
Performance Analysis of Multimedia Applications using
Correlated Streams

Kai Huang and Lothar Thiele∗

Todor Stefanov and Ed Deprettere†

ABSTRACT

In modern embedded systems, data streams are often par-
titioned into separate sub-streams which are processed on
parallel hardware components. To analyze the performance
of these systems with high accuracy, correlations between
event streams must be taken into account. No methods are
known so far that are able to model such a scenario with the
desired accuracy. In this paper, we present a new approach
to analyze correlations and we embed this analysis method
into a well-established modular performance analysis frame-
work. The presented approach enables system-level perfor-
mance analysis of complete systems by taking into account
stream correlations and blocking-read semantics. Experi-
mental results on a hardware-software prototyping system
are provided that show the accuracy of the analysis in a
practical application.

1. INTRODUCTION
For stream-oriented embedded applications the sys-

tem design is moving from single processor implemen-
tations towards heterogeneous multi-processor System-on-
Chip (MpSoC). These platforms are characterized by a large
design space as there is a large degree of freedom in the par-
titioning of parallel application tasks, the allocation of con-
current hardware components, their binding to application
processes, and the choice of appropriate resource allocation
schemes. It is well acknowledged that design of such com-
plex systems requires performance evaluation and validation
techniques during the whole design trajectory. Because of
the overall system complexity, fast estimation methods in
an early design stage are critical for the exploration of large
design spaces.

In order to obtain tight results in performance estimation,
it is necessary to tackle the heterogeneity and complexity of
the application and the underlying hardware/software plat-
form as well as interferences and correlations between data
streams, computation and communication. A typical ex-
ample is the correlation between event streams and between
computations in the Kahn Process model of computation [1]
which is popular for modeling multimedia applications. For
instance, in a typical split-join scenario, an input stream is
split into several sub-streams and joined again after separate
processing. Obviously, the sub-streams are highly correlated
and an accurate performance analysis in terms of delays and
buffer space usage requires (a) a model that is able to cover
correlation between data streams and (b) a precise model
of the blocking-read semantics and the associated blocking
delay of processes.

∗ETH Zürich, Switzerland, {huang,thiele}@tik.ee.ethz.ch
†University Leiden, Netherlands, {stefanov,edd}@liacs.nl

The system-level analysis of such heterogeneous systems
with a high degree of internal correlations is currently mainly
based on simulation. There are industrial simulation tools,
e.g. Cadence’s VCC [2], and academic tools, e.g. MPARM
[3] and Ptolemy [4]. These simulation techniques allow the
modeling of systems in any level of detail but they often
suffer from long run times and from a high set-up effort for
each new architecture, mapping and scheduling discipline.
Worst-case bounds of system properties like throughput and
end-to-end delay can not be obtained because of the inability
to cover corner cases of the execution.

To achieve shorter run-times for simulation based meth-
ods, approaches that combine simulation and analysis have
been proposed. In [5], a hybrid trace-based simulation
methodology was proposed, and in [6] a method that com-
bines the SystemC [7] based MPARM [3] simulation with an
analytic technique [8]. Although these mixed methodologies
can help to shorten the run-time of simulations, the problem
of insufficient corner case coverage is still present.

Formal analytical methods, e.g. Symta/S [9], holistic
analysis [10], timed automata [11], and modular perfor-
mance analysis [12, 8], allow fast estimation speed and suf-
ficient corner case coverage. Different methods have been
developed to analyze systems in terms of their scheduling
policies, the arrival event patterns of input streams, and the
detailed modeling of processing and resource sharing. There
are several approaches available to model event patterns and
correlation within single event streams (e.g., the Syma/S
framework [9]). However, due to the difficulty of exploiting
timing correlations between event streams and blocking-read
semantics, none of these existing frameworks for modular
system level performance analysis is able to model them in
the necessary level of detail. First steps in this direction
have been presented in [13], [14], but the presented models
tackle correlations between different event types and work-
loads only. In this paper, we present a method that is able to
analyze the correlation between different streams while tak-
ing into account the blocking-read semantics of processing
nodes. The contributions of this work can be summarized
as follows:

• We present a methodology to model correlations in
data streams and data distribution based on different
types of delays, such as split delay, processing delay
and blocking delay.

• The new model is embedded into the Modular Perfor-
mance Analysis (MPA) framework of [12, 8].

• We show the applicability of the presented methods by
analyzing a multimedia application and verifying the
results by means of a hardware/software implementa-
tion on a fast prototyping platform.

978-3-9810801-2-4/DATE07 © 2007 EDAA

2. MODULAR PERFORMANCE ANALY­

SIS
In the domain of embedded multimedia and digital sig-

nal processing applications, powerful abstractions have been
developed to model and analyze the system performance.
The framework used in this paper is an approach denoted
as Modular Performance Analysis (MPA) [12]. The per-
formance model of a system is composed of single abstract
components that model (a) resources such as busses and pro-
cessors, (b) event streams that are either communicated or
triggering processes, and (c) resource sharing methods. The
approach uses Real-Time Calculus [8] which itself is based
on the theoretical framework called Network Calculus [15].
In particular, arrival curves α(∆), service curves β(∆) and
workload curves γ(∆) [16] model certain timing properties of
event streams, the capability of architecture elements, and
the execution requirement of event streams, respectively, as
shown in Fig. 1. Abstract components define the semantics
of task execution and resource sharing in the system. To
make the paper self-contained, a short description of these
elements is given next. Workload curves γ(∆) are not de-
scribed here as their use is orthogonal to the new methods
of this paper.

C P U C P U

TDMA E DF

proces s

network

res ource

sharing

execution

platform

Figure 1: Elements of modular performance analy-

sis.

2.1 Event Stream Model
All event streams in a system can be described using

a cumulative function R(s, t), defined as the number of
events seen in the time interval [s, t). While any R always
describes one concrete trace of an event stream, a tuple
α(∆) = [αu(∆), αl(∆)] of upper and lower arrival curves
[17] provides an abstract event stream model that charac-
terizes a whole class of (non-deterministic) event streams.
αu(∆) and αl(∆) provide an upper and lower bounds on
the number of events seen on the event stream in any time
interval of length ∆, respectively:

αl(t − s) ≤ R(s, t) ≤ αu(t − s) ∀s < t (1)

with αl(∆) = αu(∆) = 0 for ∆ ≤ 0. Arrival curves sub-
stantially generalize traditional event models such as spo-
radic, periodic, periodic with jitter, or any other arrival
pattern with deterministic timing behavior. Therefore, they
are suited to represent the complex characteristics of event
streams in complex multiprocessor embedded systems.

2.2 Resource Model
In a similar way, the capability of a computation or com-

munication resource can be described by a cumulative func-
tion C(s, t), defined as the number of available resources,
e.g. processor or bus cycles, in the time interval [s, t).

To provide an abstract resource model which models a
whole set of possible resource behavior, we define a tuple
β(∆) = [βu(∆), βl(∆)] of upper and lower service curves:

βl(t − s) ≤ C(s, t) ≤ βu(t − s) ∀s < t (2)

with βl(∆) = βu(∆) = 0 for ∆ ≤ 0. Again, service curves
substantially generalize classical resource models as for ex-
ample the bounded delay or the periodic resource model
[18].

2.3 System Analysis
To analyze the performance of a concrete system, its es-

sential properties need to be captured in an abstract per-
formance model, which consists of a set of inter-connected
abstract components. Abstract performance components
model the application tasks in a system and define the se-
mantics of how application tasks are executed on architec-
ture elements.

For instance, consider a bus with bandwidth B that imple-
ments a TDMA protocol (Time Division Multiple Access).
The TDMA individual slot length is denoted as si and the
cycle length is denoted as c̄, in which c̄ =

P

si. Then the
service curves which a slot obtains can be modeled by:

βl
i(∆) = B · min {⌈∆/c̄⌉ · si, ∆ − ⌊∆/c̄⌋ · (c̄ − si)} (3a)

βu
i (∆) = B · max {⌊∆/c̄⌋ · si, ∆ − ⌈∆/c̄⌉ · (c̄ − si)} (3b)

Once the semantics of abstract components are defined,
we can describe and analyze such a component using Real-
Time Calculus [8]. For example, the semantics of a greedy
system component can be described as follows: An incoming
event stream, represented as a set of upper and lower arrival
curves, flows into a FIFO buffer in front of a system compo-
nent. The events trigger the instantiation of the correspond-
ing application while being restricted by the availability of
resources which are represented as a set of upper and lower
service curves. The outgoing event stream can again be rep-
resented as a set of upper and lower arrival curves, while
the remaining resource capacity can be represented as a set
of outgoing upper and lower service curves. As has been
shown [12], in this case the outgoing arrival curves α′ can
be determined as follows:

αl′(∆) = min{ inf
0≤µ≤∆

{sup
λ>0

{αl(µ + λ) − β̄u(λ)}

+ β̄l(∆ − µ)}, β̄l(∆)} (4a)

αu′

(∆) = min{ sup
λ>0

{ inf
0≤µ<λ+∆

{αu(µ) + β̄u(λ + ∆ − µ)}

− β̄l(λ)}, β̄u(∆)} (4b)

The abstract components are composed according to the
flow of events and the use of resources. As they model sub-
systems including the resource sharing strategy, the modular
analysis of a complex system is possible in terms of end-to-
end delay, throughput and buffer sizes. For example, an
upper bound of the maximum delay dmax experienced by an
event and the maximal length bmax of the FIFO buffer at
a greedy performance component is given by the following
relation, see also [15]:

dmax = sup
λ≥0

n

inf{τ ≥ 0 : αu(λ) ≤ βl(λ + τ)}
o

(5)

bmax = sup
λ≥0

{αu(λ) − βl(λ)} (6)

3. PERFORMANCE ANALYSIS OF COR­

RELATED STREAMS
In this section, we study stream correlations and meth-

ods to consider the corresponding effects in the performance
analysis. To this end, we consider a split-join scenario, where
a given event stream is distributed to several processing el-
ements (split) and the results of the corresponding compu-
tations are combined later on (join), see Fig. 2. A typical
example is the modified M-JPEG encoder [19]. Incoming
video frames are fed into the encoder frame by frame. Each
frame is partitioned into blocks using a certain distribution
policy, blocks are compressed in parallel using concurrent
hardware units. After compression, all compressed blocks
join together to form a frame. Furthermore, we will distin-
guish between two different semantics of the split-process,
namely the OR-semantics and the ORDER-semantics.

split join…

Figure 2: Process network representing the split-

join scenario.

3.1 Join Process with OR­Semantics
A processing node with OR-semantics takes any event ap-

pearing on one of its inputs and processes all of them in a
first-come-first-serve order. Without restricting the gener-
ality of our approach, we suppose that the join-process in
the scenario of Fig. 2 just transfers input events to its out-
put without any resource usage and in zero time. If there is
additional processing necessary, this can easily be modeled
by an additional process whose single input is connected to
the output of the join-process.

Current analysis methods can not take into account the
correlation between the streams i = 1, ..., M . After the par-
titioning of the given input stream they are considered as
independent entities. As will be seen in the next example,
this fact leads to a degraded accuracy of the performance
analysis, i.e. delays and buffer sizes are overestimated to a
large extent.

Example 1. Consider a simple split-join scenario in
Fig. 2 with only two partitioned streams, i.e. M = 2. A
simple TDMA scheme alternatively serves the two output
streams with a fixed window size of 10ms. A simple periodic
input stream with 2 events per ms leads to the arrival curve
α and the two output streams α1 and α2 shown in Fig. 3,
left hand side. The two streams have their own processing
routes and separate delays d1 and d2, respectively. Even in
the most simple case with d1 = d2 = 0, the derived output
curve α′ = α1 + α2 is overly pessimistic in comparison to
the correct result α′ = α. The shadowed part in the Fig. 3
shows the loss which was caused by previous analytical meth-
ods. For example, all subsequent subsystems will assume,
that there are at most 40 events within a time interval of
10ms instead of just 20.

The reason for the tremendous loss in accuracy can be seen
in the fact that any information about time correlations is

0 5 10 15 20 25 30 35 40

10

20

30

40

50

60

70

80

∆

#
 e

v
en

ts

α
α 1

u
u =
 =

α
α 2

u

α
1

l
 = α

2

l

l

(ms)

0 5 10 15 20

(ms)
25 30 35 40

10

20

30

40

50

60

80

70

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

∆

#
 e

v
en

ts α
1

u
 + α

2

u
α

’

α
1

l
 + α

2

l

Figure 3: Arrival curves for the split-join-scenario.

lost during the analysis. The following theorem leads to a
method, which is able to consider time correlations between
different event streams.

Theorem 1. Assume an event stream with arrival curve
α = [αu, αl] is split into M sub-streams which will be com-
bined in a join process with OR-semantics. The delay of
each substream between split and join is bounded by a tuple
di = [dmin

i , dmax
i] for all i ∈ M . Then the output of the join

process is an event stream that can be bounded by the arrival
curve

α
′u(∆) =min

 M
X

i=1

αu
i (∆ + δi), α

u(∆ + δmax − δmin)

ff

(7a)

α
′l(∆) =max

 M
X

i=1

αl
i(∆ − δi), α

l(∆ + δmin − δmax)

ff

(7b)

where δi = dmax
i − dmin

i , δmax = max
i∈M

{dmax
i }, and δmin =

min
i∈M

{dmin
i }.

Proof. Because of space limitations, we will only prove
a simplified version of the above theorem which considers
only two streams, one stream has delay d1 = d and the
other one d2 = 0. Extensions to the above theorem are
straightforward. Let us look at the event stream arriving at
the input. The split process selects events that are trans-
ferred to stream 2 and then appear without any delay at the

output stream. α
′u(∆) is the maximum number of events

in some interval of length ∆ and let the right interval in
Fig. 4 represent such an interval in the input stream. Then
the input events transferred to stream 1 that are appearing
in the same time output window are represented as the left
interval. Then one can conclude that both, αu(∆ + d) and

αu
1 (∆)+αu

2 (∆) are lower bounds of α
′u(∆). In a similar way,

αl(∆ + d) and αl
1(∆) + αl

2(∆) are upper bounds of α
′l(∆).

t

d

t

d

1 12
2

Figure 4: Illustration for the proof of Theorem 1.

3.2 Join Process with ORDER­Semantics
In the area of modeling stream-oriented data process-

ing applications, the Kahn Process Network (KPN) model
of computation [1] is popular for modeling parallel sys-
tems. The KPN model assumes a network of concurrent

autonomous processes that communicate in a point-to-point
fashion via unbounded FIFO channels, using a blocking-read
and nonblocking-write communication primitives. Given
these properties, a KPN is determinate, which means the
same input/output relations hold irrespective of the timing
and scheduling policies.

In the OR-semantics, an abstract performance compo-
nent is modeled as a greedy processing block that reads
input data whenever they are available at any of its in-
puts. Thus the ordering information of events within dif-
ferent sub-streams is lost, which leads to re-ordering of the
output blocks. This not only contradicts the KPN seman-
tics but also leads to an undesirable reordering of blocks in
an image frame, if we consider again the M-JPEG encoder
example.

Again, we assume that the split and join processes are
infinitly fast. Besides the delays di considered in Section 3.1,
we now have to consider the blocking-delays bdi at the join
process for each stream i.

Let us first define the minimal and maximal split interval
sdmin

ij and sdmax
ij which are the minimal and maximal relative

time differences between an event in stream i and the most
recent one in stream j, see also Fig. 5. This delay depends
on the distribution policy of the split process, i.e., different
distribution policies cause altered delays. If only the split
distances semin

ij and semax
ij in the number of intermediate

events between the different streams are known, then one
can use the input arrival curve α(∆) in order to compute
the corresponding delays. For example, sdmin

ij = inf{λ ≥

0 | αu(λ) ≥ semin
ij + 2}, sdmax

ij = inf{λ ≥ 0 | αl(λ) ≥
semax

ij + 1}.

t

stream 1 2 3 1

……

Figure 5: Illustration of the split interval.

As an example, let us consider a periodic input stream
with event rate r̄ and a TDMA split process that assigns
windows of size s to each stream in the order 1, 2, ...M, 1, 2....
If s is a multiple of the distance between two events 1/r̄, then

sdmax
ij = s · (i − j) mod M sdmin

ij = sdmax
ij + 1/r̄ − s (8)

The second part of the delay chain we need to consider
consists of the minimal and maximal accumulated process-
ing delays pdmin

i and pdmax
i of the individual streams i, in-

cluding the time spent in the buffers in front of the comput-
ing resources, see also the ’blank’ nodes in Fig. 2. One can
apply (5) and (6) in order to obtain upper bounds on this
delay and the corresponding backlog in front of the comput-
ing or communication resource. For more complex operation
chains, the whole method of modular performance analysis
can be used in order to determine lower and upper bounds
on the processing delays.

The third part we need to consider is the blocking-read
delay bdi which occurs if in-order output is required. Due to
the blocking-read semantic of the join process, an event of a
sub-stream is read by the join process only after all previous

events (in terms of the original order of the events in the
input stream) that are still being processed in other sub-
streams have been read. An upper bound on the blocking-
read delay can be determined using the split interval and
processing delay as defined above:

bdmax
i = max

j∈M∧j 6=i
{0, pdmax

j − pdmin
i − sdmin

ij } (9a)

The blocking-read delay can be used for the calculation of
the backlog in front of the join process. We can obtain an
upper bound of the number of waiting events as

bmax
i = α

′u
i (bdmax

i) (10)

where α
′

i is the arrival curve of a processing route in front
of the join process, see Fig. 2.

Example 2. Again consider the scenario in Example 1.
The input event stream α is split into two sub-streams,
namely α1 and α2. The event e2 of α is dispatched to sub-
stream α1 at time t2 and its minimum processing delay is
pdmin

1 . The closest previous event e2 which has been put to
α2 has maximum processing delay pdmax

2 and will reach the
join process at time t4. Then the maximum blocking-read de-
lay bdmax

1 which e2 has to wait in the buffer queue in front
of the join process is t4 − t3.

t

stream 1

stream 2

t

Figure 6: Illustration of the maximum blocking-read

delay.

Combining all the information, the final end-to-end delay
of each sub-stream from the output of the split to the output
of the join process can be calculated as follows:

dmin
i = max

j∈M∧j 6=i
{pdmin

i , pdmin
j − sdmax

ij } (11a)

dmax
i = max

j∈M∧j 6=i
{pdmax

i , pdmax
j − sdmin

ij } (11b)

These values can now be used in (7a) and (7b) in order to
determine the resulting arrival curve α′(∆).

4. EXPERIMENTAL RESULTS
In this section, we apply our method to analyze a real-life

system, namely a modified M-JPEG encoder [19]. We de-
rive the output arrival curves and the final end-to-end delay
and compare them with the results obtained from previous
methods. The analytic performance analysis has been done
using the MPA toolbox, see http://www.mpa.ethz.ch.

Like traditional M-JPEG encoders, the modified M-JPEG
encoder compresses a sequence of frames by applying JPEG
compression to each frame. Because of the inherent par-
allelism in the JPEG algorithm, a frame can be split into
macro blocks which can be compressed in parallel by concur-
rent hardware components. Our application scenario shown
in Fig. 7 contains four processors and two dedicated hard-
ware IP-Cores, which are interconnected by a bus with a
TDMA arbitration scheme. The split CPU splits image

Q

V

VO

VI

DQV

DQV

DCT

DCT

Q

V

Output

Input

TDMA bus

CPU1

CPU2

IPCore

IPCore

Split CPU

Join CPU

1

3

4

5

7

9

12

10

8

6

13

14

15

16

17

18

2

11

Figure 7: M-JPEG encoder scenario.

frames into macro blocks, scans macro blocks row by row,
then dispatches them to four different processing routes. In
two of the routes, the generic processing elements CPU1 and
CPU2 conduct a software compression to incoming macro
blocks whereas in the other two routes dedicated hardware
IP-Cores perform a hardware compression. The compressed
macro blocks assemble in the join CPU to form a stream of
JPEG-encoded frames.

For comparison, we prototyped this M-JPEG encoder us-
ing ESPAM [20] which is a fast hardware/software prototyp-
ing environment using a KPN model compiler and a Field
Programmable Gate Array (FPGA) platform. The target
system runs on a set of XILINX VIRTEXII-PRO FPGA.
The specifications of the involved pieces of hardware are
listed in Table 1. Microblaze soft processors are used as
general purpose processing elements for CPU1, CPU2, and
JoinCPU. The IP-Core conducts a hardware compression
with constant delay for the processing of each macro block.
The TDMA bus has 6 slots with a slot length of 2048 cycles.
One input frame contains 128 macro blocks, and one macro
block consists of 8 × 16 pixels (256 32-bit words).

Table 1: Hardware Specifications.

Hardware Frequency Throughput other features
[MHz] [bytes/cycle]

TDMA bus 100 4 6 slots, 2048 cycles each
IPCore 100 4 94-stages pipeline

Microblaze 100

For design space exploration, we conducted three experi-
ments by applying two different distribution policies to the
split CPU, i.e. modulo distribution and block distribution.
In case of the modulo distribution, macro blocks are dis-
patched to the four routes alternately, as shown in Fig. 8(a).
We can compute the split intervals using (8) with M = 4.
In case of the block distribution, an image frame is split into
four zones, as depicted in Fig. 8(b). Macro blocks inside one
zone are dispatched to one processing route. Since the split
CPU scans blocks always row by row, split interval calcu-
lation becomes more involved. As shown in Fig. 8(b), We
associate the stream i with a tuple [ki, li], i.e. Pkili repre-
sents the stream i. Now the split intervals can be determined
as follows: when ki = kj , the delay is bounded by (12a) and
(12b); when ki > kj , the delay is bounded by (12c) and
(12d); when ki < kj , we assume positive infinity, because
ki < kj represents the interval between two frames. Inside
(12), N1 and N2 denotes the number of macro blocks in a
row and a column, respectively. M denotes the number of
zones in each row and column (i.e. M2 is the total number
of zones). r̄ represents the input block rate.

P1 P2 P3 P4 P1 P2

P3 P4

(a) Modulo distribution.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

l

P22

P12

P21

11

k

P

(b) Block distribution.

Figure 8: Block distribution policies.

sd
min

ij =
“

1 +
N1

M
· ((li − lj) mod M − 1)

”

·

1

r̄
(12a)

sd
max

ij =
“ N1

M
· ((li − lj) mod M)

”

·

1

r̄
(12b)

sd
min

ij =
“

1 + (M + li − lj − 1)
N1

M
+ (ki − kj − 1)

N1 · N2

M

”

·

1

r̄

(12c)

sd
max

ij =
“

(li − lj)
N1

M
+ (ki − kj)

N1 · N2

M

”

·

1

r̄
(12d)

The information given above is sufficient to use the frame-
work described in this paper. We use the Modular Perfor-
mance Analysis (MPA) combined with (11) and (7) to derive
the output arrival curves and the end-to-end delay. The final
results are shown in Figs. 9, 10, and 11.

In the first experiment, we evaluate the modeling of nodes
with Or-semantics using modulo distribution policy. In
Fig. 9, we show analytical results of both Or-semantics and
previous methods with an input frame rate 6 frames/s. The
solid lines represent curves obtained by the new method,
taking into account the correlations between event streams.
The dotted lines represent curves generated by previously
available methods. We can observe that the new pre-
sented analysis method leads to considerably tighter analytic
bounds. The maximum intervals between two output macro
blocks are also depicted in the figure. The new obtained
maximum interval(3.46 ms), is above 2 times less than the
previous 7.63 ms. The calculated worst case end-to-end de-
lay of one macro block in both cases is 3.44 ms. In addi-
tion, we compared the analytical results to those obtained
from measurements on the prototyping system. From the
traces generated by the FPGA implementation, the maxi-
mum block interval is 2.61 ms and the average end-to-end
delay of amacro block is 2.14 ms. Compared to the measure-
ment results, the calculated maximum block interval and the
worst case end-to-end block delay are valid and in acceptable
ranges.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

∆ (10 µsec)

#
 B

lo
ck

s

Or−Semantic upper

Or−Semantic lower

No correlation

No correlation

346 763

Figure 9: Or-semantics and no correlation in modulo

distribution experiment.

In the second experiment, we compare the results between
OR-semantics and ORDER-semantics of processing nodes
with modulo distribution policy. We increase the input
frame rate to 9.6 frames/s in order to amplify the blocking

read behavior. Now the system is dominated by blocking-
read delays in front of the join processor. This fact can be
seen from Fig. 10. The curves corresponding to a join node
with OR-semantics (solid lines) do not take into account
the delays caused by the blocking read operation (in-order
assembly of macro blocks). The join processor will read
whatever data are available at any of its input. Thus we get
too optimistic results, as shown by the tighter bounds in the
figure. Once the ORDER-semantics is taken into account,
the bounds become weaker as the differences between the
minimal and maximal delay of events grow substantially.
Because of the analytical approach, the bounds correctly
correspond to the worst case behavior of the multiprocessor
system. The results can be used to obtain bounds on jitter,
maximum throughput, worst-case and best-case delay and
buffer sizes.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

∆ (10 µsec)

#
 B

lo
ck

s

Or−Semantic upper

Or−Semantic lower

Order−Semantic upper

Order−Semantic lower

Figure 10: Or-semantics and Order-semantics with

modulo distribution.

In the third experiment, we compare the block distribu-
tion and modulo distribution with Order-semantics. Again,
we set the input frame rate to 6 frames/s. From Fig. 11, the
curves corresponding to the block distribution policy (dotted
lines) are pessimistic. The reason is that the block distri-
bution yields burst events to the Microblaze processor and
leads to a extremely large worst case delay for some blocks.
This worst case delay will be applied to every block because
our analytic method deals with worst case analysis. Com-
pared to the measurement, the result obtained from this
experiment is still pessimistic. We are currently developing
new method to improve the bounds.

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

∆ (10 µsec)

#
 B

lo
ck

s

Modulo upper

Modulo lower

Block upper

Block lower

Figure 11: Block distribution and modulo distribu-

tion with Order-semantic.

5. CONCLUSION
In this paper, we present a new method for analyzing

correlated data streams and blocking-read semantics in the
case of data distribution. We embed this method into the
Modular Performance Analysis (MPA) framework of [12,
8] and prove the applicability of the presented methods
by analyzing a real-life application. The analytic perfor-
mance analysis has been done using the MPA toolbox, see
http://www.mpa.ethz.ch. In the future, we will extend the
basic concept of analyzing correlations towards more com-
plex scenarios.

Acknowledgements
This research has been funded by European Integrated Project
SHAPES under IST Future Emerging Technologies - Advanced Com-
puting Architecture (ACA). Project number: 26825.

6. REFERENCES
[1] G. Kahn, “The semantics of a simple language for parallel

programming,” in Proc. of the IFIP Congress 74,
North-Holland Publishing Co., 1974.

[2] “The Cadence Virtual Component Co-design (VCC).”
http://www.cadence.com/products/vcc.html.

[3] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon,
“Analyzing on-chip communication in a MPSoC environment,”
in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition Volume II (DATE’04),
pp. 752–757, IEEE Computer Society, 2004.

[4] E. Lee and A. Sangiovanni-Vincentelli, “A Framework for
Comparing Models of Computation,” IEEE Transactions on
CAD of Integrated Circuits and Systems, vol. 17, no. 12,
pp. 1217–1229, 1998.

[5] K. Lahiri, A. Raghunathan, and S. Dey, “System level
performance analysis for designing on-chip communication
architectures,” IEEE Transactions on Computer
Aided-Design of Integrated Circuits and Systems, vol. 20,
no. 6, pp. 768–783, 2001.

[6] S. Künzli, F. Poletti, L. Benini, and L. Thiele, “Combining
simulation and formal methods for system-level performance
analysis,” in Proc. Design, Automation and Test in Europe
(DATE), March 2006.

[7] “The Open SystemC Initiative (OSCI).”
http://www.systemc.org.

[8] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus
for scheduling hard real-time systems,” in Proc. IEEE
International Symposium on Circuits and Systems (ISCAS),
vol. 4, pp. 101–104, 2000.

[9] K. Richter and R. Ernst, “Event model interfaces for
heterogeneous system analysis,” in Proc. 5th Design,
Automation and Test in Europe (DATE), p. 506, IEEE
Computer Society, March 2002.

[10] P. Pop, P. Eles, Z. Peng, V. Izosimov, M. Hellring, and
O. Bridal, “Design Optimization of Multi-Cluster Embedded
Systems for Real-Time Applications,” in Design, Automation
and Test in Europe (DATE 2004), pp. 1028–1033, 2004.

[11] T. Amnell, E. Fersman, L. Mokrushin, P. Petterson, and W. Yi,
“Times - a tool for medlling and implementation of embedded
systems,” in TACAS 02: Proceedings of the 8th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, p. 460, 2002.

[12] S. Chakraborty, S. Künzli, and L. Thiele, “A general framework
for analysing system properties in platform-based embedded
system designs,” in Proc. 6th Design, Automation and Test in
Europe (DATE), pp. 190–195, March 2003.

[13] M. Jersak, R.Henai, and R. Ernst, “Context-aware performance
analysis for efficient embedded system design,” in Proc. Design,
Automation and Test in Europe (DATE), March 2004.

[14] E. Wandeler and L. Thiele, “Characterizing Workload
Correlations in Multi Processor Hard Real-Tim e Systems,” in
11th IEEE Real-Time and Embedded Technology and
Applications Sympo sium (RTAS), pp. 46–55, March 2005.

[15] J. Le Boudec and P. Thiran, Network Calculus - A Theory of
Deterministic Queuing Systems for the Internet. LNCS 2050,
Springer Verlag, 2001.

[16] A. Maxiaguine, S. Künzli, and L. Thiele, “Workload
characterization model for tasks with variable execution
demand,” in Proc. 7th Design, Automation and Test in
Europe (DATE), 2004.

[17] R. Cruz, “A calculus for network delay,” IEEE Trans.
Information Theory, vol. 37, no. 1, pp. 114–141, 1991.

[18] I. Shin and I. Lee, “Compositional Real-Time Scheduling
Framework,” in Proceedings of the Real-Time Systems
Symposium (RTSS), pp. 57–67, IEEE Press, 2004.

[19] T. Stefanov, “Converting weakly dynamic programs to
equivalent process network specifications,” Sept. 2004. Ph.D.
dissertation book, Leiden University, Leiden, The Netherlands,
September 2004, ISBN: 90-9018629-8.

[20] H. Nikolov, T. Stefanvo, and E. Deprettere, “Multi-processor
system design with espam,” in 4th IEEE/ACM/IFIP Int.
Conf. on HW/SW Codesign and System Synthesis
(CODES-ISSS’06), Oct. 2006.

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

