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Abstract 
In recent years other verification features than simulation 
performance such as robustness and debugging gained increasing 
impact on simulation language and tool selection. However, 
fastest model execution speed is still priority number one for 
many design and verification engineers. This can be seen in the 
continuously growing interest in virtual prototypes and transaction 
level modeling (TLM). 
As part of the ongoing re-work modeling language strategies and 
the world wide introduction of TLM, a detailed analysis of the 
impact of description languages, abstraction layers and data types 
on simulation performance is of high importance. For the 
presented analysis, we considered five designs that have been 
modeled in VHDL, Verilog, SystemVerilog, and SystemC, using 
different value representations and coding styles, covering the 
abstraction levels from functional to behavioral to RTL. 
This paper presents our evaluation environment and several 
interesting findings of our analysis. The most important results are 
as follows: We found that HDL tool/language/abstraction 
selection of RTL models impacts on the execution speed with a 
factor of 4.4. We found that Verilog is on average 2x faster than 
VHDL for RTL models. We found that SystemC results in 10x 
slower RTL models than HDLs and surprisingly results in 2.6x 
slower TLM1 PV models than SystemVerilog. And we found 
finally that on average over all analyzed aspects SystemVerilog 
models are executed fastest. 

1 Introduction 
During the last years simulation performance had a continuously 
decreasing impact on simulation language and tool selection. 
Other items as verification aspects, robustness, or debug increased 
importance [1]. Furthermore, the performance difference of 
different tools and languages has been estimated as quite low. 
However, simulation time is still the main focus of design 
engineers and managers. The main reason is that simulation is still 
the workhorse for verification despite the upcoming of formal 
methods, emulation, and FPGA prototyping. Unfortunately, 
simulation time increases at least linear with the circuit 
complexity that according to Moore’s law increases exponentially 
over time. The need for simulation of embedded software puts 
even more burden on simulators since the interpretation of SW by 
an HDL model needs to be performed. This burden is further 
increased by constraint random simulation that reduces effort for 
building test cases by requiring more simulation runs. 
                                                             
1 TLM defines the styles PV (programmer’s view), PVT 

(programmer’s view with timing), and CA (cycle accurate). 

Also the impact of simulation performance on the overall 
verification process comes to the fore. 
• Engineers’ waiting time until a regression run returns results 

is directly impacted by simulation speed. The classical “night 
time slot” for regression has to be met to avoid further delay. 

• Engineers’ waiting time in the debug-modify-compile-
simulate loop is double impacted by simulation speed: 
Higher simulation speed shortens both the time until a 
specific state in simulation is reached and the time until the 
simulation result of a modification is made available to the 
engineer. 

The most obvious sign for need of simulation speed is the 
upcoming interest and usage of behavioral models for making 
executable specifications and for fast software verification. 
The result of analyzing impact of description language, 
abstraction layer and data types on simulation performance is 
summarized in this paper. 
It is organized as follows: After referencing related work, we 
present the test analysis environment and the model alternatives 
used for analysis. Finally, analysis results are presented, key 
conclusions highlighted, and discussed. 

2 Related Work 
Several comparisons between different modeling languages and 
modeling styles have been published already, however most of 
them completely ignore performance issues: 
The comparison in [2] is just restricted to a listing of different 
language features in VHDL, Verilog and SystemVerilog and what 
equivalent they have in the other languages (if any). A 
SystemVerilog centric comparison can be found in [3]. In [4] a 
comparison is made between VHDL and Verilog concerning 
issues like basic language features, learning curve, support of 
reuse concepts and applicability to different abstraction layers. A 
similar comparison is done in [5] which also includes the topic of 
data types, library concepts, testbench features and verboseness. A 
comparison of the different language features of VHDL, C++ and 
SystemC and their correspondence to the different abstraction 
layers is done in [6]. 
Some papers discuss simulation performance but are restricted to 
just a few modeling languages and usually just one modeling 
alternative. SystemVerilog is not considered at all: 
A simulation tool related analysis of Verilog models was 
described in [7]. The use of profiling, VCD dump reduction, 
careful use of optimization flags, and two-state simulation were 
named as alternatives to dramatically improve simulation speed. 
A general claim on simulation speed was made in [8]. Cycle 
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simulation is claimed to be 10-50x faster than event driven 
simulation, while behavioral models are claimed to be 5-10x 
faster than RTL. Detailed analysis of modeling styles and 
languages is missing in both papers. 
A tool comparison with only VHDL models and without detailed 
analysis of the impact of modeling styles has been published in 
[9]. Also a comparison of Verilog tools and VHDL tools 
compared to the fastest Verilog tool is described in [10]. Verilog 
is claimed to be 4-5x faster than VHDL but for an undefined 
modeling style. 
A comparison between VHDL and C including simulation 
performance is made in [11], a similar comparison between 
VHDL and ADA in [12]. In [13] the differences concerning 
simulation time between VHDL and SystemC models are being 
discussed. The impact of LSE optimization for SystemC models is 
described in [14]. 
In all papers only a small subset of modeling styles is considered. 
Our contribution to the field of language comparison is as follows. 
We created five different designs in four different languages 
(VHDL, Verilog, SystemVerilog and SystemC), using several 
abstraction layers and different data types. 
Those models are then used in a regression environment in order 
to get representative information concerning performance 
differences between languages, abstraction layers and data types. 
In addition we use simulators of several EDA vendors in order to 
minimize the effect of tool dependency. 

3 Analysis Environment 
3.1 The Reference Designs 
We used five different models for our evaluations: An 8 bit CPU 
core with memory, a 12 bit CPU subsystem consisting of CPU, 
memory and IO devices, a systolic array for concurrent stream 
processing, an FFT, and a switch. These models have been 
selected since they cover a wide variety of architecture 
alternatives (FSM, datapath, memory, communication) and 
modeling needs (arithmetic, bit manipulation, data flow, control 
flow). 
We did not use a detailed analysis on single language feature basis 
because we found out that models like these did not produce 
realistic results, even if a weighted statistic was applied to rate the 
result. The reason might be that many effects of combining 
constructs were not captured. 
Also a wide range of coding style alternatives was used. For 
example, we used flat and hierarchical descriptions, dataflow and 
control flow descriptions, as well as table driven descriptions and 
algorithmic descriptions. 
Synthesizing the models resulted in 5k gates to 100k gates, not 
considering the memories. This gives the models the size of a 
smaller to medium sized IP block. 
Different testcases covering all aspects of the models as well as a 
wide range of simulation times were written for each model. 
Execution times were up to 10000 CPU seconds providing a quite 
realistic benchmark in terms of simulation time. 
 

3.2 Overall Structure of the environment 
Code for design and testbench as well as assembly code resides in 
a hierarchical file structure under clear case version control. 

All tests, i.e. code and tool options are specified in XML. They 
are interpreted by a test handler. The following steps are executed 
per testcase: 

• Copy code to empty directory in order to eliminate side 
effects as much as possible 

• Perform compilation according to the sequence of files 
and the tool options specified in the test 

• Elaborate model, when needed as separated step and 
measure system and user time 

• Execute simulation and measure system and user time 

• Write measured time to a data base; the measured time 
is qualified with the test description (test case, language, 
optimization mode, trace mode, etc.) 

• And finally clear directory 
A script for generating a survey on languages and modeling in a 
tabular way helps to get a general overview. Specific scripts help 
to relate execution time under certain aspects and to do statistics. 

3.3 The Tools 
In order to eliminate tool dependency of measured simulation 
performance, several EDA tools were used to execute the models. 
All tools were executed in full optimization mode. Object 
visibility was not required and no signal trace was performed. The 
selected simulation mode allows focusing on languages and 
abstraction. It provides the fastest execution and it reflects a 
typical tool setting for regression simulation with self checking 
testbenches. 
The following tools were used: 

• Synopsys “vcs2005.06-SP2” 
• Mentor “modelsim6.2e” 

• Cadence “ncsim5.4” 
• OSCI 2.1v1 SystemC kernel (for SystemC models 

only); optimization –O3 for gcc was used; when using 
further optimizations the compilation crashed 

In this paper, we give no single tool related information due to 
NDA agreements with EDA companies. The impact of tool 
capabilities on the result is discussed in a tool anonymous way. 

3.4 Measurement 
All tools were executed on dual processor (3 GHz Intel Xeon with 
4GB RAM) workstations running enterprise linux under LSF 
control, a state of the art application scenario. Measurements were 
repeated 5 times to equalize impact of workload. CPU time and 
system time of elaboration and simulation were added in order to 
form a representative value for execution time. 

4 Model Alternatives 
As already proposed in the RASSP taxonomy [15], we consider 
value representation as an independent model alternative. 
Orthogonal to value representation, we take a mix of functional, 
structural, and timing abstraction as second independent model 
alternative. We also approximate the modeling style by a model 
classification from ARM [16] which primarily specifies TLM 
abstraction. 

4.1 Selected Languages 



As already mentioned, we evaluated VHDL, Verilog, 
SystemVerilog, and SystemC. The following dialects were used: 

• VHDL’87 because this language dialect is still standard 
in our company. VHDL’93 is not used due to several 
major portability issues. 

• Verilog’01, however mainly in a Verilog’95 compatible 
style. No portability issues between the two standard 
versions were found yet. 

• SystemVeriog P1800, the current IEEE standard. 
Several restrictions had to be considered. 

• SystemC 2.1.v1. 

4.2 Time abstraction and description styles 
The model’s time representation and description style cannot be 
treated separately. We give an overview in this subsection. 
4.2.1 Functional Model (un-timed) 
Functional models reflect only functionality of the design. Neither 
architectural nor timing aspects are covered. The modeling 
concept is like programming in a sequential programming 
language. Models might have been built in the programming 
language C as well. We made two different characteristic models: 

• Flat functional model, i.e. using only one thread without any 
function calls, as special coding for optimized execution. 

• Hierarchical functional model, i.e. using function calls that 
reflect functional design partitioning but not necessarily 
architectural partitioning. 

External communication as required for IO instructions was 
mapped to files. Feedback loops in IO devices were not 
considered for modeling; however they might have been modeled 
with an IO buffer in the model. 
Functional models are expected to be the fastest models. They 
have been built to set a base line. The two functional model 
alternatives described above were modeled in all languages. 
4.2.2 Behavioral Model 
Behavioral models reflect the classical CPU, memory, and IO 
device (peripheral) partitioning. No further partitioning is 
performed, i.e. CPU, memory, and IO devices are internally 
modeled as single thread. 
Timing in general is only approximated. No special effort has 
been made to create timing accurate models. 
For consideration of execution timing, the model is annotated with 
constructs to delay the sequential execution stream, e.g. in VHDL 
with wait for Tdelay. Similarly timing is considered in 
subprograms encapsulating the communication. 
 
The following ways for modeling communication have been 
analyzed: 

• Signal based communication without handshake, i.e. special 
wait and delay statements have been inserted to guarantee 
correct communication.  
This communication style mimics hardware-like 
communication that abstracts real timing to simulation 
iterations that do not consume simulation time (e.g. in VHDL 
delta cycles). 

• Signal based communication with handshake, i.e. handshake 
guarantees correct communication, no further insertion of 
delay is required except to allow for signal update. 

• Method based communication, i.e. method calls ensure 
correct communication. This style was implemented in 
SystemC and SystemVerilog only; SystemC models use 
OSCI TLM communication while SystemVerilog models use 
interface based communication with export and import of 
tasks. 

All communication methods and models were implemented using 
the following timing accuracy: 

• Un-timed modeling close to the OSCI PV abstraction. If any, 
only simulation cycle iterations without simulation time 
advance were executed. 

• Propagation delay based modeling close to the OSCI PVT 
abstraction. Delay was specified in terms of units of 
simulation time. 

• Clock related modeling close to the OSCI CA abstraction. 
Timing was considered by relating execution progress to 
subsequent clock edges. 

Altogether 9 different styles of behavioral modeling were 
analyzed. VHDL and Verilog supported only 6 different styles 
whereas SystemC and SystemVerilog support all 9 styles. 
4.2.3 RT-Model 
In case of VHDL and Verilog, the RT models followed the IEEE 
synthesis standards. VHDL, Verilog, and SystemVerilog models 
were synthesizable with a commercial RTL synthesis tool. 
The SystemVerilog models were not just a Verilog model 
compiled with a SystemVerilog compiler. Several SystemVerilog 
specific constructs as always_ff, priority_if, or interfaces have 
been used. 
SystemC models mimic the VHDL coding style for synthesis. 
SystemC RT models were not synthesized with a tool. 
Two basic RT modeling styles were analyzed: 

• A two process model with one process modeling the registers 
and one process modeling the glue logic. The model was 
especially tuned for execution speed. 

• A structural model with several design hierarchies. The 8 bit 
model was partitioned in a very fine granular way. Partially 
RT gate models were instantiated. The 12 bit model was 
partitioned in a more coarse granular way, i.e. the leave 
elements were muxes, registers, ALUs, and FSMs. Special 
care has been taken to cover a wide range of modeling styles. 
So e.g. one FSM was implemented via table-look-up 
technique, another via boolean equations. 

The two RT model alternatives described above were modeled in 
all languages (2 per language). 
4.2.4 Summary of time abstraction and description styles 
The classical HDLs VHDL and Verilog were analyzed in 10 
different time abstraction and description style modeling 
alternatives, SystemVerilog and SystemC in 13 different 
alternatives. 
All time abstraction and description style alternatives were 
analyzed with a set of different value representations. They are 
discussed in the next subsection in more detail. 

4.3 Value Representation 



Value representation is mostly omitted when modeling languages 
and styles are compared. In this study we took a strong focus on 
value representation as well, also motivated through the 
intermediary results. Generally, we distinguish 3 classes of values. 
4.3.1 Abstract Un-encoded Values 
Abstract un-encoded values do not possess explicit mapping to 
vectors or arrays of bit. So, the value of a number is represented 
but its encoding (e.g. one’s complement signed, two’s 
complement signed, unsigned) is not. Abstract values are 
represented in a packed way which allows the simulator to handle 
them in one step if the size of the CPU word is sufficient. 
Available language representations are: 

• VHDL: integer, enumeration, boolean 
• SystemC: int, uint, enum 

• Verilog and SystemVerilog support abstract, but not un-
encoded values. Independent from their semantics, bits can 
be set explicitly. For that reason, analysis and special 
handling in simulators is needed to map those values to a 
CPU word. 

4.3.2 Bit Values 
Bit values represent only the logic state of one line or one port. Bit 
values are supported by VHDL (bit), SystemVerilog (bit) and 
SystemC (sc_bit). 
Bit values may be composed, for example to vectors. A 
composition of bit values may go hand in hand with a higher level 
semantic representation, e.g. a vector of 12 bit may carry the 
semantics of a positive or negative number. 

• Vectors of bit without additional semantics are available only 
in VHDL (bit_vector) and SystemC (sc_bv). More complex 
operations than boolean operations (such as arithmetic 
operations) must be implemented explicitly. 

• Vectors of bit with arithmetic operations are available only in 
VHDL and SystemVerilog. VHDL provides additional 
standard packages for that purpose. SystemC natively does 
not support arithmetic operations on bit vectors. The 
representations for vectors with arithmetic operations are: 

o VHDL: signed and unsigned types from package 
ieee.numeric_bit. 

o SytemVerilog language built-in support of signed 
and unsigned interpretation. 

4.3.3 Meta Values 
Meta values represent not only logical information but also 
simulation related or hardware related information. So, ‘X’ 
represents among others un-initialized values or simulation 
conflicts, ‘Z’ represents high impedance values. 
The following representations have been evaluated: 

• Since VHDL does not possess a built-in logic type with meta 
values the data types defined in the package 
ieee.std_logic1164 is used. 

o Both, the unresolved and resolved alternative were 
analyzed. Arithmetic operations were explicitly 
modeled in the model. 

o Signed and unsigned types supporting numeric 
operations on std_logic are available as 
standardized versions from the package 
ieee.numeric_std. 

o In order to identify the impact of an optimized 
implementation, we also analyzed a self defined 
logic type with meta values ‘X’ and ‘Z’. 

• Verilog possesses a built-in logic type with meta values. 

• For SystemVerilog, we did not analyze the Verilog type 
wire/reg (which is available because of upward 
compatibility) but the type logic. The type logic is an 
extended digital 0/1-logic with the meta values ‘X’ and ‘Z’ 
as well. Arithmetic operations are also language inherent in 
SystemVerilog. We analyzed both the signed and the 
unsigned interpretation. 

• For SystemC, we used the types sc_logic and sc_lv. For 
arithmetic operations we again used model specific 
implementations because no arithmetic support for these 
types is provided in SystemC. 

4.3.4 Summary 
In summary we analyzed the impact of 9 different value 
representations in VHDL, 1 value representation in Verilog, 4 
value representations in SystemVerilog and 3 value 
representations in SystemC. All model alternatives are 
implemented for all time abstraction and description styles. The 
resulting number of models and testcases is discussed in the next 
section. 

4.4 Overall testcases 
When adding up all our modeling and language alternatives, we 
will end up with 191 model alternatives as shown in the next 
table. 
 Description Values All together 
VHDL 10 9 90 
Verilog 10 1 10 
SystemVerilog 13 4 52 
SystemC 13 3 39 
 
This will result in 955 different models considering our five 
different designs. 
For simulation we execute 5 testcases for each design to avoid 
execution of specific code and 5 repetitions of each testcase to 
eliminate LSF impact on the results. Together roughly 20k test 
cases simulation runs will have to be executed. Unfortunately, we 
were not able to run all models in all environments. 

5 Results and Conclusions 
The findings are first presented for modeling styles, tools, and 
languages separately. Then accumulated results are summarized. 
For all tool independent comparisons, we used the fastest 
execution time amongst all tools. 
 

5.1 Performance Impact of Modeling Styles 
No surprise, our observations matched with the general claim that 
functional description with abstract un-encoded values, behavioral 
models with bit models, and RTL models with logic values 
roughly have an execution time of 1 vs. 10 vs. 100 (we measured 
on average 1 vs. 8,6 vs. 87,0). However we detected some 
interesting details: 



• Hierarchical models on average showed a 1.5x slower 
execution speed than flat models. This points to weak tool 
based optimization.  
In detail, we found out that the hierarchical Verilog RTL 
models were on average 1.6x (1.3x to 1.7x) slower than the 
dual process/task models. Surprisingly, this effect could not 
be observed in VHDL (here the difference was on average 
just 1.06) even though VHDL prevents optimization of 
propagation of 0-delayed events through its simulation cycle.
  
Further on, we found out that hierarchical sequential 
elements were 1.5x (1.3x to 1.8x) slower than their flat 
counterparts. 

• The biggest difference in execution speed concerning the 
different value representations was approximately a factor of 
2. Analyzing the single impact, abstract un-encoded values 
(when available) improved execution speed on average by a 
factor of 1.5 over bit values. Bit values in turn improved 
execution speed on average by a factor of 1.4 over standard 
simulation logic. The standard simulation logic types finally 
improved execution speed over user defined simulation logic 
types in VHDL by a factor of 1.2 on average.  
Surprisingly VHDL’s unresolved std_ulogic executed 
slightly slower than std_logic and VHDL’s bit based numeric 
type, numeric_bit.signed, executed up to 4.0x slower than 
numeric_std.signed. The trend for this observation held for 
all tools and was on average 2.7x. 

• Object based PV TLM models executed roughly 2x slower 
than method based PV TLM models. That is less than 
expected because object based PV TLM models require a 
much higher effort for event handling and thread 
synchronization and an additional decoding step for message 
decoding. 

• Functional models executed 4.1x faster than method based 
PV TLM. This shows a relatively small remaining speedup 
factor for SoC simulation which is left beyond the currently 
propagated PV style. 

5.2 Performance Impact of Model Language 
Performance of modeling languages is directly impacted by the 
optimization implemented in the executing tools. So, this 
comparison gives a today’s view on existing environments which 
is an important criterion for today’s decision. When the 
underlying engines are optioned differently in the future, this 
observation may change. 
5.2.1 SystemC 
SystemC showed to provide the slowest execution amongst all 
evaluated modeling languages. Surprisingly, SystemC functional 
models executed 2x slower than HDL models and SystemC 
method based PV models executed 2.6x slower than 
SystemVerilog models. The restrictions for using C++ 
optimizations for SystemC models may be the reason but at the 
moment we do not see how this situation might improve in the 
near future. 
The RTL performance of SystemC models is 10x slower than 
those of HDL RTL models. This excludes SystemC to be an 
alternative RTL synthesis language compared to standard HDLs. 
Furthermore, we detected a non negligible performance penalty 
from embedding SystemC in EDA’s HDL simulators over using 
the OSCI SystemC kernel stand alone. Even more restricted 
optimization and further hooks for debugging might be the reason 

for that observation. This means, the performance benefit of using 
SystemVerilog, Verilog, or VHDL over SystemC would be even 
greater when we consider the SystemC runtimes of the 
commercial EDA tools. 
5.2.2 Verilog 
Verilog models showed on average 1.9x (1.5x to 2.5x) faster 
execution than VHDL models. Verilog RTL models executed on 
average 1.8x (1.5x to 2.0x) faster than VHDL models. In addition 
to a higher freedom in model optimization from language side and 
a four-state vs. a nine-state type, a higher R&D investment in 
Verilog tools and their optimization may be the reason for these 
results. 
5.2.3 SystemVerilog 
SystemVerilog models using two-state types executed on average 
2.0x (1.4x to 2.4x) faster than VHDL (four-state models on the 
other hand are slightly slower than Verilog models). This shows 
that a richer set of language features (as typing) and stronger 
checking is not necessarily a reason for slower execution (as often 
mentioned when VHDL was compared to Verilog). 
Considering that several abstraction levels are not possible using 
plain Verilog (e.g. bit representation, method based TLM) 
SystemVerilog produces the best overall results. 

5.3 Tool Observations 
As already stated earlier, we do not provide specific information 
concerning one tool. So, we summarize just some tool related 
items: 

• As an extreme case, for one functional model we detected a 
factor 10 speed difference between two commercial 
simulators. This is one strong indicator that execution speed 
should be analyzed as part of the tool evaluation process. 

• Each commercial tool optimized one language best. In about 
95% of the cases this difference was more than factor 1.8. 

• All commercial tools generally showed a faster execution 
speed for Verilog RTL than VHDL RTL. The speed of 
SystemVerilog models – as well as the currently supported 
language standard – differed strongly. 

• We found several different interpretations of languages, bugs 
and tool crashes even more than 15 years after VHDL’87 and 
more than 10 years after Verilog’95 standardization. 
Unexpectedly, VHDL showed more problems than Verilog 

• For that reason, huge effort was spent to make models 
executable on all tools. Unfortunately, this was not possible 
for some VHDL models and several SystemVerilog models. 

5.4 Accumulated Impacts 
All observations presented before focus on single modeling, 
language, or tool aspects. Since these aspects are not independent 
their individual effects do not stack directly. Instead the overall 
effect is usually slightly smaller. 
Two overall impacts shall be presented here: 

• The VHDL coding style recommended by VSIA for re-use is 
to use std_logic types as interface objects. However these 
kinds of models executed up to 2.5x slower than not 
std_logic based models. 

• The fastest HDL RTL model (using the fastest tool and most 
efficient coding) executed 4.4x faster than its slowest 



counterpart (whereas user defined simulation logic and 
numeric_bit types were not considered in the comparison). 

These observations suggest that there is still a lot of space for 
performance optimization of HDL simulators and a lot to do for 
EDA R&D teams. Improvements in the following fields promise 
non negligible improvements: 

• In-lining optimization and signal optimization at hierarchy 
boundaries. 

• Avoidance of unnecessary execution by optimized task 
ordering 

• Optimization of two-state execution, especially the VHDL 
numeric_bit package. 

• Support of all C/C++ compiler switches for code linked to 
EDA tools 

• More efficient mapping of vectors of bit to CPU words. 
• Most important for SystemC, more efficient thread switching 

6 Summaries and Outlook 
In this paper we presented the current state of our analysis of 
different coding styles, modeling languages, and tools with 
respect to simulation performance. Major findings were: 

• Tool/language/abstraction impact on RTL execution speed of 
factor 4.4 

• Verilog RTL executed on average 2x faster than VHDL 
• The execution speed of SystemC RTL models was 10x 

slower than HDL RTL models and surprisingly SystemC 
TLM models executed 2.6x slower than SystemVerilog TLM 
PV models. 

• On average over all models and all modeling styles, 
SystemVerilog showed the best execution speed. This 
however holds for one commercial tool only. 

We have also shown our analysis framework that we will 
continuously use to evaluate the evolution of computation power 
and EDA tools. 
In the future, we plan to extend the evaluation in the following 
directions. 

• First, we want to complete the missing models, especially in 
the behavioral domain, and add functional C models as a 
reference for the highest achievable execution speed of 
models. 

• Next, we plan to consider the impact of testbench features as 
assertions, code coverage, functional coverage, and 
constraints. 

• Further on, we intend to analyze the impact of language mix 
on the performance. 

• Last but not least, we aim at measuring the impact of signal 
trace on the overall execution speed. 
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