
Partial run-time reconfiguration based on distributed objects

F. Rincón, J.Barba, F.Moya, J.Dondo, D. Villa, F.J. Villanueva, J.C. López

{Fernando.Rincon, Jesus.Barba, Francisco.Moya, David.Villa, FelixJ.Villanueva,   JuanCarlos.Lopez}@uclm.es  ,   

jdondo@inf-cr.uclm.es

Escuela Superior de Informática - Universidad de Castilla-La Mancha – Spain

http://arco.inf-cr.uclm.es/

Abstract

Based  on  the  distributed  object  paradigm,  we  propose  a 
design  methodology  where  reconfiguration  facilities 
(location  transparency,  persistence  and  migration)  are  
transparently provided to the applications.

1.Introduction

The distributed objects paradigm has been proposed as way 
to  manage the  complexity  of  complex SoC design [1]. It 
provides a unified programming model, and defines a set of 
simple abstractions that   ease the  integration of  the large 
number of  very different  elements that  are  part  of  those 
systems.  Such  abstractions  are  normally  implemented 
(through  an  automatic  generation  process)  as  a 
communication layer, usually referred as  the middleware.
One  of  the  keys  of  the  success  of  communication 
middlewares  is  the  ability  to  provide  transparent 
communication between remote objects. This relies on the 
use of two abstractions called the proxy and the skeleton, that 
act as mediators between the objects. They take the place of 
the  original  objects  (the proxy in  the client  side, and the 
skeleton on the server side) so that objects do not notice the 
difference between local and remote interaction. What they 
really do is to translate invocations into messages that are 
routed through a communication channel, and rebuilt as local 
invocations on the invoked side. Since proxies encapsulate 
the real location of the server object, clients never know if 
the server they talk to is the real object or  its proxy, and 
neither its real location or implementation type in the latter 
case.
The  object  paradigm  is  specially  well  suited  to  model 
dynamic  hardware   components  [2].  Two  of  the  main 
problems when  designing reconfigurable  applications  are 
how to guarantee system integrity and how to provide state 
persistence. Unlike the task-based model, the one most used, 
the object model provides simple solutions to both problems. 
One  of  the  characteristics of  objects  is  that  the  state  is 
explicitly specified (the attributes). Any other kind of storage 
used  by  the  object  would  correspond  to  intermediate 
computations  performed by  the  methods,  but  cannot  be 
considered as  part  of  the  state.  Thus,  state  coherence  is 
guaranteed by  construction as  far  as  there  are  no  object 
methods in execution. It is possible then to safely stop an 
object in a coherent state by just waiting for the methods in 
execution to complete.  That is not the case in the task model, 
where the state is not identified, and is scattered through the 
whole task.
Another  advantage of  explicitly  defining the  state  of  the 
object is that it is possible to automate the extraction or the 

insertion of the data. Hence, persistence can be provided in a 
systematic way and does not require any extra effort from the 
designer.
It is possible then to extend the transparency concept of the 
system-level  communication  middleware  to  provide 
reconfiguration transparency. 

3. Reconfiguration Services

The addition of basic reconfiguration support to the system 
middleware requires extending the capabilities of the proxies 
and skeletons of  dynamic hardware objects,  as  well  as  a 
specialized controller.
Reconfigurable objects may pass through 4 different states: 
IDLE,  EXECUTION,  STOP_REQUEST,  PERSISTENCE. 
The  object  is  in  IDLE  state  by  default  when  it  has 
successfully been reconfigured. During this state, it is frozen 
and waiting for the middleware to be activated. After being 
acknowledged, the state changes to EXECUTION, and the 
object is completely functional. It will remain in this state 
until a stop request is signaled from the middleware, as part 
of  the  reconfiguration  process.  The  transition  from 
EXECUTION to  IDLE  happens  when  no  method  is  in 
execution, and therefore state  integrity  can be guaranteed. 
The last state (PERSISTENCE) is used for the transmission 
of the internal object to or from a state memory, in order to 
guarantee state persistence.
This functionality is included as part of the skeleton, as an 
extra set of methods that complement those of the functional 
interface. On the other side, the proxies of reconfigurable 
objects also offer this methods in their interface, so that low 
level reconfiguration operations can be invoked by any other 
client object in the system.
A higher level of abstraction on the reconfiguration process 
is  provided  by  a  special  middleware  entity  called  the 
activator. This module is the responsible for completing the 
whole reconfiguration process for an object, from the initial 
request  to  the  moment  where  the  functionality  has  been 
downloaded, the state has been reloaded, and the object is 
activated.
On top of the activator more advanced services can be built. 
Hw/Sw  object  migration  would  simply  require  a  shared 
persistence  memory  for  both  hardware  and  software 
implementations.  High-level  reconfigurable  scheduling 
might abstract from the low-level reconfiguration tasks. Or 
even it should be possible to include an implicit activation 
service, so objects would be downloaded by the middleware 
as soon as an invocation to them is detected, without being 
explicitly reconfigured.
All this services may be provided in a transparent way to the 
application. From the client object point of view, there is no 
difference between a  static  (hardware or  software)  object 

mailto:Cyril.luxey@unice.fr
http://arco.inf-cr.uclm.es/
mailto:Cyril.luxey@unice.fr
mailto:Cyril.luxey@unice.fr
mailto:JuanCarlos.Lopez}@uclm.es
mailto:Cyril.luxey@unice.fr


invocation and a dynamic one.

2. Design Methodology

In the following paragraphs we briefly describe very briefly 
the proposed design flow. First, an object-oriented model of 
the  application must  be  developed. This  model would be 
independent of any concrete implementation, and should at 
least specify the interfaces of the objects (class definitions), 
and a specification of the relationships between them. Since 
the  model does not  contain  architectural  information,  this 
must be provided by a third model (deployment), where the 
set  of   resources,  the  communication  channels  and  the 
reconfigurable areas  are specified. The deployment  model 
also  establishes  a  mapping  between  objects  and  the 
architecture,  where  some  objects  are  marked  as 
reconfigurable,  and  are  initially  asigned  to  certain 
reconfigurable location.
All the three inputs described, are used in a second stage to 
automatically  generate  the  communication  middleware. 
Software and hardware proxies and skeletons will be built 
from  a  template  library,  depending on  the  relationships 
between  the  objects  and  the  type  of  implementation 
(hardware software or dynamically reconfigurable).  At the 
same time, the information in the deployment model will be 
refined into a concrete architectural platform.
Finally, both the system architecture and the communication 
middleware  will  be  synthesized into  the  final  hardware 
platform,  while  software  objects  and  the  software 
middleware part will be compiled into the executable code to 
run on top of the platform.
One of the advantages of dynamic reconfiguration is that the 
hardware plaftorm can evolve  at  run-time.  It  is  not  only 
possible to replace some reconfigurable objects among a set 
of previously design alternatives, but even new objects can 
be  designed,  implemented  and  downloaded  after  the 
deployment.  Here  the  main  problem is  the  compatibility 
between  the  predefined  reconfigurable  area  (at  compile 
time), with a certain number and type of inputs and outputs 
and the interface of the reconfigured component. 
While  this  a  non-trivial  problem  using  an  task-based 
approach, it is not working with distributed objects. In our 
case, the reconfigurable unit is not the object itself, but the 
object  plus  its  skeleton and the  proxies of  the  objects  it 
invokes. The interface of both skeletons and proxies is just 
the system bus interface. Therefore, all reconfigurable areas 
implement  the  bus  interface,  no  matter  what  the  object 
interface they hold really is.

3.  A  Design  Example:   Reconfigurable 
Music Synthesizer

In order to demonstrate the feasibility of the approach, we 
have develop a  polyphonic music  synthesizer application 
(Figure 1). Initially, the synth object generates a sound wave 
as  a  result  of  the  composition  of  three  different  sound 
sources. Each source is a  voice  that plays a certain melody, 
described as a list of notes and note durations. The generated 
sound wave (as a stream of stereo sound samples) is  sent 
straight forward to an AC97 audio codec that generates the 
physical sound.

Figure 1: Design example

The synth object can be dynamically reconfigured, therefore 
the  skeleton  and proxy generated during the  design flow 
include  the  extra  set  of  methods  for  managing 
reconfiguration. At  design time,  the  designer  defined the 
state of the object (attributes) as the current volume value 
and the contents of three notes queues (one for each voice), 
so  the  skeleton  is  also  able  to  dump automatically  when 
requested such state to a certain memory location.
We have developed to different implementations for the syth 
object, one that generates a simple square sound wave and 
another that consumes more resources but uses a sinusoidal 
wave to produce a smoother sound. During the execution of 
the application we can then reconfigure the synth from one 
implementation to another. The only thing to do is to tell the 
generated  activator  to  do  so.  Both  implementations  are 
mapped to the same memory space so voice generators are 
not aware of the type of which version of the synth object 
they are using. Furthermore, since the 

4. Conclusion

In  this  work we  have desmonstrated how  the  distributed 
object  paradigm  can  be  applied  to  partially  dynamic 
reconfigurable systems.  Basic reconfiguration management 
is provided as a service of the communication architecture 
and it  is transparent from the application domain point of 
view. 
A music synthesis application has been used to illustrate how 
the use of reconfigurability does not affect the application 
model. Moreover,  new dynamically  reconfigurable objects 
might be transparently added to a working system after being 
deployed and in run-time.

5. References

[1]  F. Rincón, F. Moya, J. Barba, D. Villa, F.J. Villanueva and J.C. 

López, “A New Model for NoC-based Distributed Heterogeneous 
Systems”, Proceedings of the Parallel Computing (PARCO), Málaga 
(Spain), September 2005.
[2]  R.  Hecht,  S.  Kubish, H.  Michelsen, E.  Zeeb and D. 
Timermann,  “A  distributed  object  system  approach  for 
dynamic reconfiguration”.  In  Reconfigurable  Architectures 
Workshop (RAW 06), Rhodos, Greece, April 2006.

Acknowledgement

This  work  has  been  funded by  the  Spanish Ministry  of 
Education and Science  (TIN2005-08719) and the Regional 
government of Castilla-La Mancha (JCCM PBI-05-0049).


