
Scalable Reconfigurable Channel Decoder Architecture for Future Wireless
Handsets

Gummidipudi Krishnaiah
Computer Science Department
Indian Institute of Technology

New Delhi, India
Krishna@cse.iitd.ac.in

Nur Engin, Sergei Sawitzki
NXP Semiconductors
High Tech Campus 31

5656 AE Eindhoven, The Netherlands
Nur.Engin@nxp.com, Sergei.Sawitzki@nxp.com

Abstract

The current trend in the consumer devices and commu-
nication service provider market is the integration of dif-
ferent communication standards within a single device (e.g.
GSM phone with Bluetooth, WLAN and infrared interface)
requiring tight integration of mobile broadcast, networking
and cellular technologies within one product. Channel de-
coder is traditionally one of the most computationally in-
tensive building block within digital receivers. The aim of
this paper is to investigate the feasibility of a programmable
channel decoder that can be dynamically reconfigured for
decoding turbo and convolutionally encoded streams from
various wireless standards. The architecture options are
presented and the area costs and flexibility compared be-
tween the options. The resulting decoder architecture sup-
ports hardware resource sharing and reconfiguration be-
tween different standards and decoders and is more efficient
in terms of silicon area than independent implementation of
every decoder on the same IC.

1. Introduction

Many of the modern electronic consumer devices like
PDAs, mobile and smart phones, set-top boxes etc. incor-
porate interfaces for different communications standards.
A hand-held device connected to WLAN and GSM net-
work and at the same using the Bluetooth link to headset
for voice transfer is already a commodity. There are also
products on the market or under development, which are
capable of receiving and processing several data streams of
the same standard (e.g. a set-top box with receiver, recorder
and picture-in-picture feature). The trend towards multi-
standard and multi-stream support will evolve further, re-
quiring tight integration of mobile broadcast, networking
and cellular technologies within one device. Channel de-

coding is one of the most computation intensive building
blocks of a digital transceiver and many standards are us-
ing different codes or variations within the same code class.
Even within one standard there are usually several coding
schemes for different transmission and noise conditions.
This diversity is the major problem in the integration of
different channel decoders within one chipset. Taking into
account the high costs of redesign steadily growing with
silicon technology downscaling, there is a need for recon-
figurable future-proof solution which can adapt to differ-
ent standards depending on the use case as well as allow-
ing a reconfiguration toward possible future standards (at
least the ones using similar coding schemes). A careful look
at the channel codes incorporated in many communication
standards reveals that most of them are using convolutional
and turbo codes. Although block sizes, polynomials and
coding rates differ both within one coding scheme as well
as between the coding schemes, it is possible to find com-
mon scenarios in both data path and memory usage to share
them among different Viterbi and turbo decoders. At the
same time such a multi-standard multi-steam decoder can
be made scalable which is a very relevant issue for future-
proofness, taking into account the continuously growing
data rates.

2. System Requirements and Challenges

Table 1 summarizes the current and future standards
where a convolutional or turbo code is (being) specified.
Each standard has its own parameters for the channel en-
coder, such as different constraint lengths, code rates and
generator polynomials and (in the case of turbo coding)
different interleaving patterns. Thus, the channel decoder
should support a wide range of coding parameters.

Viterbi decoders used for decoding convolutional codes
require from less than 100 kbps up to 500 Mbps thorughput.
Similarly, for turbo coded streams, the throughput ranges

978-3-9810801-2-4/DATE07 © 2007 EDAA 

 



Table 1. Overview of the convolutional and turbo codes specified in wireless standards
Maximum Number of Mother Maximum Maximum

Standard Decoder block size states code user bit workload
[bits] rate rate [Mbps] [GOPS]

UMTS (R’99) Viterbi 504 256 1

2
; 1
3

0.064 0.07
CDMA2000 Viterbi 744 256 1

2
. . . 1

6
0.038 0.039

DAB Viterbi none 64 1

4
1.109 0.28

DVB Viterbi 1624 64 1

2
32 8

802.11a/g Viterbi 32000 64 1

2
54 14

UWB Viterbi 32768 64 1

3
480 123

GSM Viterbi 876 16 1

2
0.0096 0.0006

GSM-EDGE Viterbi 870 64 1

2
0.384 0.098

UMTS (R’99) Turbo 5114 8 1

3
2.3 2.4

UMTS (HSDPA) Turbo 5114 8 1

3
14 14

UMTS (LTE) Turbo 5114 8 1

3
100 102

CDMA2000 Turbo 20730 8 1

5
2.4 2.5

802.16e Turbo/8 iter 4800 8 1

3
20 21

from 64 kbps to 100 Mbps. Because of this large spread
in the required throughput, a scalable channel decoder ar-
chitecture is needed, making a redesign towards a lower or
higher throughput simple.

3. State of the Art

Up to now, few approaches combining the turbo and
Viterbi decoding have been reported. Bickerstaff et al have
proposed a unified architecture designed for UMTS base
stations [1, 2]. The main emphasis is on the multi-channel
aspect, and the flexibility in coding schemes has not been
handled in this work. Mainly the memories are shared be-
tween the turbo and Viterbi modes. In [3], another com-
bined architecture is suggested for wireless terminals. In
this architecture the datapath is shared as well as the mem-
ories. A MAP algorithm is used for decoding both convo-
lutional and turbo codes. This is, however, only possible
when the throughput requirement for Viterbi decoding is
much lower than that of turbo decoding (e.g. 12.2 kbps for
Viterbi and 384 kbps for turbo). In another effort to com-
bine the two types of decoders soft Viterbi decoding is used
for the turbo iterations and hard output Viterbi decoding is
used for convolutionally encoded signals [4].

4. Architecture Considerations

The architectures for turbo and Viterbi decoding consist
of two main elements: computation and storage. In this
section, we investigate these parts separately.

4.1 Datapath Considerations

For both turbo and Viterbi decoding the main building
block of the datapath is the so-called add-compare-select
(ACS) operation. However, there are significant differences
in the interconnect and dependencies between the ACS op-
erations. For instance 802.11 a/g and UMTS HSDPA stan-
dards have different throughput but similar GOPS require-
ments (Table 1). The UMTS HSDPA turbo decoding is it-
erative and has only 8 states whereas the Viterbi decoding
has 64 states each of which have to be processed only once.
The datapath of turbo is less wide than that of Viterbi (8
vs. 64 or more states), but it has to run much faster because
of the iterations (8 iterations assumed). In order to enable
the turbo datapath to run at feasible clock speeds, multiple
datapaths can be introduced, running multiple windows in
parallel [7, 8]. For such parallel window architectures, both
the intermediate data memory and interleaver address LUT
need to have sufficient number of banks. Figures 1 and 2
show the area and power estimations based on [12] for par-
allel window versus a default multiple decoder architecture.
A 200 Mbps decoder requires approximately 2.4 mm2 for
the multi-window case, whereas the same throughput using
multiple decoders would require more than 7 mm2 (90 nm
CMOS technology).

4.2 Memory considerations

The memory requirement and data-organization are ana-
lyzed for both of the decoding schemes. In case of Viterbi



0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

A
re

a
 (

m
m

2 )

Throughput (mbps)

Parallel SISO
Separate decoders

Figure 1. Area comparison of parallel window
and multiple decoder turbo architectures.

decoder, the largest memory is the survivor memory. For
a 256-state Viterbi in realistic channels this memory would
require as much as 64 Kbits, with a bandwidth of 256 bits
each cycle. The input and output buffer sizes required for
the Viterbi decoder are not large, a 2–3 times the trace back
depth is sufficient (at most 3 Kbits). Path metric memory is
relatively small, at most 256 words of 8 bits are required.

For a turbo decoder, memory occupies more than 75%

of the area. Turbo input buffer is up to 61 Kbits large for
UMTS code blocks and the extrinsic memories are 70 Kbits.
Furthermore, each turbo datapath includes some memories
for intermediate data such as alpha metrics.

Memory sharing between the extrinsic turbo memory
and the Viterbi survivor memory seems most favorable, as
both the size and the bandwidth required for these memo-
ries are similar when multi window turbo datapath is used.
Furthermore, the input buffers can be shared although this
will not save much area as the Viterbi buffers are relatively
small.

5. Reconfigurable Channel Decoding Architec-
ture

The considerations for the datapath have been explained
in the previous section. For sharing the same datapath for
parallel-window turbo decoding and Viterbi decoding, we
introduce a combined datapath with reconfigurable inter-
connect. This enables using the same datapath for 8 times 8-
state turbo or once 64-state Viterbi decoding. Furthermore,
we introduce the concept of a sliced architecture where each
slice is a channel decoder sub-block containing 8-state trel-
lis decoding hardware. The resulting architecture concept
is shown in Figure 3. The reconfigurable interconnect also

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400

Po
w

e
r (

m
W

)

Throughput (mbps)

Parallel SISO
Separate decoders

Figure 2. Power comparison of parallel win-
dow and multiple decoder turbo architec-
tures.

supports time-sharing same trellis decoding hardware, en-
abling Viterbi decoding for larger constraint sizes (i.e. more
than 64 states). For example, 256-state Viterbi decoding
at 1/4 of the throughput for 64-state decoding can be pro-
grammed using time-shared configurations.

Sharing of memories require extra configurable intercon-
nects and control logic. Furthermore, a controller is in-
cluded, which is basically a look-up-table where configura-
tion information is stored for all supported standards. Once
the decoding standard is known, this unit will generate con-
trol signals for all logic and interconnect at appropriate time
intervals.

The functionality of the architecture is explained by con-
sidering two extreme cases of Viterbi and Turbo decoding.
For Viterbi, 64-state WLAN requires high throughputs and
256-state UMTS needs huge data path for decoding. By us-
ing eight slices we realize a 64-state data-path, which can
meet the high throughput requirements of WLAN. Since
UMTS does not have high throughput requirements in case
of convolution codes, we time-share the same 64-state data-
path to realize a 256-state data-path. Thus it reduces the
logic requirement by a factor of 4 with an overhead of in-
creasing the interconnect flexibility. If higher throughput is
required then this architecture can be easily scaled to ac-
commodate more slices.

Note that at this abstraction level, it is still not decided
which decoding algorithms should be supported by the dat-
apath slices. Specifically, it is possible to implement turbo
decoding by means of both Soft-Output Viterbi Algorithm
(SOVA) and Maximum Aposteriori Probability (MAP) al-
gorithms. Both of these algorithms consume soft (intrinsic)
information input and produce soft (extrinsic) output. For
convolutionally encoded streams, the standard decoding is



Input
Buffer

In
te

rc
on

ne
ct



8-state Viterbi/Turbo-Slice #0

8-state Viterbi/Turbo-Slice #1

8-state Viterbi/Turbo-Slice #7

LUT &
Controller

In
te

rc
on

ne
ct



Interleaver
Address

Generator

64 bit
decision

a-mem,
PM-mem

Stakes

Shuffle

Extrinsic/
Survivor
Memory

TBU

Polynomial,
coding rate

Viterbi
output

Figure 3. Reconfigurable Sliced Architecture
for Multi-Standard channel decoding.

based on the Viterbi algorithm. However it is also possible
to choose different decoding algorithm. Using the same al-
gorithm for both turbo and convolutionally encoded streams
has the advantage of simplicity, but also the combined data-
path must satisfy the throughput and BER requirements for
both cases.

5.1 Slice Architecture Exploration

We discuss variations of algorithm combinations that
can be used to decode turbo and convolutionally encoded
streams in this section. The aim is to choose a favorable
tradeoff between error correction performance and area.

In the first architecture, we use Soft-Output-Viterbi-
Algorithm (SOVA) for Turbo decoding and Hard Decision
(HD) Viterbi for decoding convolution codes. In this archi-
tecture there are eight HD Viterbi Slices. One of the slices
is extended to support 8-state SOVA for turbo decoding.

The second architecture uses suboptimal (Max Log or
Max* Log) MAP decoding algorithm for both convolution
and turbo decoding [9]. Each slice here can do 8-state
MAP decoding. Thus for turbo, eight windows can be pro-
cessed in parallel achieving 8 times higher throughput, as
explained in section 4.1 and shown in [10].

In the third architecture, we make separate data-paths
for 64-state HD Viterbi and 8-state suboptimal MAP but
share the extrinsic and survivor memories. This architec-
ture has drawbacks in terms of scalability and flexibility of
the datapath: it is not possible to increase the turbo decod-
ing throughput by employing multiple parallel windows, as
the turbo datapath is only 8 states wide.

The fourth and fifth architectures employ sharing of the
datapath at much finer grain. For this, the slice architec-
ture shown in Figure 4 is introduced. As both MAP and

survivor memory

extrinsic memory

stack

BMU
M

U
X


ACS

M
U

X


 

stack

BMU ACS

R
E

G


LLR

R
E

G


Alpha, Stake / PM 
memory

stake memory

stake memory

alpha memory

Control inputs

Beta computation

Input Buffer

Control inputs

Figure 4. Internal Architecture of a Slice.

Viterbi algorithms work on trellis modulation scheme, the
decoding data-path logic (like BMU and ACS) of each slice
is shared by making them more generalized to decode both
convolution and turbo streams. The BMU generates all pos-
sible branch metrics, which are routed to ACS unit through
a flexible interconnect. The ACS block can be configured
to do add-compare-select or max operation depending on
Viterbi or Turbo stream. To support various decoding re-
quirements like generator polynomials, code rates, and con-
straint lengths in various standards, we build a flexible in-
terconnect (cross bar) around the BMU and ACS blocks.
The interconnect network is controlled by signals which are
external to the slice.

We show two kinds of slices that can be chosen based on
the throughput requirements. In the fourth architecture, the
same data-path logic (BMU, ACS) is time-shared for both
alpha and beta computation, thus requiring two cycles to
produce one extrinsic value. Though this architecture works
on 8 parallel windows, it effectively decodes 4 windows in
parallel. It is the architecture with maximal logic sharing
and hence minimal area.

In the fifth architecture alpha and beta computation is
done in parallel, generating extrinsic value every clock cy-
cle. The alpha computation data-path is the one that is re-
configurable and shared with convolution decoding. For
beta computation extra logic is required per slice, but it de-
livers twice the throughput compared to the first case with
smaller area overhead. This architecture can effectively de-
code 8 windows in parallel and is thus better suited for very
high throughput needs.

The comparison between the five architecture options
discussed, is shown in the Table 2. For reference, the last
column includes seperate turbo and Viterbi decoders. The
area estimations are based on earlier decoder implementa-



Table 2. Area comparison between reconfigurable sliced architectures
Arch1 Arch2 Arch3 Arch4 Arch5 Seperate turbo

ML MAP parallel Viterbi time shared parallel and Viterbi
+ SOVA ML MAP + ML MAP α and β α & β decoders

HD Viterbi Slice 0.16 - 0.18 - - 0.18
SOVA Slice 0.06 - - - - -
ML MAP Slice - 0.84 0.10 - - 0.84
Reconfigurable Slice 1 - - - 0.48 - -
Reconfigurable Slice 2 - - - - 0.80 -
Interleaver address LUT 0.14 0.23 0.14 0.23 0.23 0.23
Extrinsic/Survivor memory 0.18 0.30 0.18 0.30 0.30 0.42
Input buffer turbo 0.19 0.19 0.19 0.19 0.19 0.19
Input buffer Viterbi 0.03 0.03 0.03 0.03 0.03 0.03
Stake memory 0.04 0.52 0.04 0.13 0.13 0.13
Alpha memory 0.02 0.60 0.02 0.15 0.15 0.15
Viterbi path metric registers 0.03 - 0.03 0.03 0.03 0.03
Trace back unit 0.13 - 0.13 0.13 0.13 0.13
Interconnect / Control logic 0.02 0.02 0.02 0.02 0.02 0.02

Total area (mm2) 1.00 2.73 1.07 1.69 2.01 2.35
Throughput K = 7 Viterbi (Mbps) 300 150 300 300 300 300
Throughput K = 4 turbo (Mbps) 15 120 15 60 120 120
Turbo performance 0.8 0.3 0.3 0.3 0.3 0.3
compared to LogMAP (dB)

tions [7, 12, 13], assuming 90 nm CMOS technology. For
throughput calculations, a clock speed of 300 MHz is as-
sumed. The performance of SOVA and suboptimal MAP
algorithm options have been verified by means of algorithm
simulations. The first three architectures use (combinations
of) SOVA or suboptimal MAP algorithms. In the first ar-
chitecture, by using SOVA for turbo, more logic can be
shared with HD Viterbi, thus saving in area [7, 11]. How-
ever, SOVA is not a better choice if the BER requirement is
of order 10−6 or less, as it hits the noise floor earlier than
maximum-a-posteriori (MAP) based algorithms. Alterna-
tively, in Architecture 2 MAP algortihm is used for both
code types. By using MAP instead of Viterbi, the complex-
ity of convolution decoding increases by more than a factor
of 4 [5, 6]. This makes the architecture an inefficient one, if
high throughput convolution decoding is considered.

In Architectures 1 and 3 no parallel turbo windows are
used, leading to lower throughput but also lower memory
area. The other architectures have the same memory ca-
pacity but higher memory area because of multiple-bank
memory architecture leading to memories less efficient in
area. When throughput requirements for turbo decoding

is not very high, a 64-state Viterbi datapath and an 8-state
turbo datapath sharing same extrinsic/survivor memory (Ar-
chitecture 3) is a good choice.

Architectures 4 and 5, where the slice architecture given
in Figure 4 is used, are good choices when high flexibility
and high turbo throughput is required. The throughputs for
seperate decoders and Architecture 5 are the same. How-
ever, the seperate decoders have higher throughput for the
multi-channel case, since both turbo and Viterbi streams
can be decoded simultaneously. These two architectures
are also best in terms of scalability, since all slices have the
same architecture.

The results show that there is not much area advantage
gained due to datapath sharing. In Architectures 4 and 5
the area of the datapaths are very close to the case of other
architectures when normalized for the same throughput.
The most significant gain in area compared to the seperate
decoder case is achieved by sharing the survivor/extrinsic
memories. Mainly due to the sharing of memories, the Ar-
chitectures 4 and 5 have an area advantage of 27% and 17%
respectively, compared to using seperate (flexible) turbo and
Viterbi decoders.



Comparison of area and throughput estimates with other
combined Viterbi-turbo architectures yields favorable re-
sults. One example is the unified decoder described in [1].
Designed for 18 nm CMOS technology, this decoder has an
area of 9 mm2 and can decode 2 Mbps turbo plus 128 kbps
of 256-state Viterbi for UMTS voice channels, operating at
clock frequency of 100 MHz. When scaled to 90 nm CMOS
technology, the area figure for this decoder becomes 2.25
mm2. Our decoder architecture is estimated to have an area
under 2.35 mm2, and, if clocked at 100 MHz, can decode
k=4 Turbo at 20 Mbps plus 256-state Viterbi at 12 Mbps.
Furthermore, we are aiming at a multi-standard architecture
(which is taken into account in area estimations) while the
decoder mentioned in [1] is for UMTS turbo and Viterbi
decoding only.

6. Conclusions and Future Work

An architecture concept for a reconfigurable channel de-
coder has been introduced. For wireless handsets, the ap-
plication space is very large and aiming to support all ap-
plications with one decoder will lead to over-dimensioning.
Instead, a scalable approach has been adopted in this work,
which has led to a decoder architecture that can support
different application scenarios and also enables fast scal-
ing/redesign.

Architecture exploration has been conducted to verify
the possible tradeoffs in throughput, area and BER. The
lower BER performance of SOVA and high complexity of
MAP make using same algorithm for both turbo and Viterbi
an unfavorable option. The area results for architectures
combining MAP with HD Viterbi show that sharing the dat-
apaths does not deliver much area advantage. The best way
to save area is sharing the survivor memory for Viterbi with
the extrinsic data memory for turbo. This is especially true
when using multi-window turbo, since the bandwidths re-
quired for both of these memories fit very well in this case.

An executable model of the described architecture has
been implemented in System C. Future work will focus on
the estimation of power consumption and evaluation of sce-
narios for high speed, low-power decoding.

References

[1] Bickerstaff, M. A., Garrett, D., Prokop, T.,
Thomas, C., Widdup, B., Zhou, G., Davis, L. M.:
A Unified Turbo/Viterbi Channel Decoder for 3GPP
Mobile Wireless in 0.18-mm CMOS, IEEE Journal of
Solid-State Circuits, November 2002, pp. 1555–1564

[2] Thomas, C., Bickerstaff, M. A., Davis, L. M.,
Prokop, T., Widdup, B., Zhou, G., Garrett, D., Nichol,

C.: Integrated Circuits for Channel Coding in 3G Cel-
lular Mobile Wireless Systems, IEEE Communica-
tions Magazine, August 2003, pp. 150-159.

[3] Kreiselmaier G., Vogt T., Wehn N.: Combined Turbo
and Convolutional Decoder Architecture for UMTS
Wireless Applications, Proceedings of DATE, Febru-
ary 2004, pp 192-197.

[4] Cavallaro, J. R., Vaya, M.: VITURBO: A Reconfig-
urable Architecture for Viterbi and Turbo Decoding,
Proceedings of ICASSP ’03, April 2003, pp. 497–500

[5] Robertson P., Villebrun, E. and Hoeher, P.: A Com-
parison of Optimal and Sub-optimal MAP decoding
algorithms operating in Log domain, Proc. IEEE ICC,
Seattle, WA, USA, Jun 18-22, 1995, pp. 1009-13.

[6] Chatzigeorgiou, I. A., Rodrigues, M. R. D., Was-
sell, I. J., and Carrasco, R.: A Comparison of
Convolutional and Turbo Coding Schemes for Broad-
band FWA Systems, 12th International Conference on
Telecommunications, Cape Town, South Africa, May
2005.

[7] Joeressen O. J., and Meyr, H.: 40 Mb/sSoft-Output
Viterbi Decoder, IEEE Journal of Solid State Circuits,
vol.30 July 1995, pp. 812-818.

[8] Engin, N.: Turbo decoder architecture with scalable
parallelism, in Proceedings of IEEE Workshop on Sig-
nal Processing Systems, 2004, pp. 298–303

[9] Berns, F., Kreiselmaier, G., Wehn, N.: Channel De-
coder Architecture for 3G Mobile Wireless Terminals,
Proceedings of DATE Conference, February 2004, pp.
192–197

[10] Yoon S., Bar-Ness Y.: A parallel MAP algorithm for
low latency turbo decoding, Communication Letters
IEEE, vol.6 Jul 2002, pp.288-290.

[11] Bekooij, M., Dielissen, J., Harmsze, F., Sawitzki, S.,
van der Werf, A., van Meerbergen ,J.: Power-
Efficient Application-Specific VLIW Processor for
Turbo Decoding, in Proceedings of the IEEE Interna-
tional Solid-State Circuits Conference (ISSCC’2001),
February 2001

[12] Harmsze, F., Dielissen, J.: Implementation of a Turbo
Decoding for 3G — a turbo decoding processor,
Nat.Lab. Technical Report 7178, Philips Research,
2001

[13] Bi, L., Pu, T., Sawitzki, S.: Architecture Study of 480
Mbps Viterbi Decoder for OFDM-UWB: Towards im-
plementation in silicon, Nat.Lab. Technical Note PR-
TN 2004/00779, Philips Research, 2004


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




