
* This work has been partially supported by the European project VERTIGO FP6-2005-IST-5-033709.

HIFSuite: Tools for HDL Code Manipulation*

Giuseppe Di Guglielmo, Franco Fummi, Graziano Pravadelli, Francesco Stefanni

{diguglielmo, fummi, pravadelli, stefanni}@sci.univr.it

Electronic Systems Design Group – University of Verona, Italy

http://esd.sci.univr.it

Abstract

The HIFSuite ia a set of tools and APIs that provide support

for modelling and verification of HW/SW systems by

allowing manipulation and integration of HDL

heterogeneous descriptions.

1. Introduction

The rapid development of modern embedded systems

requires the use of flexible tools that allow designers and

verification engineers to efficiently manipulate HDL

descriptions throughout the design and verification steps. In

fact, nowadays, it is common practice to define new

systems by reusing previously developed components, that

can be possibly modelled at different abstraction levels

(TLM, RTL, etc.) by means of different hardware

description languages (HDLs) like VHDL, SystemC,

Verilog, etc.. Such an heterogeneity requires to either use

co-simulation and co-verification techniques [1], or convert

different HDL pieces of code into an homogeneous

description [2]. However, co-simulation techniques slows

down the overall simulation, while manual conversion from

an HDL representation to another, as well as manual

abstraction/refinement from an abstraction level to another,

are not valuable solutions, since they are error-prone and

time consuming activities. Thus, both co-simulation and

manual refinement reduce the advantages provided by the

adoption of a reuse-based design methodology.

To avoid such disadvantages in reusing already developed

components and verifying their integration into new

designs, we propose HIFSuite, i.e., a closely integrated set

of tools and APIs that allow system designers to manipulate

HW/SW descriptions in a uniform and efficient way.

2. HIFSuite Overview

The HIFSuite features are depicted in Figure 1. It allows

designers and verification engineers to:

• analyze and parse VHDL or SystemC

descriptions representing HW/SW systems;

• extract HDL Intermediate Format (HIF)

representations of the parsed descriptions;

• manipulate and instrument the HIF

representations by using already available HIF-

based applications;

• define their own HIF-based manipulation tools by

exploiting a powerful set of APIs;

• generate new VHDL or SystemC descriptions that

reflect the changes introduced by the

manipulation of the HIF representation;

• define their own conversion tools for supporting

other hardware description languages.

Figure 1: HIFSuite features.

The core of the suite is the HIF engine which is used for

representing HDL constructs. The front-end tools SC2HIF

and VHDL2HIF allow to convert, respectively, SystemC

and VHDL descriptions into HIF models, while the back-

end tool HIF2HDL allows to convert HIF models into

VHDL or SystemC descriptions. The features of such tools

are briefly summarized in Section 4.

Once the HIF representation has been obtained, a powerful

set of APIs can be used for visiting and manipulating the

HIF code. Currently, four tools have been developed by

exploiting such APIs: a fault injector, an extended finite

state machine (EFSM) manipulator, an abstraction/

refinement tool, and a transactor generator. The feature of

such tools are briefly summarized in Section 5.

3. HDL Intermediate Format

HIF stands for HDL Intermediate Format. It is an HW/SW

description language structured as a tree of objects,

similarly to XML. Each object describes a specific

functionality or component that is typically provided by

HDL languages like VHDL and SystemC.

Figure 2 shows an example of HIF code representing the

entity of a simple design. Even if HIF is quite intuitive to be

read and manually written, it is not intended to be used for

directly describing HW/SW systems. Indeed, it is intended

to provide designers with a convenient way for

manipulating HW/SW descriptions as reported in Figure 1.

(SYSTEM system

(DESIGNUNIT b00

(VIEW behav

(VIEWTYPE "")

(DESIGN HARDWARE)

(INTERFACE

(PORT in1 (IN)(INTEGER (RANGE (DOWNTO 32767 -32768))))

(PORT in2 (IN)(INTEGER (RANGE (DOWNTO 32767 -32768))))

(PORT reset (IN)(BIT))

(PORT clock (IN)(BIT))

(PORT out2 (OUT)(INTEGER (RANGE (DOWNTO 32767 -32768))))

)

(CONTENTS

(CONSTANT A (INTEGER)(INITIALVALUE 0))

(STATETABLE process

(VARIABLE reg (INTEGER (RANGE (DOWNTO 32767 -32768))))

…

)))))

(SYSTEM system

(DESIGNUNIT b00

(VIEW behav

(VIEWTYPE "")

(DESIGN HARDWARE)

(INTERFACE

(PORT in1 (IN)(INTEGER (RANGE (DOWNTO 32767 -32768))))

(PORT in2 (IN)(INTEGER (RANGE (DOWNTO 32767 -32768))))

(PORT reset (IN)(BIT))

(PORT clock (IN)(BIT))

(PORT out2 (OUT)(INTEGER (RANGE (DOWNTO 32767 -32768))))

)

(CONTENTS

(CONSTANT A (INTEGER)(INITIALVALUE 0))

(STATETABLE process

(VARIABLE reg (INTEGER (RANGE (DOWNTO 32767 -32768))))

…

)))))

(SYSTEM system

(DESIGNUNIT b00

(VIEW behav

(VIEWTYPE "")

(DESIGN HARDWARE)

(INTERFACE

(PORT in1 (IN)(INTEGER (RANGE (DOWNTO 32767 -32768))))

(PORT in2 (IN)(INTEGER (RANGE (DOWNTO 32767 -32768))))

(PORT reset (IN)(BIT))

(PORT clock (IN)(BIT))

(PORT out2 (OUT)(INTEGER (RANGE (DOWNTO 32767 -32768))))

)

(CONTENTS

(CONSTANT A (INTEGER)(INITIALVALUE 0))

(STATETABLE process

(VARIABLE reg (INTEGER (RANGE (DOWNTO 32767 -32768))))

…

)))))

Figure 2: Example of HIF code.

4. Conversion Tools

HIFSuite front-end and back-end tools allow designers to

convert HDL descriptions as described in Table 1.

Allowed HDL Translations

 VHDL SystemC

VHDL X X

SystemC RTL X X

SystemC TLM X

Table 1: Conversion currently supported by HIFSuite.

Synthesizable RTL constructs are fully supported as well as

the main TLM constructs. For the complete list of

supported constructs please refer to [3].

5. Manipulation Tools

Currently, four HIF-based tools have been developed by

exploiting the HIF library:

• A fault injector. It is used for perturbing HW/SW

descriptions according to a selected fault model.

Fault injection is a fundamental steps for fault

coverage-based automatic test pattern generation

[4].

• An EFSM manipulator. It is used for extracting

extended finite state machines from HDL

descriptions. Such a tool generates EFSMs that

are easy-to-be traversed when verification

techniques are applied that require to explore the

state space of the design under verification [5].

• An abstraction/refinement tool, for semi-

automatically abstracting RTL description

towards TLM levels, and vice versa. Both the

abstraction and refinement methodology relies on

manipulation of EFSM models [6].

• A transactor generator. It automatically

generates transactors for allowing RTL-TLM

mixed co-simulation and co-verification. It is

used when components modelled at different

abstraction levels are required to be integrated for

rapid prototyping, before the refinement/

abstraction methodology is applied to generate an

homogeneous description [7].

6. Conclusion

In this paper, we presented an overview of HIF Suite, a set

of tools and APIs that provide designers and verification

engineers with the following advantages:

• The HIF library engine is written in C++, thus it

is easy to be integrated into other programs.

• The HIF language is structured like a syntax tree,

thus it is easy to write algorithms that manipulate

the nodes of the tree.

• Systems described partially in VHDL and

partially in SystemC, can be translated into the

HIF representation, and then merged to obtain a

unique final description in SystemC or in VHDL.

• The HIF library engine is structured to be easily

extended. A special HIF object, called

ProperyObject, is provided to describe non-

standard or new features of other HIF objects.

• Tools, which manipulate HIF, can be used into

workflows that adopt different HDL languages,

regardless which these HDL languages are.

7. References

[1] M. Bombana, and F. Bruschi, “SystemC-VHDL co-simulation

and synthesis in the HW domain”, In Proc. of IEEE DATE, pp.

106-111, 2003.

[2] C. Cote, and Z. Zilic, “Automated SystemC to VHDL

translation in hardware/software codesign”, In Proc. of IEEE

ICECS, pp. 717-720, 2002.

[3] http://www.edalab.it/site/products_pages/HIFSuite.php

[4] A. Fin, F. Fummi, and G. Pravadelli, “AMLETO: A Multi-

language Environment for Functional Test Generation”, In Proc. of

IEEE ITC, pp. 821-829, 2001.

[5] G. Di Guglielmo, F. Fummi, C. Marconcini and G. Pravadelli

“EFSM Manipulation to Increase High-Level ATPG”, In Proc. of

IEEE ISQED, pp. 57-62, 2006.

[6] N. Bombieri, F. Fummi, and G. Pravadelli, “A Methodology for

Abstracting RTL Designs into TL Descriptions”, In Proc. of

ACM/IEEE MEMOCODE, pp. 103-112, 2006.

[7] N. Bombieri, and F. Fummi, “Automatic Transactor Generation

in TLM by Exploiting EFSMs”, In Proc. of DVCon, 2007.

Acknowledgement

The authors would like to thank all the members of the ESD

group of the University of Verona for their contribution in

the development of HIFSuite.

