
Transparent Object Integration in Distributed H/S Systems

F. Rincón, J.Barba, F.Moya, J.Dondo, D. Villa, F.J. Villanueva, J.C. López

{Fernando.Rincon, Jesus.Barba, Francisco.Moya, David.Villa, FelixJ.Villanueva, JuanCarlos.Lopez}@uclm.es ,

jdondo@inf-cr.uclm.es

Escuela Superior de Informática - Universidad de Castilla-La Mancha – Spain

http://arco.inf-cr.uclm.es/

Abstract

Based on the distributed object paradigm, we propose a
design methodology where an automatically generated
communication architecture provides transparent
communication to any component in a SoC.

1.Introduction

Complex Systems-on-Chip can be considered as a special
case of distributed system, where the application
functionality is provided by a number of heterogeneous
resources (hardware and software). One of the main
problems in such systems is how to deal with the complexity
due to the large number of components, and the different
programming models for each resource. In the software
domain one successful approach has been the use of
communication middlewares based on the distributed objects
paradigm. The middleware is an intermediate layer between
the O.S. and the network that provides transparent access to
objects executing in other processing elements.
Access transparency relies on the use of two special entities
(the skeleton and proxy) that are automatically generated
from the interface definition of the objects. The proxy takes
the place of the target object in a remote invocation (between
objects that belong to different processing elements). It
translates the operation and parameters into a message that is
routed though a communication channel. On the other side
the skeleton received the messages and translates it back to a
local invocation for the target object. Thus, from the object
perspective remote and local invocations cannot be
discerned.

Figure 1: Local vs. Remote Invocations

The concepts described can also be extended to the hardware
domain [1, 2]. Hardware components may be understood as
basic objects. Proxies and skeletons can be implemented as
hardware adapters between the components and the
communication channel. While the system bus can be easily
turned into a high performace communication engine. As a
consequence any two objects in the system may
communicate transparently with each other, regardless of
their type of implemenation. Additionally, the system-level

middleware provides a unified programming model.

2. Design Methodology

Figure 2 briefly describes the proposed design flow. First, an
object-oriented model of the application must be developed.
This model would be independent of any concrete
implementation, and should at least specify the interfaces of
the objects (class definitions), and the relationships between
them. Since the model does not contain architectural
information, this must be provided by a third model
(deployment), where the set of resources and
communication channels are specified, and a mapping
between objects and the architecture is defined.
All the three inputs described, are used in a second stage to
automatically generate the communication middleware.
Software and hardware proxies and skeletons will be built
from a template library, depending on the relationships
between the objects (see section 3). Additionally, some other
middleware services will also be generated in order to
provide advanced communication facilites, such as off-chip
transparent communication. At the same time, the
information in the deployment model will be refined into a
concrete architectural platform.

Figure 2: Design Methodology

Finally, both the system architecture and the communication
middleware will be synthesized into the final hardware
platform, while software objects and the software
middleware part will be compiled into the executable code to

mailto:Cyril.luxey@unice.fr
http://arco.inf-cr.uclm.es/
mailto:Cyril.luxey@unice.fr
mailto:Cyril.luxey@unice.fr
mailto:JuanCarlos.Lopez}@uclm.es

run on top of the platform.

3. A Design Example: Music Synthesizer

In the following paragraphs we present a polyphonic music
synthesizer application as a case of study of the proposed
methodology. Figure 4 shows the object diagram of the
synthesizer (the class diagram is not show here due to space
limitations). The synth object generates a square sound wave
as a result of the composition of three different sound
sources. Each source is a voice that plays a certain melody,
described as a list of notes and note durations. Thus, voice
objects are the responsible for providing the different
melodies to the synth object. The generated sound wave (as a
stream of stereo sound samples) is sent to an AC97 audio
codec that generates the physical sound. A display object
shows the state of the synthesizer as well as a graphical
representation of the music score as it is played. Finally, the
demo object is the responsible for the setup of the system.

Figure 4: Design example

One of the advantages of the proposed methodology is that
the architecture can be gradually refined. For example, our
first approach has been a software implementation on a PC.
Next we have ported it to an embedded software platform,
using the Xilinx XUP prototyping board. Up to this point, all
objects are local to the same processor and no special
communication facilities are needed.
In the third iteration, a hardware implementation of the synth
object has been developed. This change does not affect the
rest of the objects in the application, thanks to the automatic
generation of the communication middleware. Among other
elements, the generated infrastructure includes a hardware
skeleton and a software proxy of the synth object. The proxy
takes the place of the original synth object in the software
implementation, and routes transparently all invocations to
the real object as a set of bus transactions. Those transactions
are received by the hardware skeleton that translates them to
the proper signals activations of the hardware synth object.
The next modification consisted in moving also one of the
voice objects to hardware. Again, at the software side of the
application the object is replaced by the corresponding proxy,
without any consequence for the rest of the objects. On the
other side, the hardware voice object uses a hardware version
of the synth proxy, since now both are implemented in
hardware. Both the hardware and software versions of the

proxy generate exactly the same bus transactions for the
synth skeleton, so for the latter point of view they are
completely indistinguishable. Thus, this version of the
implementation demonstrates how the same hardware object
can be transparently accessed from both hardware and
software clients.
A final modification consisted in moving another voice out
of the embedded platform, to a remote PC. The remote voice
used the software proxy of the synth, but this time compiled
on the PC, and using a commercial software communication
middleware for implementing remote invocation.
Communication between the remote voice and the synth
takes places through an ethernet network using the UDP
protocol. Inside the board, the middleware includes a special
adapter for remote communications that translates the UDP
invocation into the same local bus transactions that an
internal voice would generate. Finally the synth skeleton
would activate the correspoding operations of the hardware
object.
All the described situations have a hardware object as the
target of the invocation. However that is not the only
possibility, and all kind of interactions are supported by the
middleware. It is just a matter of generating and instancing
the proper proxies and skeletons. In the final implementation,
for example, the display object is a software object invoked
from the synth hardware object, and might even be outside
the embedded platform.

4. Conclusion

In this work we have described how the distributed object
paradigm can be applied to SoC design. The design
methodology proposed relies on the automatic generation of
a system-level communication middleware that provides
transparent integration of hardware and software
compoments. Additionally, the middleware is able to provide
advanced communication capabilities, such as off-chip
invocations.
For the validation of the approach, a design example has
been presented, where all kind of interactions between
elements have been demonstrated.

5. References

[1] F. Rincón, F. Moya, J. Barba, D. Villa, F.J. Villanueva and J.C.

López, “A New Model for NoC-based Distributed Heterogeneous
Systems”, Proceedings of the Parallel Computing (PARCO), Málaga
(Spain), September 2005.
[2] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane,
O. Benny, D. Lyonnard, B. Lavigueur, and D. Lo,
“Distributed object models for multi-processor SoC's, with
application to low-power multimedia wireless systems”,
Design, Automation and Test in Europe (DATE), Munich,
Germany, March 2006, pp 482-487.

Acknowledgement

This work has been funded by the Spanish Ministry of
Education and Science (TIN2005-08719) and the Regional
government of Castilla-La Mancha (JCCM PBI-05-0049).

