low leakage standard cell library with worst case conditions
(1.10V, 120◦C) is used as target technology. The total gate
count of the different ASIP instances without memories is
listed in Table 3. The maximum clock frequency for the
FlexiTreP with full functionality is 400 MHz. It can be in-
creased if only a subset of codes is supported, as shown in
Table 3. The area overhead of the ASIP with full flexibility
is 46% compared to a dedicated 16-state bTC decoder ASIP.
Table 3 also shows that the soft output convolutional decod-
ing comes with hardly any additional cost (only 2.4% logic
area) compared to an instance that allows only hard output

ASIC (65 nm, 1.10V, 120◦C) FPGA (Xilinx xc4vlx80-12)
Functionality Size [µm2] Frequency [MHz] Size [Slices] Frequency [MHz]

Full Functionality (with soft output for CC) 109320 400 7012 109
bTC, dbTC, and VA (without soft output for CC) 106762 400 6683 112
bTC, dbTC (duobinary with N = 8 only) 88966 415 5494 117
bTC 74391 450 4207 135

Table 3. ASIC and FPGA synthesis results for various instances of the ASIP with support of different code sets: Full functionality
supports binary turbo codes (bTC), duobinary turbo codes (dbTC), and convolutional decoding as in Section 2.

binary CC bTC dbTC

MAP Viterbi
States best / typ best / typ best / typ

[Mbps] [Mbps] [Mbps] [Mbps]

4 186 / 170 - 18.6 / 17 -
8 186 / 170 - 18.6 / 17 37.2 / 34
16 186 / 170 196 18.6 / 17 18.6 / 17
32 — / 27 78 — —
64 — / 14 44 — —

128 — / 5 23 — —
256 — / 1.6 12 — —

Table 4. Core throughput of FlexiTreP with full function-
ality for convolutional and turbo codes.

convolutional decoding with the VA (bTC, dbTC, and VA).
The ASIP was also synthesized for a Xilinx Virtex4 FPGA
and verified on a rapid prototyping platform. The results are
shown in Table 3 as well. Here a maximum clock frequency
of 109 MHz was achieved with full code support.

The total capacity of all memories used for the final
implementation is 286 kbits, and the total area is around
0.31 mm2. Maximum information block sizes of 6144 for
bTC and 8192 for dbTC and CC at a coding rate R = 1/2
can be supported. Note that the memories can be taylored to
the actual application scenario at design and run-time. The
total gate count of the ASIP core in the 65nm standard cell
technology without memories providing full functionality is
53 kilogate equivalents (kGE). Compared to the processors
of [16] and [17] with 104 kGE and 93 kGE for the core’s
logic, respectively, the FlexiTreP saves more than 45% of
the area, but provides much higher flexibility.

The core throughput achieved by FlexiTreP for convolu-
tional and turbo decoding (TC at 5 iterations) for the differ-
ent state numbers is listed in Table 4. In the best case, no
acquisition is required, e.g., in case of block sizes smaller
than 128 and 256 data bits for binary and duobinary codes,
respectively. The numbers for the typical case consider win-
dowing with acquisition. For MAP decoding of constraint
lengths larger than five, the windows become very small.
This disqualifies decoding without acquisition, and hence
only typical throughput numbers are relevant. The through-
put for Viterbi decoding is hardly effected by windowing
due to very large window sizes (1024 and larger). The rela-
tively large difference between 16 and 32 states constitutes
in the load-store processing of the state metrics during par-
tial parallel processing of a trellis segment.

The rate dependent input and output delay is not consid-
ered in Table 4. The total throughput can be computed from
the core throughput and the code rate R as

throughputtot =
1

throughput−1
core +(R

4 + 1
32)/400MHz

assuming an I/O clock frequency of 400 MHz. This results,
e.g., in a total throughput of 16.4 Mbps for a rate 1/3 binary
turbo code with 5 iterations.

Table 5 summarizes turbo decoder implementations for
UMTS turbo code applications on different state-of-the-art
target platforms. The clock frequencies listed are maximum
values. They differ, among other things, because the target
technology is not the same. However, the FlexiTreP outper-
forms the other processor implementations even if they all
run with the same clock frequency. This high performance
is achieved due to the high internal memory bandwidth, the
specialized data path pipeline, and the internal data shuf-
fling and reordering mechanisms.

5 Conclusion

Application specific flexibility is mandatory to meet the
flexibility and performance requirements of SDR. In this
paper we presented a family of weakly programmable IP
cores for the application domain of trellis based channel de-
coding: FlexiTreP. It features Viterbi and Max-Log-MAP
processing for binary convolutional codes, and binary and
duobinary turbo decoding of all actual and upcoming stan-
dards. In addition the ASIP provides the flexibility to adapt
to evolving and new standards.

The dynamically reconfigurable ASIP approach allows
for high throughput and small area while preserving flexi-
bility. The presented ASIP can furthermore by configured
during run-time to the application scenario. Several in-
stances were generated and synthesized for ASIC as well
as FPGA technology. Maximum throughput at 400MHz is
196 Mbps for Viterbi and 34 Mbps for (duobinary) turbo
decoding. It thus outperforms state-of-the-art solutions tar-
geting SDR.

6 Acknowledgments

This work has been supported by the DFG within the Schwer-
punktprogramm "Rekonfigurierbare Rechensysteme".

Implementation Size Clock freq. cycles/ Throughput
Technology (bit*MAP) @ 5 iter

Conf. RISC[16] ASIC (130nm) 104kGE 133 MHz 9 1.4 Mbps
Clustered VLIW[11] VitexII-4000 517 slices 80 MHz 8 1 Mbps

XiRisc[13, 2] ASIC (130nm) — 100 MHz 100 0.1 Mbps
SODA[25] ASIC (180nm) 1000kGE 400 MHz 20 2 Mbps
ASIP [17] ASIC (90nm) 97kGE 335 MHz 6.5 5 Mbps
FlexiTreP ASIC (65nm) 53kGE 400 MHz 2.35 17 Mbps
FlexiTreP Virtex4 7012 slices 109 MHz 2.35 4.6 Mbps

Table 5. Comparison of turbo decoder implementations for UMTS bTC. FlexiTreP is implemented with full functionality here.

References

[1] Stretch. http://www.stretchinc.com.
[2] A. Baschirotto, R. Castello, F. Campi, G. Cesura, M. Toma,

R. Guerrieri, R. Lodi, L. Lavagno, and P. Malcovati. Base-
band Analog Front-End and Digital Back-End for Reconfig-
urable Multi-Standard Terminals. Circuits and Systems Mag-
azine, IEEE, 6(1):8–28, First Quarter 2006.

[3] F. Berens, G. Kreiselmaier, and N. Wehn. Channel Decoder
Architecture for 3G Mobile Wireless Terminals. In Proc.
2004 Design, Automation and Test in Europe (DATE ’04),
Paris, France, Feb. 2004.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shan-
non Limit Error-Correcting Coding and Decoding: Turbo-
Codes. In Proc. 1993 International Conference on Commu-
nications (ICC ’93), pages 1064–1070, Geneva, Switzerland,
May 1993.

[5] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Wid-
dup, G. Zhou, L. M. Davis, G. Woodward, C. Nicol, and
R. Yan. A Unified Turbo/Viterbi Channel Decoder for 3GPP
Mobile Wireless in 0.18-µm CMOS. IEEE Journal of Solid-
State Circuits, 37(11):1555–1564, Nov. 2002.

[6] Co-Ware. http://www.coware.com.
[7] M. M.-C. T. T. for Integrated Broadband Cellular Systems.

Synthesis report on the performance and complexity ob-
tained with the HW and SW platforms (D7.2). http://ist-
matrice.org.

[8] J. Glossner, D. Iancu, M. Moudgill, G. Nacer, S. Jinturkar,
and M. Schulte. The Sandbridge SB3011 SDR Platform. In
Joint IST Workshop on Mobile Future and the Symposium
on Trends in Communications (SympoTIC ’06), pages ii–v,
24-27 June 2006.

[9] M. Hosemann, R. Habendorf, and G. P. Fettweis. Hardware-
Software Codesign of a 14.4Mbit - 64 State - Viterbi De-
coder for an Application-Specific Digital Signal Processor.
In Proc. IEEE Workshop on Signal Processing Systems 2003
(SIPS’03), Seoul, Korea, Aug. 2003.

[10] IMEC. Scientific Report 2006: Software Defined Radio
Flexible Air Interface. www.microelektronica.be/ wwwin-
ter/mediacenter/en/SR2006/681340.html, 2006.

[11] P. Ituero and M. Lopez-Vallejo. New Schemes in Clus-
tered VLIW Processors Applied to Turbo Decoding. In
Application-specific Systems, Architectures and Processors,
2006. ASAP ’06. International Conference on, pages 291–
296, Sept. 2006.

[12] G. Krishnaiah, N. Engin, and S. Sawitzki. Scalable Recon-
figurable Channel Decoder Architecture for Future Wireless
Handsets. In Proc. 2007 Design, Automation and Test in Eu-
rope (DATE ’07), 2007.

[13] A. LaRosa, C. Passerone, F. Gregoretti, and L. Lavagno. Im-
plementation of a UMTS Turbo-Decoder on a dynamically
reconfigurable platform. In Proc. 2004 Design, Automation
and Test in Europe (DATE ’04), Paris, France, Feb. 2004.

[14] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner. SODA: A Low-power Ar-
chitecture For Software Radio. In Proc. 33rd International
Symposium on Computer Architecture (ISCA’06), pages 89–
101, 2006.

[15] E. Matu, H. Seidel, T. Limberg, P. Robelly, and G. Fettweis.
A gflops vector-dsp for broadband wireless applications. In
Conference 2006, IEEE Custom Integrated Circuits, pages
543–546, 10-13 Sept. 2006.

[16] H. Michel, A. Worm, Münch, and N. Wehn. Hard-
ware/Software Trade-offs for Advanced 3G Channel Coding.
In Proc. 2002 Design, Automation and Test in Europe (DATE
’02), Paris, France, Mar. 2002.

[17] O. Muller, A. Baghdadi, and M. Jezequel. ASIP-Based Mul-
tiprocessor SoC Design for Simple and Double Binary Turbo
Decoding. In Proc. 2006 Design, Automation and Test in Eu-
rope (DATE ’06), Munich, Germany, Mar. 2006.

[18] PACT XPP Technologies. PACT home page.
www.pactcorp.com.

[19] C. Pan, N. Bagherzadeh, A. Kamalizad, and A. Koohi. De-
sign and Analysis of a Programmable Single-Chip Architec-
ture for DVB-T Base-Band Receiver. In Design, Automation
and Test in Europe Conference and Exhibition, 2003, pages
468–473, 2003.

[20] U. Ramacher. The Future of Mobile Computing. In Proc.
6th International Symposium on Multiprocessor Systems-on-
Chips (MPSoC’06), pages 281–294, Estes Park, Colorado,
USA, August 2006.

[21] ST Microelectronics Greenside Platform.
http://www.st.com/stonline/products/literature/ta/11145.htm.

[22] T.Vogt and N.Wehn. A Reconfigurable Application Spe-
cific Instruction Set Processor for Viterbi and Log-MAP
Decoding. In Proc. IEEE Workshop on Signal Processing
(SIPS’06), pages 142–147, Banff, Canada, October 2006.

[23] P. Vivet, D. Lattard, F. Clermidy, E. Beigne, C. Bernard,
Y. Durand, J. Durupt, and D. Varreau. FAUST, an Asyn-
chronous Network-on-Chip based Architecture for Telecom
Applications. In Proc. 2007 Design, Automation and Test in
Europe (DATE ’07), 2007.

[24] T. Vogt, N. Wehn, and P. Alves. A Multi-Standard Channel-
Decoder for Base-Station Applications. In Proc. 17th Sym-
posium on Integrated Circuits and System Design (SBCCI)
2004, pages 192–197, Porto de Galinhas, Brazil, Sept. 2004.

[25] L. Yuan, S. Mahlke, M. Trevor, C. Chaitali, R. Alastair, and
F. Krisztian. Design and Implementation of Turbo Decoders
for Software Defined Radio. In Proc. IEEE 2006 Workshop
on Signal Processing Systems (SiPS), 2006.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

