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Abstract 

As CMOS IC feature sizes shrink down to the nanometer 
regime, the need for more efficient test methods capable of 
dealing with new failure mechanisms increases. Advances in this 
domain require a detailed knowledge of these failure physical 
properties and the development of appropriated test methods. 
Several works have shown the relative increase of resistive 
defects (both opens and shorts), and that they mainly affect 
circuit timing rather than impacting its static DC behavior. 
Defect evolution, together with the increase of parameter 
variations, represents a serious challenge for traditional delay 
test methods based on fixed time delay limit setting. One 
alternative to deal with variation relies on adopting correlation 
where test limits for one parameter are settled based on its 
correspondence to other circuit variables. In particular, the 
correlation of circuit delay to reduced VDD has been proposed as 
a useful test method. In this work we investigate the merits of this 
technique for future technologies where variation is predicted to 
increase, analyzing the possibilities of detecting resistive shorts 
and opens.  

 
1. Introduction 

 
CMOS IC scaling has provided remarkable improvement in 

electronic circuits performance during the last decades. 
However, as the silicon industry is moving towards the end of 
the roadmap, controlling the fabrication of these small devices is 
becoming a great challenge. In achieving the primary goals of 
device scaling such as performance, density and reliability, some 
other side effects appear like (i) Newer technologies are more 
susceptible to defect introduction, reliability and soft error 
problems, and (ii) Scaling increases the variations in device 
parameters such as channel length and width, oxide thickness, 
threshold voltage, etc. Consequently a large variation in 
performance (power consumption, delay, leakage, etc…) among 
different chips, and even different regions within the die, is 
expected. 

 It has been extensively shown that parameter variations and 
noise-induced fluctuations, aggravated in nanometer 
technologies, have a significant impact on the variation of signal 
paths delay from die to die and within die. Although there can be 
some deterministic components in the parameters influencing 
delay such as topological dependencies of device and 
interconnect processing or lithography correlation, their 
complexity in large designs together with the impact of 

environmental effects (such as supply voltage fluctuations, 
temperature, etc.), and the existence of real random variables 
(random doping fluctuation) makes it more appropriated to treat 
these variations as random. These increasing variations pose 
several challenges to parametric test methods based on setting a 
limit value on the test observable, like delay or IDDQ, because 
such a limit value changes in practice not only from die to die, 
but also for different paths or regions within the same circuit.  

Different test techniques have been developed to cope with 
the problem of parameter variations, among which those based 
on parameter correlations have been shown to provide good 
results in identifying outliers from the normal distribution [1]. 
These techniques correlate the test observable to other 
parameters in the circuit for which the fundamental physical 
relationships are well known. Correlation methods are based on 
the fact that intrinsic circuits will define a normal population 
distribution, while defective parts will fall out of such a 
distribution and will show up as outliers. 

One of the proposed methods that received a significant 
attention is based on correlating the supply voltage reduction to 
the induced change on the circuit delay. The relative increase of 
the circuit delay when the supply voltage is lowered provides a 
distribution that can be used to identify possibly failing parts. 
Several techniques have been proposed based on this principle 
by either identifying the minimum supply voltage for which the 
part will run [1], or analyzing the dependency of the circuit delay 
on the supply voltage [2]. However, less attention has been given 
to the delay variation dependence with the progressive lowering 
of the supply voltage. In this work we analyze such a 
dependency showing that, as the supply voltage gets close to the 
device threshold voltage, the relative impact of parameter 
variations on the delay increases significantly. This effect 
introduces more uncertainty on the predicted path delay at 
reduced VDD, thus making delay testing at low supply voltages 
less effective. 

 
2. Background 
2.2 Low VDD testing 

 
Low VDD testing has been used to expose the presence of 

defects causing small extra delay at nominal voltage since the 
relative delay increase at lower supply voltages is more 
pronounced [2][5].  

Another application of this concept lowers the supply voltage 
at a given clock frequency, and measures the minimum value of 
the supply voltage at which the circuit still works. This technique 
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is referred to as MinVDD [6]. The drawbacks of this technique for 
production testing relate to the increase in test time, and the cost 
of performing a search for the minimum supply voltage test for 
at which the die still passes the test. To overcome the search time 
penalty of the MinVDD test, a three-step process was proposed 
based on MinVDD to detect outliers and a posterior statistical 
process for outlier screening [7]. Although the impact of supply 
voltage lowering on the circuit delay has been extensively 
analyzed, less attention has been given to the impact of 
parameter variations [8]. 

 
2.3 Delay Variance at reduced VDD 

 
One of the main limitations of delay testing in nanometer 

technologies comes from the increase in parameter variations 
observed for these circuits. The relative increase of both within-
die and die-to-die parameter variations with respect to older 
technologies represents a challenge to traditional delay testing 
since the adoption of a fixed time delay limit for all the circuits is 
not valid. Moreover, the adoption of a given delay test strategy 
within a supply voltage reduction scenario requires not only a 
careful analysis of the delay variation with the supply voltage, 
but also the consideration of the delay spread variation at the 
different supply voltages considered. 

 

 
Figure 1. Path delay distribution for a 130 nm 12 inverters chain at 

two supply voltages. Gaussian fitting of the distribution gives 
A=4E-9, µ=2.47E-10, σ=1.75E-11 at the nominal supply voltage 
Vnom = 1.2 V, and A=8E-9, µ=5.04E-10, σ=4.14E-11 at 2/3Vnom. 

Determining the dependence of the delay spread with the 
supply voltage reduction is crucial to develop an efficient delay 
test strategy, as it will have a direct impact on the method used to 
determine the delay limits settled for each path. A miss 
consideration of this effect may lead to an incorrect limit setting, 
and may therefore lead to defect escapes or, conversely, mark as 
defective a fault-free circuit thus contributing to overkill. Figure 
1 shows the path delay distribution for a 12 inverters chain 
obtained from Montecarlo analysis for a 120nm technology at 
both the nominal 1.2 V, and at a reduced 0.8 V [8]. Not only the 
net (mean) delay increases, but also does the delay variance. 

This effect can be understood by analyzing the dependency of 
the circuit delay when lowering the supply voltage considering 
(as a first approach) that the main contribution to the delay 

variation comes from the devices through the threshold voltage 
fluctuation [9]. The conventional form of the MOSFET drain 
current (Id) is typically related to the gate delay Tpd using the set 
of equations from [10]: 
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Figure 2. Illustration of the impact of a fixed VT variation (ΔVT) on 
the circuit delay for the nominal VDD and a low VDD voltages. 

Depending on the technology, α ranges between 1 and 2. In 
[8] it is shown that for the 130nm technology used in this work 
Equation (2) provides an excellent description of the circuit 
delay if α =1.5 and VT = 290 mV. A plot of this dependence 
(Figure 2) illustrates the impact of a fixed transistor threshold 
voltage variation (ΔVT) on the circuit delay by representing the 
delay vs. (VDD – VT). It is shown that the same amount of VT 
variation leads to a much higher circuit delay variation at a 
reduced VDD with respect to the nominal supply voltage.  

The relative impact of the delay variations when scaling VDD 
can be quantified by differentiating Tpd with respect to VT in 
Equation (2) thus obtaining the relationship between the circuit 
speed scattering and ∆VT  
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This relationship indicates that the VT key role in circuit 
performance is even more important as VDD is scaled down 
towards VT. The exponent of α+1 in the delay variation equation 
denominator also shows the impact of VDD reduction on ∆Tpd 
increase. Moreover, as VDD approaches VT the impact of VT 
fluctuations are also magnified.  
 
3. Impact of Shorts on delay at reduced VDD - 
Dynamic critical resistance 

 
We present a detailed study about the impact of two types of 

defects on a CMOS circuit delay at different supply voltages: 
resistive opens, and node to VDD/GND resistive shorts. Opens 
have been shown to represent common failure mechanisms in 
nanometer technologies (resistive vias and opens [11]), while 
resistive shorts model spot-like defects. The node-to-node 



resistive short can be descried as a straightforward extension of 
the node-to-rail case as shown later. 

We analyze the impact of these defects on delay, and 
investigate their testability by means of delay testing. The goal of 
the work is to determine if the application of delay testing for a 
given circuit at a reduced voltage increases the sensitivity of the 
test with respect to the nominal supply for the defects 
considered. Having this in mind we analyze the relative impact 
of the defect on the delay at different supply voltages by 
determining its dynamic critical resistance (DCR), defined as the 
value of the defect resistance (either for open or short) for which 
the delay of a given circuit path increases up to the value of the 
3σ distribution at a given supply voltage. The definition of DCR 
is illustrated in Figure 3. The analysis of the DCR dependence 
with the supply voltage will determine the benefit of applying a 
given delay test methodology at reduced supply voltages. Note 
that the goal of this analysis is not to guarantee a detection of a 
given short in a circuit by using delay testing, but to provide a 
comparative analysis to determine the benefit of lowering the 
supply voltage to expose resistive defects. 
 

 
Figure 3. DCR concept for two different supply voltages. 

To carry this analysis we derive an analytical expression for 
the DCR by placing a short to a circuit whose fault free delay is 
the mean delay of the distribution, and equating its faulty circuit 
delay expression to the 3σ delay of the distribution. The solution 
of such an equation provides an expression for the DCR. The 
dependence of such an expression with the supply voltage will 
determine the feasibility of low voltage delay testing for that 
particular defect. 

 
3.1 Gate Delay Model 

 
Using the model developed in [12] for deep submicron 

technologies, the delay of a CMOS gate occupying position i in a 
chain of N elements is expressed in terms of the input slew time 
(related to the input capacitance Ci-1), and the gate fan-out 
(related to the output capacitance Ci). The delay also depends on 
the supply voltage VDD and the transistor threshold voltage VTH, 
and is given by [12]: 
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The upper term in (4) depends on the input transition 
characteristics, while the bottom one is depends on the gate 
output load (τi=RiCi). Ri is the effective resistance of the pull-up 
(or pull-down) transistors and is given by [12]: 
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where Ki is related to the conductance of the pull-up (or pull-
down) transistors. If the pull-up (pull-down) network consists of 
a N series-connected transistors, then Ki is given by: 
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Parameter KN(P) is related to the transistor conductance, and 

the drain saturation current is given by: 
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Parameter κ in (6) depends on process parameters: 
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where VD0 is the gate saturation voltage, α is the velocity 
saturation index (Sakurai’s exponent), γ is the linealized body 
effect parameter, and VTH is the transistor’s threshold voltage. 

 
3.2 Including the effect of parameter variations 

 
Eq. (4) describes the dependency of the gate delay with 

technology and design parameters, and the supply voltage. If any 
of these parameters, say x, is subjected to variation, then the 
delay tD(x) is also subjected to variation and when x increases by 
∆x to x+∆x, the delay changes to tD(x+∆x) within the parameter 
distribution. From Eq. (4) the expression of the delay when x lies 
at the edge of the distribution (denoted as xnom + 3σx) is given 
by: 
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where σTH and σK, are the standard deviations of the threshold 
voltage and gate conductivity Ki (related to gate length, gate 
oxide thickness , gate width or carriers’ mobility variations). The 
delay of a given path in the circuit will have an expression 
similar to Eq. (9), given by: 
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Where tpath is the path delay, and β is a supply-voltage 
independent parameter.  

 
3.3 Resistive open 

 
The inline resistive open and the equivalent circuit used to 

compute the delay are shown in Figure 4. The output impedance 



of the gate driving the interconnect line is described through its 
output resistance Ri as detailed in the previous subsection. RDEF 
is the open defect resistance, while the capacitors C1 and C2 
model the node capacitances of the interconnect portions 
between the gate output and the defect site, and the defect site 
and the gate load respectively. The total output capacitance is Ci 
= C1+C2 and is equal to the total output capacitance of the gate in 
the fault free circuit.  

 

 
Figure 4. Illustration of the in-line resistive open and the equivalent 

circuit used to compute the delay.  

As a first approach we consider a step input transition of the 
form VDDu(t) (u(t) being the Heaviside function) that will be 
modified later to have a non-zero transition time. The output 
response is obtained using simple circuit theory analysis, leading 
to: 
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Equation (11) has a real solution if AK2>4. When AK2=4 the 
circuit output voltage is given by: 
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The gate propagation delay is obtained equating (11) or (13) 
to VDD/2 . The delay obtained from (11), if p+>>p-, is given by: 
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where τ1, τ2, τi are: 
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A closed delay formula cannot be obtained from Eq. (13) 
since a transcendent expression is obtained, but it is possible to 
obtain a value for which the output variation is maximum 

(typically very close to VDD/2). This value is obtained equating 
the second derivative of the output voltage to zero: 
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Solutions (14) and (16) provide the two limit values of the 
propagation delay (case p+>>p- and case p+=p-=p). To simplify 
our analysis we take the lineal approximation to (14) at RDEF=0 
getting: 
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Eq. (17) has been obtained assuming a zero input transition 
time. For the real case of nonzero input transition time, an 
additional term must be added to (17), that depends on the input 
gate capacitance and the pull-up (or pull-down) resistance of the 
previous gate (Ri-1). This term is similar to the upper term in 
Eq. (4). Adding this input transition time dependence to (17), the 
total delay is given by: 
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Note that Eq. (18) leads to Eq. (4) for the fault free case (i.e. 
no open defect: RDEF = 0) as expected. 

Eq. (18) provides the delay degradation dependence for a 
CMOS gate driving an interconnect line having a resistive open 
with resistance RDEF. The DCR expression is therefore obtained 
equating the delay given by Eq. (18) to the expression of the 
delay at the limit of the distribution given by Eq. (10) 
(tD(xnom+3σx)). The obtained DCR will be the open resistance 
that degrades the propagation delay from the mean delay to its 
3σ value. The delay expression Eq. (18) for the limit of C1= 0, 
leads to the well known Elmore delay: 

  

! 

t
D
(R

DEF
) " t

D
(R

DEF
= 0) + ln(2)R

DEF
C2 (19) 

The DCR for the whole path is obtained equating the delay 
increment in Eq. (10) due to parameter variations and the delay 
increment due to the defect providing: 
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where tpath is the path delay of the fault free circuit, N is the 
number of gates in the path, and C and K are mean values for the 
gate capacitance and gate conductance in the path. Eq. (20) 
provides the supply voltage dependence of the DCR. The 
expression obtained shows that, as the supply voltage is reduced 
toward VTH (the transistor threshold voltage), the DCR increases 
and tends to diverge. Such a dependency indicates that as the 
circuit supply voltage is reduced, the value of the open resistance 
that increases the mean delay out of the delay distribution also 
increases. Therefore, the impact of a given resistive open on the 



circuit delay will be relatively smaller as the supply voltage is 
lowered because of the delay variation increase.  

 
3.4 Node to rail short 

 
Figure 5 illustrates the node to rail (GND in this case) short, 

and the equivalent circuit used to compute the impact of the 
defect on the gate delay. The defect is modeled as a pull-down 
resistance. The extension of this defect model to a node-to-node 
short is straightforward: the defect resistance would be connected 
to GND through an additional resistance (say R’i) corresponding 
to the output impedance of the gate driving the other shortened 
node. We assume that the gate input voltage is and ideal step (for 
a non-zero rising/falling input transition to the gate an additional 
term will be added as done with (18)). Using circuit analysis, the 
gate delay is derived from Vout(t) and takes the form: 
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Figure 5. Node to GND short and equivalent circuit used to model 

the impact on delay. 

The propagation delay is obtained from (21) as: 
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For the case of interest where the short impacts mainly the 
delay (Ri<<RDEF) such a delay is given by: 
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Therefore, as a first approach (neglecting the input slew time, 
i.e. Ci-1= 0) from Eq. (4) we can write Eq. (23) as: 
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Similarly to the previous case we compute the DCR equating 
(24) to the worst case propagation delay due to parameter 
variations (Eq.  (10)). The solution of this equation is a complex 
function that has been used to compute the exact value of the 
DCR reported in the following section. To get a trend of the 
DCR dependence with the supply voltage, we analyze the first 
order solution of such an equation, given by: 
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where R’ is a supply-voltage independent resistance value. 
Note that in this case the dependence of the DCR with VDD does 
not diverge when the supply voltage is reduced toward the 
threshold voltage. Eq. (25) indicates that the behavior of DCR is 
smooth with respect to VDD, and depends on actual technology 
parameters. In the following section we explore this dependency 
for a 130nm technology using the full delay expression. 

 
4. Experimental Validation 

 
To verify the validity of the models derived we simulated the 

impact of resistive opens and node-to-rail shorts on the delay of a 
10-gate chain on a 130nm technology. This number of gates was 
used to emulate the typical gate depth of today designs. The fault 
free path delay was first simulated both at the nominal 1.2 V and 
at a reduced 0.8 V supply voltages on a Montecarlo simulation 
for 1000 circuits to get the delay distributions at these two supply 
voltages. Then a defect resistance was placed on a particular 
node and its impact on the delay was simulated for a range of 
defect values at the two supply voltages. 

 
4.1 Resistive open 

Figure 6 shows the results for the resistive open defect model 
plotting the chain delay vs. the defect resistance for the two 
supply voltages. The nominal delay at the nominal supply 
voltage is 250 ps, while the 3σ delay value is at 300 ps. The 
intersection of the 3σ delay limit with the defect induced delay 
gives DCR = 20 kΩ at the nominal supply voltage. The nominal 
delay at 0.8 V increases to 478 ps and its 3σ delay distribution 
value is at 602 ps. At this supply voltage, the intersection 
between the defect-induced delay and the 3σ value occurs at 
DCR = 50 kΩ. 

 

 
Figure 6. Impact of a resistive open on the circuit delay at two 

supply voltages (nominal VDD and 2/3 of nominal VDD) for a 130 nm 
circuit. The Dynamic Critical Resistance at nominal VDD is 20 kΩ, 

while at the reduced VDD it increases to 50 kΩ.  



Since the lower the DCR value, the higher the defect 
detection capability, the observed increase in DCR at reduced 
supply voltages follows the dependency given by Eq. (20), and 
indicates a lower chance to detect this defect at reduced supply 
voltages. We computed the actual values of the DCR provided 
by the model developed in the previous section for the 120nm 
technology. The fault free delay curves were properly described 
from Eq. (10) setting σTH=0,054V, and β=0,15. Using these 
parameters we obtained the DCR values shown in Table I 
showing a very good agreement with Spice simulations since the 
maximum error is 10%. 

 
Table I. Comparison of Spice simulations and the developed model 

of the DRC values for for a 130 nm technology. 

  Resistive 
open 

% 
err 

Node to rail 
short 

% 
err 

Spice 20 kΩ 18 kΩ 1.2 V 
Model 22.4 kΩ 

10 
18.5 kΩ 

2.7 

Spice 50 kΩ 20 kΩ 
0.8 V 

Model 53.3 kΩ 
6 

19.5 kΩ 
 2.5 

 
4.2 Node to VDD short 

We repeated the simulation experiment inserting a resistance 
between the same circuit node short and the supply voltage 
(Figure 7). The values of the typical delays and 3σ values at the 
nominal and reduced supply voltages are the same than in the 
previous subsection since the circuit is the same. The intersection 
of the 3σ delay limit with the defect induced delay increase with 
respect to the typical delay value gives DCR = 18 kΩ at the 
nominal supply voltage, while at the reduced supply voltage the 
DCR = 20 kΩ. Note that in this case, the larger the DCR value, 
the higher the defect detection capability, since the fault-free 
case would correspond to an infinite defect resistance (in the 
previous case it was the opposite).  

 

 
Figure 7. Impact of a node to VDD short on the circuit delay at two 

different supply voltages (nominal VDD and 2/3 of nominal VDD) for 
a 130 nm circuit. The Dynamic Critical Resistance at nominal VDD 

is 18 kΩ, while at the reduced VDD it increases to 20 kΩ. 

Therefore, for the node-to-rail short the application of the 
delay test at reduced supply voltage provides a better coverage, 
although the gain in defect sensitivity is moderate, since the 

DCR improvement is about 10%. Similarly to the previous case 
we computed the actual values of the DCR provided by the 
model developed in the previous section for the 120nm 
technology, using the parameters obtained for the fault free delay 
case, obtaining the values shown in Table I. Results show that 
for this defect the model provides even a better results since the 
error is below 3%. 

 
5. Conclusions 

 
Multi-VDD test can be a powerful approach to detect resistive 

open/shorts in digital circuits. We have shown that the impact of 
process variations on delay testing at reduced VDD may limit the 
sensitivity of this technique for nanoscale CMOS ICs. This 
reduced sensitivity comes from the increased spread of delay 
variations at supply voltages below the nominal supply values. 
This has been verified for resistive opens, observing that the 
relative value of the defect resistance required to displace a given 
fault free path delay out of the delay distribution is higher at 
reduced supply voltages. For the case of a node-to-rail resistive 
short the tendency is opposed, but the relative increase in defect 
sensitivity is moderate. This analysis pose a question about the 
advantages of running delay testing at supply voltages below the 
nominal value for a given technology. 

 
References 

[1] R. Madge, et. al. , “Obtaining High Defect Coverage for 
Frequency-Dependent Defects in Complex ASICs”  IEEE Design 
and Test of Computers,  Sept.-Oct. 2003, pp. 46-53. 

[2]  H. Hao and E. McCluskey, "Very-low voltage testing for weak 
CMOS logic ICs,” IEEE In.l Test Conference, pp. 275-284, 1993. 

[3] J. Segura and C. Hawkins, “CMOS Electronics: how it works, 
how it fails” IEEE Press – John Wiley & Sons, 2004. 

[4] Y. Haihua and A. Singh, “A delay test to differentiate resistive 
interconnect faults from weak transistor defects”, IEEE Int. Conf. 
VLSI on Design, 2005. 47 – 52, 2005. 

[5] H. Yan, G. Xu, A. Singh, “Low voltage test in place of fast clock 
in DDSI delay test”, Sixth Int. Symposium on Quality Electronic 
Design (ISQED), 2005. 

[6] C.W. Tseng, R. Chen, P. Nigh, E.J. McCluskey ”MINVDD 
Testing for Weak CMOS ICs”. VTS 2001, 339-344. 

[7] R. Madge, et. al., “Screening MinVDD outliers using feed-
foward voltage testing analysis,” IEEE International Test 
Conference (ITC), pp. 673-682, 2002. 

[8] S. Bota, M. Rosales, J.L. Rosselló and J. Segura, “Low VDD vs. 
Delay: is it really a good correlation metric for nanometer ICs?”, 
IEEE VLSI Test Symposium, 2006. 

[9] S.W. Sun, G.Y. Tsui. “Limitations of CMOS supply-voltage 
scaling by MOSFET Threshold-Voltage variation”. IEEE Journal 
of solid-state circuits, vol. 30, nº 8, 1995, pp 947-949 

[10] T. Sakurai, A.R. Newton “Alpha-power law MOSFET model and 
its applications to CMOS inverter delay and other formulas”IEEE 
Journal of solid-state circuits, vol. 25, 1990, pp 584-594. 

[11] B. Benware, et. al., “Affrodable and effective screening of delay 
defects in ASIC using the inline resistance fault model” IEEE Int. 
Test Conference, pp. 1285 – 1294, 2004. 

[12] J. L Rossello and J. Segura, “A Compact Charge-Based Crosstalk 
Induced Delay for Submicronic CMOS gates” XIII Int. Workshp. 
on Power and Timing Modeling (PATMOS 2003), Sept 2003. 

 


	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index




