
Clock Domain Crossing Fault Model and Coverage Metric
for Validation of SoC Design

Yi Feng, Zheng Zhou, Dong Tong, Xu Cheng
Dept. of Computer Science, Peking University

Beijing, P.R.China
{fengyi, zhouzheng, tongdong, chengxu}@mprc.pku.edu.cn

Abstract

Multiple asynchronous clock domains have been in-
creasingly employed in System-on-Chip (SoC) designs for
different I/O interfaces. Functional validation is one of the
most expensive tasks in the SoC design process. Simula-
tion on register transfer level (RTL) is still the most widely
used method. It is important to quantitatively measure the
validation confidence and progress for clock domain cross-
ing (CDC) designs. In this paper, we propose an efficient
method for definition of CDC coverage, which can be used
in RTL simulation for a multi-clock domain SoC design.
First, we develop a CDC fault model to present the actual
effect of metastability. Second, we use a temporal data flow
graph (TDFG) to propagate the CDC faults to observable
variables. Finally, CDC coverage is defined based on the
CDC faults and their observability. Our experiments on a
commercial IP demonstrate that this method is useful to find
CDC errors early in the design cycles.

1. Introduction

As modern System-on-Chip (SoC) designs continue to
face increasing size and complexity challenges, multiple
asynchronous clock domains have been employed for dif-
ferent I/O interfaces. A CDC design is a design that has
one clock asynchronous to, or has a variable phase relation
with, another clock. A CDC signal is a signal latched by a
flip-flop in one clock domain and sampled in another asyn-
chronous clock domain. Transferring signals between asyn-
chronous clock domains may lead to setup or hold timing
violations of flip-flops. These violations may cause signals
to be metastable [2]. Even if synchronizers could elimi-
nate the metastability, incorrect use, such as convergence
of synchronized signals or improper synchronization proto-
cols, may also result in functional CDC errors [5].

Functional validation of such SoC designs is one of the
most complex and expensive tasks. Simulation on reg-
ister transfer level (RTL) is still the most widely used

method. However, standard RTL simulation can not model
the effect of metastability. As the CDC errors are not ad-
dressed and verified early in the design cycles, many de-
signs exhibit functional errors only late in their design cy-
cles or during post-silicon verification. Several coverage
metrics are proposed to measure the validation’s adequacy
and progress [14], such as code based coverage, finite state
machine coverage and functional coverage. Nevertheless,
these coverage metrics do not have direct relations with
CDC issues. Therefore, there is a need for coverage met-
ric on CDC issues in standard RTL simulation flow.

In this paper, we propose an efficient method for def-
inition of CDC coverage. First, we present a functional
CDC fault model that actually corresponds to the effect of
metastability. Second, a temporal data flow graph (TDFG)
is derived from RTL description to connect the starting vari-
ables of CDC paths to observable variables of SoC design.
Then we insert the CDC fault at each starting vertex in
TDFG. As the CDC fault may propagate to observable vari-
ables according to the data dependence between vertices,
we evaluate the state of CDC faults for every vertex in
TDFG. Finally, the CDC coverage is defined based on the
CDC faults and their observability. With this approach, we
can calculate CDC coverage for a multi-clock domain SoC
design in standard RTL simulation flow. For a given de-
sign, a set of test vectors with higher CDC coverage is more
likely to detect CDC functional errors.

The rest of the paper is organized as follows. Sec-
tion 2 presents related work addressing validation of SoC
designs, verification of CDC issues and observability of
coverage metrics. Section 3 describes the functional CDC
fault model. The TDFG is proposed in Section 4. Section 5
defines the CDC coverage. A case study is presented in
Section 6 and Section 7 concludes the paper.

2. Related Work

The state-of-art validation of a SoC design has used sim-
ulation techniques on a combination of constraint random

978-3-9810801-2-4/DATE07 © 2007 EDAA

and directed test vectors. Many coverage metrics have been
proposed for complex designs [6, 8, 9]. Each coverage met-
ric has an underlying fault model [11, 14]. These fault
based metrics are inherited from software testing and hard-
ware manufacturing testing. A simulation run would detect
a fault if that fault causes the design to behave differently
than it would without the fault.

Q.Zhang and I.G.Harris [15] have presented a timing
fault model, the mis-timed event (MTE) fault, to model the
functional errors introduced by timing violation. CDC sig-
nals may have timing violation. However, the MTE fault
model has a loose connection with the effect of metastabil-
ity in flip-flops.

T.Ly and N.Hand [10] have proposed a formal verifi-
cation method to check CDC errors. Although the formal
method is useful on small portions of a design [7], it is not
suitable on large scale SoC designs. Furthermore, it does
not consider the observability of CDC errors.

S.Devadas and K.Keutzer [1, 3, 4] have investigated the
observability of fault models. They have proposed a posi-
tive and negative tag to represent assignment incorrect pos-
sibilities, and evaluated the observability of the tags by data
flow graph (DFG). But the DFG they used do not distin-
guish combinational logic and sequential logic.

The functional validation in CDC designs is timing re-
lated. Metastability may happen only in certain clock cy-
cles and all CDC protocols are dealing with temporal rela-
tions between CDC signals. To evaluate the observability
of CDC faults, therefore, we need to consider the temporal
relation in DFG. To the best of our knowledge, there are
no previous approaches that describe functional CDC fault
model, a DFG with temporal relation to evaluate the CDC
faults observability and a coverage for CDC issues in RTL
simulation flow.

3. Functional CDC Fault Model

A useful coverage metric contains two essential factors.
One is fault model, the other is observability of the fault [4].
In this section, we first outline the background of metastabi-
lity. Then we propose a functional CDC fault model which
actually corresponds to the effect of metastability.

3.1. Metastability

Consider a one bit CDC signal in Figure 1. Signal R1
is latched in FF1 by CLKA and propagate to FF2, which
is sampled by CLKB. CLKA and CLKB are asynchronous.
Since R1 comes from a different clock domain, its value can
change at any time with respect to CLKB. If the value of R1
changes within FF2’s setup or hold time, FF2 may assume
a state between 0 and 1, which is called metastability. A
metastable value will unpredictably settle to either 0 or 1.

CYCLE 2CYCLE 1 CYCLE 3

setup time hold time

metastability

FF1

QD

FF2

QD

FF3

QD

Figure 1. CDC Signal Example.

Synchronizer’s reliability is expressed in terms of mean
time between failures (MTBF). With a simple two flip-flops
synchronizer, the MTBF is typically many eras [2].

3.2. CDC Fault Model

Even if metastability could be eliminated by synchro-
nizer, however, the exact cycle when the flip-flop samples
the value’s changing is still unpredictable. A two flip-flops
synchronizer is shown in Figure 1. R1 is the input of FF2,
and R3 is the output of FF3. Although FF3 does not have
metastability (according to the MTBF), R3 may represent
R1’s changing in either cycle2 or cycle3. That is the inher-
ent reason for the functional errors in CDC designs.

Consider a CDC signal changes in a sampling clock cy-
cle. It could happen during three periods of time: 1) the flip-
flop’s setup time; 2) the flip-flop’s hold time; 3) the other
time except for setup and hold time.

If a signal changes during setup or hold time, the flip-
flop may or may not capture the value’s changing. We can
define five states for a flip-flop when samples a CDC signal:

Definition 1 (CDC State):
1. The signal changes during setup time; the flip-flop

samples the changing.
2. The signal changes during setup time; the flip-flop does

not sample the changing.
3. The signal changes during hold time; the flip-flop sam-

ples the changing.
4. The signal changes during hold time; the flip-flop does

not sample the changing.
5. The signal changes during other time except for setup

and hold time; the flip-flop samples the changing.

1 always @ (posedge HCLK)
2 begin
3 RdDMAH <= (RWCON & !RdDMAH);
4 WrDMAH <= (!RWCON & !WrDMAH);
5 if (WrCp & WrCPRun)
6 WrReqH <= !WrReqH;
7 if (RdCp & RdCPRun)
8 RdReqH <= !RdReqH;
9 end

10
11 always @ (posedge ICLK)
12 begin
13 WrReqI_Meta <= WrReqH;
14 RdReqI_Meta <= RdReqH;
15 WrReqI <= WrReqI_Meta;
16 RdReqI <= RdReqI_Meta;
17 end
18
19 assign XCS <= !WrDMAH & !RdDMAH & CS;
20
21 always @ (posedge ICLK)
22 NCS <= (WrReqI | RdReqI) & XCS;

Figure 2. A Verilog Example.

The CDC state can be defined for all CDC signals, not
limited to the two flop-flops structure. In standard RTL
simulation, every changing before clock edge of a flip-flop
will be sampled and after clock edge will not be sampled.
We define CDC fault for above CDC state 2 and 3. It is
called fault because they behave differently than standard
RTL simulation and designers’ intention.

Definition 2 (CDC Fault):
CDC Setup Fault: A flip-flop is metastable due to setup

time violation, it does not sample the value’s changing.
CDC Hold Fault: A flip-flop is metastable due to hold

time violation, it samples the value’s changing.

In order to model the CDC setup and CDC hold faults,
we insert CDC delay and CLK jitter modules into origi-
nal RTL description. They add random delays for all CDC
signals and jitters for asynchronous clocks. We also define
CDC monitor module to represent the state of CDC faults.
Since metastability happens only in the clock cycle when a
CDC signal changes, the state of CDC fault is active only in
that cycle to indicate the CDC setup or hold fault.

4. Temporal Data Flow Graph

We add temporal relations between vertices into original
DFG. In this section, a TDFG is first proposed to model
CDC designs. Then the CDC fault is inserted to each CDC
path. Finally we use the TDFG to propagate the CDC faults
to observable variables.

4.1. Graph Structure

A TDFG is a directed graph G(V,E,B,O), where:
• V is the set of vertices representing variables in RTL

description;

RdDMAH WrDMAH

XCS

RdReqH WrReqH

WrReqI_Meta

WrReqI

RdReqI_Meta

RdReqI

NCS

 !WrDMAH & !RdDMAH & CS

(WrReqI | RdReqI) & XCS
@ICLK

@ICLK @ICLK

@ICLK @ICLK

Starting Vertex

Observable Vertex

Combinational Logic

Sequential Logic

Figure 3. TDFG of Figure 2.

• E⊆V×V is the set of edges connecting the vertices.
Each edge e(v,w)∈E is a directed edge from source
vertex v to destination vertex w. In order to represent
the temporal relation between variables, we distinguish
two types of edges ES and EC, where ES∪EC =E. If
the logic between vertex v and w is sequential logic,
then e(v,w)∈ES. Otherwise, if the logic between v and
w is combinational logic, then e(v,w)∈EC. Each edge
e(v,w)∈EC represents the combinational logic expres-
sion between v and w. Each edge e(v,w)∈ES repre-
sents both the combination and sequential logic con-
dition between vertices. Pre(v) is the set of predeces-
sor vertices of v, that ∀ w∈Pre(v), ∃ e(w,v)∈E. Sim-
ilarly, Post(v) is the set of successor vertices of v, that
∀ w∈Post(v), ∃ e(v,w)∈E;

• B⊂V stands for the set of starting vertices of G;
• O⊂V stands for the set of ending vertices of G.
Let GCDC denote TDFG for CDC design. B⊂GCDC is

the set of starting variables of CDC paths, O⊂GCDC is the
set of observable variables of CDC design. The observable
variables are those that will be compared with a reference
model described at a different abstraction level to check for
certain behavior [14]. Variables on the paths between B and
O make up of V ⊂GCDC.

Figure 3 shows the GCDC of a Verilog example in Fig-
ure 2. Vertices RdDMAH and WrDMAH are starting vari-
ables of CDC paths from HCLK domain to ICLK domain.
Edge e(WrDMAH, XCS) ∈EC indicates the combinational
logic from WrDMAH to XCS. Edge e(RdReqI, NCS) ∈ES

indicates the sequential logic from RdReqI to NCS. The
edge e(RdReqI, NCS) ∈ES contains two expressions: com-
binational logic expression (WrReqI |RdReqI) & XCS and
sequential logic condition @ (posedge ICLK), which are de-
rived from line 22 and 21 in Figure 2. Observable variable
NCS ∈O is the design output.

4.2. CDC Fault Insertion

After creating the TDFG, we insert CDC faults for every
starting vertex of GCDC using CDC delay and CLK jitter
modules. In order to model the unpredictable possibility of
metastability, the random delay value for each starting ver-
tex should be different. Delay insertion for vector type vari-
able reg[msb:lsb] needs special consideration. For control
vector, which may be used as command or status variable,
different metastable possibility of each bit introduces dif-
ferent wrong value, and indicates different design status. In
this case, each bit of control vector should have different
delay value. For data vector, which may be used as FIFO
pointer or transmission data in CDC design, we insert the
same delay value for each bit to reduce complexity.

We monitor the state of CDC fault for all vertices during
RTL simulation. For starting vertices in GCDC, the CDC
fault state is defined in definition 2. For other vertices, the
CDC fault state is defined in Section 5.

4.3. CDC Fault Propagation

In simulation based validation environment, a discrep-
ancy from desired behavior is detected only if an observable
variable takes on a value that conflicts with the reference
model. Therefore, we should evaluate whether the CDC
faults would be propagated to the observable variables.

The propagation condition is evaluated on GCDC. An ac-
tive edge is an edge that can propagate the CDC fault state
from source vertex to destination vertex. Consider an edge
e(v,w)∈EC. The propagation depends on the combinational
logic expression between v and w when the CDC fault state
of vertex v is active. If the edge e(v,w)∈ES, besides the
combination, the propagation also depends on the sequen-
tial logic condition. After propagation, the active cycle of
vertex w’s CDC fault state should be re-calculated. We dis-
cuss the CDC fault propagation under combinational logic
expression and sequential logic condition separately.

1. Combinational logic expression between vertices:
The CDC fault propagation under combinational logic is

similar to the tag simulation calculus described in [3].
• Logic gates:
Boolean expression is composed of three types of basic

Boolean logic gate: one-input INVERTOR, two-input AND
and two-input OR gate. For INVERTOR gate, the CDC fault
state will propagate from input to output directly. For AND
gate, the edge from one input to output is active when the
other input is logic 1. For OR gate, the edge from one input
to output is active when the other input is logic 0.

• Arithmetic operators:
Consider an expression v(F)=v(A)<op>v(B). Two vec-

tors A and B are operands for the arithmetic operator op,
vector F is the result of computing. Let v(AORI) denote

HCLK domainICLK domain

FF1

ram_out[7:0]

sample_en

CDC protocol
FSM

CYCLE 1

HCLK

ICLK

ram_r1 ram_r2

ram_out[7:0] 0x00 0xFF

ram_r1
CDC fault state

CYCLE 2 CYCLE 3 CYCLE 4

CDC Fault Normal

ram_r2
CDC fault state

CDC Fault Normal

Normal

Normal

sample_en
CDC fault state

CDC Fault NormalNormal

CYCLE 5

Critical to Propagation

Q
D
EN

FF2 FF3
FF4

QD

QD QD

QD QD

QD

Figure 4. Scenario for Temporal Relation.

the original value and v(ACDC) denote the value with CDC
fault. Then we compute both v(FORI)=v(AORI)<op>v(B)
and v(FCDC)=v(ACDC)<op>v(B), the edge from A to F is
active when v(FORI) �=v(FCDC).

• Conditionals:
Consider the following conditional logic:

if (F)
Out <= A;

else
Out <= B;

If the conditional control variable F has CDC fault state,
it may cause incorrect branch taken. Therefore the edge
from F to Out is active when A�=B. If the conditional input
variable A has a CDC fault state, it will propagate to Out if
F is true.

2. Sequential logic condition between vertices:
The CDC protocol is carefully designed for temporal re-

lations between CDC signals. Take the scenario in Fig-
ure 4 for example. Vector ram out[7:0] is latched by FF1 in
ICLK domain and sampled by a two flip-flops synchronizer
FF2 and FF3 in HCLK domain. The FF3’s output ram r2
is sampled by FF4 if the enable signal sample en is true. It
is assumed that the CDC path delay between FF1 and FF2
is less than two HCLK cycles. If ram out[7:0] has a new
value, the FF2 may be metastable in the following cycle 1
and 2 in HCLK domain. And the CDC fault of FF2’s output
ram r1 may be active in cycle 1 and 2. FF3 samples the
ram r1, although it can not be metastable, it still may have
wrong value in cycle 2 and 3. It is said that the CDC fault is
propagated from FF2 to FF3 and registered for one HCLK
cycle.

Multiple CDC faults could interact during their propaga-
tion [5]. In the above example, the active cycle of sample en
is critical for ram r1’s CDC fault propagation to FF4. In
most CDC designs, sample en is an output of CDC proto-
col FSM and also driven by CDC signals. If sample en’s
CDC fault is also active in the cycle 2 or 3, sample en and
ram r1’s CDC faults can interact to propagate or cancel
each other. Therefore, we draw two conclusions on CDC
fault propagation:
• CDC faults’ propagation on GCDC should calculate the

temporal relations between them;
• Multiple CDC faults’ interaction should be considered.

5. CDC Coverage Estimation

We define the CDC coverage based on the CDC fault
model described in Section 3 and the CDC fault propagation
described in Section 4.

First, we define CDC fault coverage point for each vertex
v∈V in GCDC. It covers each CDC fault state of the vertex
and represents the CDC fault’s propagation. Second, a set
of monitor values is defined for the observable vertex o∈O.
Third, we define CDC coverage points for all observable
vertices. It evaluates whether the CDC fault coverage points
have an effect on every monitor value of those observable
vertices. Finally, CDC coverage could be calculated as the
ratio of the activated number to the total number of the CDC
coverage points.

1. CDC fault coverage points:
We use CPf (v) to represent the CDC fault coverage

points for vertex v∈V . It is defined recursively:

CPf (v)=∪n
j=1CPf (w j) where w j ∈Pre(v), n= |Pre(v)|

For starting vertex b∈B, where the CDC fault is inserted
and has no predecessor vertex, we define the CPf (b) =
{bsetup,bhold} to represent vertex b’s CDC setup fault and
CDC hold fault which are described in definition 2.

2. Monitor values:
The CDC fault is independent of the value of vertex.

For observable vertex o∈O, which is compared with refer-
ence model to check for certain behavior, the CDC coverage
should monitor the CDC fault for each meaningful value.

We use Value(o) to present the set of monitor values of
vertex o∈O. We divide the signals into two types: 1) Con-
trol signal: The monitor values should cover all possible
values of control signal. For example we need to evaluate
whether a control signal has CDC fault when it is set to
both active and inactive. 2) Data signal: If the data signal is
used as FIFO pointer, it should be covered when the pointer
changes the FIFO full or empty signal. If the data signal is
used only for transmission data and do not change the de-
sign status, we do not monitor the value of that signal, only
evaluate the CDC fault coverage points.

3. CDC coverage points:
Let CovCDC(O) denote the CDC coverage points for all

observable vertices:

CovCDC(O) =
n⋃

j=1

{
Value(o j)×CPf (o j)

}

=
n⋃

j=1

{
Value(o j)×∪m

k=1CPf (w jk)
}

where o j ∈O, n= |O|, w jk ∈Pre(o j), m= |Pre(o j)|
CDC coverage is calculated as the ratio of the activated

number to the total number of the CovCDC(O) during RTL
simulation. The intuition behind CDC coverage is that, for
all observable variables of CDC design, what is the pro-
portion of the CDC faults would be observed and have an
impact on the monitor values.

6. A Case Study

We applied our CDC coverage metric to a commercial
IP which implements the ATA-5 IDE controller. It includes
a vendor designed asynchronous FIFO to transmit data be-
tween AMBA AHB clock domain and IDE clock domain.
While CDC coverage growing up, we found a bug on CDC
protocol of this commercial IP.

Table 1. Basic of the ATA-5 IDE IP.
Module Function Num. of Num. of CDC
Name Description Lines Coverage Points

10fa Asynchronous FIFO 426 9557
08fa Async FIFO Control 917 3811
07fa IDE PIO/DMA Control 353 1458
12fa IDE UDMA Control 470 648
05fa AHB DMA Control 471 207

6.1. Environment Setup

Our SoC verification environment was built up using
Synopsys Vera and RVM [13]. We generated both IDE and
AHB constraint random transactions. In order to guaran-
tee the system behavior, we instanced AMBA VIP mon-
itor and IDE device monitor to ensure the proper behav-
ior of AHB and IDE interface. From bottom to up, the IP
contains 5 hierarchy models related to GCDC which imple-
ment asynchronous FIFO, asynchronous FIFO control, IDE
PIO/DMA/UDMA timing control and AMBA AHB DMA
control (shown in Table 1). The number of lines and the
number of CDC coverage points for each module are also
shown in that table. We inserted the CDC faults into origi-
nal Verilog RTL description and calculated the propagation
conditions while simulation proceeded. The CDC coverage
was defined using Vera coverage group cross the monitor
values and the CDC fault coverage points.

Table 2. Comparing Code Coverage with CDC Coverage.
Module Line Coverage (%) Path Coverage (%) CDC Coverage (%)
Name 100 Trans. 1500 Trans. 3000 Trans. 100 Trans. 1500 Trans. 3000 Trans. 100 Trans. 1500 Trans. 3000 Trans.

10fa 95.14 95.14 95.14 65.75 83.05 83.05 3.40 66.94 87.95
08fa 97.14 97.31 97.31 51.54 69.45 69.45 2.14 53.37 80.82
07fa 100 100 100 85.54 90.03 92.57 5.27 43.46 68.87
12fa 100 100 100 62.48 78.14 78.14 7.37 50.38 74.50
05fa 95.70 95.70 95.70 68.71 76.27 76.27 6.44 38.16 65.05

6.2. Results and Discussions

Table 2 compares the line coverage, path coverage and
CDC coverage after 100, 1500 and 3000 IDE transactions,
respectively. With 100 transactions, the line coverage al-
ready reaches at a steady and very high level. It has nearly
no more increase after that. For path coverage, the same sit-
uation happens after 1500 transactions. But the CDC cover-
age is still increasing after 1500 transactions. It means that
the transaction from 1500 to 3000 is still useful to find CDC
function errors.

We found a bug related to an IDE interface output sig-
nal NIOR during the CDC coverage growing. In an UDMA
read transaction, the CDC fault of a FIFO pointer would
propagate to NIOR. The FIFO pointer with CDC fault
would induce a FIFO full indicator to activate at a wrong
time and abnormally suspend the read transaction. It is out
of the IP designers’ intention.

A CDC coverage which is not 100% means that some
CDC fault of predecessor vertex was not observed at mon-
itor value of successor vertex. It is important to find out
whether it is unobservable or unobserved CDC fault. An
unobservable CDC fault is the one that has been eliminated
by CDC protocol and no test vector can detect. An unob-
served CDC fault, however, could propagate to an observ-
able variable during a simulation run. The fact that we have
not observed the CDC fault merely indicates that we have
not run the appropriate test vector. Static analysis on the
TDFG and dynamic analysis during simulation could help
to distinguish the unobservable and unobserved CDC fault.

7. Conclusions

In this paper, we presented CDC coverage for validation
of multi-clock domain SoC designs. The method proposed
made three major contributions. First, a CDC fault model
was developed to present the actual effect of metastability.
Second, we proposed a temporal data flow graph for the
propagation of the CDC faults to observable variables. Fi-
nally, CDC coverage was defined based on the CDC faults
and their observability.

This approach can be used in standard RTL simulation
flow. For a multi-clock domain SoC design, a set of test vec-
tors with higher CDC coverage is more likely to detect CDC

function errors. Experiments on a commercial IP demon-
strate that it is useful to find bugs related to CDC issues.

Our future work includes formal analysis the unobserved
CDC fault from TDFG and a coverage feedback delay gen-
erator for CDC fault insertion. They could improve the ac-
curacy and efficiency of CDC coverage.

References

[1] S. Devadas, A. Ghosh, and K. Keutzer. An observability-
based code coverage metric for functional simulation.
ICCAD, pages 418–425, 1996.

[2] C. Dike and E. Burton. Miller and noise effects in a syn-
chronizing flip-flop. IEEE Journal of Solid-State Circuits,
34(6):849–855, Jun 1999.

[3] F. Fallah, S. Devadas, and K. Keutzer. OCCOM: efficient
computation of observability-based code coverage metrics
for functional verification. DAC, pages 152–157, 1998.

[4] F. Fallah, S. Devadas, and K. Keutzer. OCCOM-efficient
computation of observability-based code coverage metrics
for functional verification. ICCAD, 20(8):1003–1015, Aug
2001.

[5] R. Ginosar. Fourteen ways to fool your synchronizer. Asyn-
chronous Circuits and Systems (ASYNC), pages 389–96,
May 2003.

[6] R. C. Ho and M. A. Horowitz. Validation coverage analysis
for complex digital designs. ICCAD, pages 146–151, 1996.

[7] T. Kapschitz and R. Ginosar. Formal verification of synchro-
nizers. CHARME, 2005.

[8] Y.-S. Kwon and C.-M. Kyung. Functional coverage metric
generation from temporal event relation graph. DATE, pages
670–671, Feb 2004.

[9] C. Liu and J. Jou. An efficient functional coverage test for
HDL descriptions at RTL. ICCD, pages 325–327, Oct 1999.

[10] T. Ly and N. Hand. Formally verifying clock domain cross-
ing jitter using assertion-based verification. Design & Veri-
fication Conference, 2004.

[11] P. Mishra and N. Dutt. Functional coverage driven test gen-
eration for validation of pipelined processors. DATE, pages
678–683, 2005.

[12] A. Piziali. Functional Verification Coverage Measurement
and Analysis. Kluwer Academic Publishers, 2004.

[13] Synopsys. Vera User Guide. Reference Verification Method-
ology User Guide, 2005.

[14] S. Tasiran and K. Keutzer. Coverage metrics for functional
validation of hardware designs. IEEE Design & Test of Com-
puters, 18(7):36–45, Jul/Aug 2001.

[15] Q. Zhang and I. G. Harris. A validation fault model for tim-
ing induced functional errors. ITC, pages 813–820, 2001.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

