
Impact of Description Language, Abstraction Layer, and Value
Representation on Simulation Performance

Wolfgang Ecker
Infineon Technologies AG
IFAG COM BTS MT SD
81726 Munich, Germany

Wolfgang.Ecker@infineon.com

Volkan Esen,
Lars Schönberg,

Thomas Steininger,
Michael Velten

Infineon Technologies AG
TU Darmstadt - MES / BTU Cottbus
Firstname.Lastname@infineon.com

Michael Hull
Infineon Technologies AG
University of Southampton
mh102@ecs.soton.ac.uk

Abstract
In recent years other verification features than simulation
performance such as robustness and debugging gained increasing
impact on simulation language and tool selection. However,
fastest model execution speed is still priority number one for
many design and verification engineers. This can be seen in the
continuously growing interest in virtual prototypes and transaction
level modeling (TLM).
As part of the ongoing re-work modeling language strategies and
the world wide introduction of TLM, a detailed analysis of the
impact of description languages, abstraction layers and data types
on simulation performance is of high importance. For the
presented analysis, we considered five designs that have been
modeled in VHDL, Verilog, SystemVerilog, and SystemC, using
different value representations and coding styles, covering the
abstraction levels from functional to behavioral to RTL.
This paper presents our evaluation environment and several
interesting findings of our analysis. The most important results are
as follows: We found that HDL tool/language/abstraction
selection of RTL models impacts on the execution speed with a
factor of 4.4. We found that Verilog is on average 2x faster than
VHDL for RTL models. We found that SystemC results in 10x
slower RTL models than HDLs and surprisingly results in 2.6x
slower TLM1 PV models than SystemVerilog. And we found
finally that on average over all analyzed aspects SystemVerilog
models are executed fastest.

1 Introduction
During the last years simulation performance had a continuously
decreasing impact on simulation language and tool selection.
Other items as verification aspects, robustness, or debug increased
importance [1]. Furthermore, the performance difference of
different tools and languages has been estimated as quite low.
However, simulation time is still the main focus of design
engineers and managers. The main reason is that simulation is still
the workhorse for verification despite the upcoming of formal
methods, emulation, and FPGA prototyping. Unfortunately,
simulation time increases at least linear with the circuit
complexity that according to Moore’s law increases exponentially
over time. The need for simulation of embedded software puts
even more burden on simulators since the interpretation of SW by
an HDL model needs to be performed. This burden is further
increased by constraint random simulation that reduces effort for
building test cases by requiring more simulation runs.

1 TLM defines the styles PV (programmer’s view), PVT

(programmer’s view with timing), and CA (cycle accurate).

Also the impact of simulation performance on the overall
verification process comes to the fore.
• Engineers’ waiting time until a regression run returns results

is directly impacted by simulation speed. The classical “night
time slot” for regression has to be met to avoid further delay.

• Engineers’ waiting time in the debug-modify-compile-
simulate loop is double impacted by simulation speed:
Higher simulation speed shortens both the time until a
specific state in simulation is reached and the time until the
simulation result of a modification is made available to the
engineer.

The most obvious sign for need of simulation speed is the
upcoming interest and usage of behavioral models for making
executable specifications and for fast software verification.
The result of analyzing impact of description language,
abstraction layer and data types on simulation performance is
summarized in this paper.
It is organized as follows: After referencing related work, we
present the test analysis environment and the model alternatives
used for analysis. Finally, analysis results are presented, key
conclusions highlighted, and discussed.

2 Related Work
Several comparisons between different modeling languages and
modeling styles have been published already, however most of
them completely ignore performance issues:
The comparison in [2] is just restricted to a listing of different
language features in VHDL, Verilog and SystemVerilog and what
equivalent they have in the other languages (if any). A
SystemVerilog centric comparison can be found in [3]. In [4] a
comparison is made between VHDL and Verilog concerning
issues like basic language features, learning curve, support of
reuse concepts and applicability to different abstraction layers. A
similar comparison is done in [5] which also includes the topic of
data types, library concepts, testbench features and verboseness. A
comparison of the different language features of VHDL, C++ and
SystemC and their correspondence to the different abstraction
layers is done in [6].
Some papers discuss simulation performance but are restricted to
just a few modeling languages and usually just one modeling
alternative. SystemVerilog is not considered at all:
A simulation tool related analysis of Verilog models was
described in [7]. The use of profiling, VCD dump reduction,
careful use of optimization flags, and two-state simulation were
named as alternatives to dramatically improve simulation speed.
A general claim on simulation speed was made in [8]. Cycle

978-3-9810801-2-4/DATE07 © 2007 EDAA

simulation is claimed to be 10-50x faster than event driven
simulation, while behavioral models are claimed to be 5-10x
faster than RTL. Detailed analysis of modeling styles and
languages is missing in both papers.
A tool comparison with only VHDL models and without detailed
analysis of the impact of modeling styles has been published in
[9]. Also a comparison of Verilog tools and VHDL tools
compared to the fastest Verilog tool is described in [10]. Verilog
is claimed to be 4-5x faster than VHDL but for an undefined
modeling style.
A comparison between VHDL and C including simulation
performance is made in [11], a similar comparison between
VHDL and ADA in [12]. In [13] the differences concerning
simulation time between VHDL and SystemC models are being
discussed. The impact of LSE optimization for SystemC models is
described in [14].
In all papers only a small subset of modeling styles is considered.
Our contribution to the field of language comparison is as follows.
We created five different designs in four different languages
(VHDL, Verilog, SystemVerilog and SystemC), using several
abstraction layers and different data types.
Those models are then used in a regression environment in order
to get representative information concerning performance
differences between languages, abstraction layers and data types.
In addition we use simulators of several EDA vendors in order to
minimize the effect of tool dependency.

3 Analysis Environment
3.1 The Reference Designs
We used five different models for our evaluations: An 8 bit CPU
core with memory, a 12 bit CPU subsystem consisting of CPU,
memory and IO devices, a systolic array for concurrent stream
processing, an FFT, and a switch. These models have been
selected since they cover a wide variety of architecture
alternatives (FSM, datapath, memory, communication) and
modeling needs (arithmetic, bit manipulation, data flow, control
flow).
We did not use a detailed analysis on single language feature basis
because we found out that models like these did not produce
realistic results, even if a weighted statistic was applied to rate the
result. The reason might be that many effects of combining
constructs were not captured.
Also a wide range of coding style alternatives was used. For
example, we used flat and hierarchical descriptions, dataflow and
control flow descriptions, as well as table driven descriptions and
algorithmic descriptions.
Synthesizing the models resulted in 5k gates to 100k gates, not
considering the memories. This gives the models the size of a
smaller to medium sized IP block.
Different testcases covering all aspects of the models as well as a
wide range of simulation times were written for each model.
Execution times were up to 10000 CPU seconds providing a quite
realistic benchmark in terms of simulation time.

3.2 Overall Structure of the environment
Code for design and testbench as well as assembly code resides in
a hierarchical file structure under clear case version control.

All tests, i.e. code and tool options are specified in XML. They
are interpreted by a test handler. The following steps are executed
per testcase:

• Copy code to empty directory in order to eliminate side
effects as much as possible

• Perform compilation according to the sequence of files
and the tool options specified in the test

• Elaborate model, when needed as separated step and
measure system and user time

• Execute simulation and measure system and user time

• Write measured time to a data base; the measured time
is qualified with the test description (test case, language,
optimization mode, trace mode, etc.)

• And finally clear directory
A script for generating a survey on languages and modeling in a
tabular way helps to get a general overview. Specific scripts help
to relate execution time under certain aspects and to do statistics.

3.3 The Tools
In order to eliminate tool dependency of measured simulation
performance, several EDA tools were used to execute the models.
All tools were executed in full optimization mode. Object
visibility was not required and no signal trace was performed. The
selected simulation mode allows focusing on languages and
abstraction. It provides the fastest execution and it reflects a
typical tool setting for regression simulation with self checking
testbenches.
The following tools were used:

• Synopsys “vcs2005.06-SP2”
• Mentor “modelsim6.2e”

• Cadence “ncsim5.4”
• OSCI 2.1v1 SystemC kernel (for SystemC models

only); optimization –O3 for gcc was used; when using
further optimizations the compilation crashed

In this paper, we give no single tool related information due to
NDA agreements with EDA companies. The impact of tool
capabilities on the result is discussed in a tool anonymous way.

3.4 Measurement
All tools were executed on dual processor (3 GHz Intel Xeon with
4GB RAM) workstations running enterprise linux under LSF
control, a state of the art application scenario. Measurements were
repeated 5 times to equalize impact of workload. CPU time and
system time of elaboration and simulation were added in order to
form a representative value for execution time.

4 Model Alternatives
As already proposed in the RASSP taxonomy [15], we consider
value representation as an independent model alternative.
Orthogonal to value representation, we take a mix of functional,
structural, and timing abstraction as second independent model
alternative. We also approximate the modeling style by a model
classification from ARM [16] which primarily specifies TLM
abstraction.

4.1 Selected Languages

As already mentioned, we evaluated VHDL, Verilog,
SystemVerilog, and SystemC. The following dialects were used:

• VHDL’87 because this language dialect is still standard
in our company. VHDL’93 is not used due to several
major portability issues.

• Verilog’01, however mainly in a Verilog’95 compatible
style. No portability issues between the two standard
versions were found yet.

• SystemVeriog P1800, the current IEEE standard.
Several restrictions had to be considered.

• SystemC 2.1.v1.

4.2 Time abstraction and description styles
The model’s time representation and description style cannot be
treated separately. We give an overview in this subsection.
4.2.1 Functional Model (un-timed)
Functional models reflect only functionality of the design. Neither
architectural nor timing aspects are covered. The modeling
concept is like programming in a sequential programming
language. Models might have been built in the programming
language C as well. We made two different characteristic models:

• Flat functional model, i.e. using only one thread without any
function calls, as special coding for optimized execution.

• Hierarchical functional model, i.e. using function calls that
reflect functional design partitioning but not necessarily
architectural partitioning.

External communication as required for IO instructions was
mapped to files. Feedback loops in IO devices were not
considered for modeling; however they might have been modeled
with an IO buffer in the model.
Functional models are expected to be the fastest models. They
have been built to set a base line. The two functional model
alternatives described above were modeled in all languages.
4.2.2 Behavioral Model
Behavioral models reflect the classical CPU, memory, and IO
device (peripheral) partitioning. No further partitioning is
performed, i.e. CPU, memory, and IO devices are internally
modeled as single thread.
Timing in general is only approximated. No special effort has
been made to create timing accurate models.
For consideration of execution timing, the model is annotated with
constructs to delay the sequential execution stream, e.g. in VHDL
with wait for Tdelay. Similarly timing is considered in
subprograms encapsulating the communication.

The following ways for modeling communication have been
analyzed:

• Signal based communication without handshake, i.e. special
wait and delay statements have been inserted to guarantee
correct communication.
This communication style mimics hardware-like
communication that abstracts real timing to simulation
iterations that do not consume simulation time (e.g. in VHDL
delta cycles).

• Signal based communication with handshake, i.e. handshake
guarantees correct communication, no further insertion of
delay is required except to allow for signal update.

• Method based communication, i.e. method calls ensure
correct communication. This style was implemented in
SystemC and SystemVerilog only; SystemC models use
OSCI TLM communication while SystemVerilog models use
interface based communication with export and import of
tasks.

All communication methods and models were implemented using
the following timing accuracy:

• Un-timed modeling close to the OSCI PV abstraction. If any,
only simulation cycle iterations without simulation time
advance were executed.

• Propagation delay based modeling close to the OSCI PVT
abstraction. Delay was specified in terms of units of
simulation time.

• Clock related modeling close to the OSCI CA abstraction.
Timing was considered by relating execution progress to
subsequent clock edges.

Altogether 9 different styles of behavioral modeling were
analyzed. VHDL and Verilog supported only 6 different styles
whereas SystemC and SystemVerilog support all 9 styles.
4.2.3 RT-Model
In case of VHDL and Verilog, the RT models followed the IEEE
synthesis standards. VHDL, Verilog, and SystemVerilog models
were synthesizable with a commercial RTL synthesis tool.
The SystemVerilog models were not just a Verilog model
compiled with a SystemVerilog compiler. Several SystemVerilog
specific constructs as always_ff, priority_if, or interfaces have
been used.
SystemC models mimic the VHDL coding style for synthesis.
SystemC RT models were not synthesized with a tool.
Two basic RT modeling styles were analyzed:

• A two process model with one process modeling the registers
and one process modeling the glue logic. The model was
especially tuned for execution speed.

• A structural model with several design hierarchies. The 8 bit
model was partitioned in a very fine granular way. Partially
RT gate models were instantiated. The 12 bit model was
partitioned in a more coarse granular way, i.e. the leave
elements were muxes, registers, ALUs, and FSMs. Special
care has been taken to cover a wide range of modeling styles.
So e.g. one FSM was implemented via table-look-up
technique, another via boolean equations.

The two RT model alternatives described above were modeled in
all languages (2 per language).
4.2.4 Summary of time abstraction and description styles
The classical HDLs VHDL and Verilog were analyzed in 10
different time abstraction and description style modeling
alternatives, SystemVerilog and SystemC in 13 different
alternatives.
All time abstraction and description style alternatives were
analyzed with a set of different value representations. They are
discussed in the next subsection in more detail.

4.3 Value Representation

Value representation is mostly omitted when modeling languages
and styles are compared. In this study we took a strong focus on
value representation as well, also motivated through the
intermediary results. Generally, we distinguish 3 classes of values.
4.3.1 Abstract Un-encoded Values
Abstract un-encoded values do not possess explicit mapping to
vectors or arrays of bit. So, the value of a number is represented
but its encoding (e.g. one’s complement signed, two’s
complement signed, unsigned) is not. Abstract values are
represented in a packed way which allows the simulator to handle
them in one step if the size of the CPU word is sufficient.
Available language representations are:

• VHDL: integer, enumeration, boolean
• SystemC: int, uint, enum

• Verilog and SystemVerilog support abstract, but not un-
encoded values. Independent from their semantics, bits can
be set explicitly. For that reason, analysis and special
handling in simulators is needed to map those values to a
CPU word.

4.3.2 Bit Values
Bit values represent only the logic state of one line or one port. Bit
values are supported by VHDL (bit), SystemVerilog (bit) and
SystemC (sc_bit).
Bit values may be composed, for example to vectors. A
composition of bit values may go hand in hand with a higher level
semantic representation, e.g. a vector of 12 bit may carry the
semantics of a positive or negative number.

• Vectors of bit without additional semantics are available only
in VHDL (bit_vector) and SystemC (sc_bv). More complex
operations than boolean operations (such as arithmetic
operations) must be implemented explicitly.

• Vectors of bit with arithmetic operations are available only in
VHDL and SystemVerilog. VHDL provides additional
standard packages for that purpose. SystemC natively does
not support arithmetic operations on bit vectors. The
representations for vectors with arithmetic operations are:

o VHDL: signed and unsigned types from package
ieee.numeric_bit.

o SytemVerilog language built-in support of signed
and unsigned interpretation.

4.3.3 Meta Values
Meta values represent not only logical information but also
simulation related or hardware related information. So, ‘X’
represents among others un-initialized values or simulation
conflicts, ‘Z’ represents high impedance values.
The following representations have been evaluated:

• Since VHDL does not possess a built-in logic type with meta
values the data types defined in the package
ieee.std_logic1164 is used.

o Both, the unresolved and resolved alternative were
analyzed. Arithmetic operations were explicitly
modeled in the model.

o Signed and unsigned types supporting numeric
operations on std_logic are available as
standardized versions from the package
ieee.numeric_std.

o In order to identify the impact of an optimized
implementation, we also analyzed a self defined
logic type with meta values ‘X’ and ‘Z’.

• Verilog possesses a built-in logic type with meta values.

• For SystemVerilog, we did not analyze the Verilog type
wire/reg (which is available because of upward
compatibility) but the type logic. The type logic is an
extended digital 0/1-logic with the meta values ‘X’ and ‘Z’
as well. Arithmetic operations are also language inherent in
SystemVerilog. We analyzed both the signed and the
unsigned interpretation.

• For SystemC, we used the types sc_logic and sc_lv. For
arithmetic operations we again used model specific
implementations because no arithmetic support for these
types is provided in SystemC.

4.3.4 Summary
In summary we analyzed the impact of 9 different value
representations in VHDL, 1 value representation in Verilog, 4
value representations in SystemVerilog and 3 value
representations in SystemC. All model alternatives are
implemented for all time abstraction and description styles. The
resulting number of models and testcases is discussed in the next
section.

4.4 Overall testcases
When adding up all our modeling and language alternatives, we
will end up with 191 model alternatives as shown in the next
table.
 Description Values All together
VHDL 10 9 90
Verilog 10 1 10
SystemVerilog 13 4 52
SystemC 13 3 39

This will result in 955 different models considering our five
different designs.
For simulation we execute 5 testcases for each design to avoid
execution of specific code and 5 repetitions of each testcase to
eliminate LSF impact on the results. Together roughly 20k test
cases simulation runs will have to be executed. Unfortunately, we
were not able to run all models in all environments.

5 Results and Conclusions
The findings are first presented for modeling styles, tools, and
languages separately. Then accumulated results are summarized.
For all tool independent comparisons, we used the fastest
execution time amongst all tools.

5.1 Performance Impact of Modeling Styles
No surprise, our observations matched with the general claim that
functional description with abstract un-encoded values, behavioral
models with bit models, and RTL models with logic values
roughly have an execution time of 1 vs. 10 vs. 100 (we measured
on average 1 vs. 8,6 vs. 87,0). However we detected some
interesting details:

• Hierarchical models on average showed a 1.5x slower
execution speed than flat models. This points to weak tool
based optimization.
In detail, we found out that the hierarchical Verilog RTL
models were on average 1.6x (1.3x to 1.7x) slower than the
dual process/task models. Surprisingly, this effect could not
be observed in VHDL (here the difference was on average
just 1.06) even though VHDL prevents optimization of
propagation of 0-delayed events through its simulation cycle.

Further on, we found out that hierarchical sequential
elements were 1.5x (1.3x to 1.8x) slower than their flat
counterparts.

• The biggest difference in execution speed concerning the
different value representations was approximately a factor of
2. Analyzing the single impact, abstract un-encoded values
(when available) improved execution speed on average by a
factor of 1.5 over bit values. Bit values in turn improved
execution speed on average by a factor of 1.4 over standard
simulation logic. The standard simulation logic types finally
improved execution speed over user defined simulation logic
types in VHDL by a factor of 1.2 on average.
Surprisingly VHDL’s unresolved std_ulogic executed
slightly slower than std_logic and VHDL’s bit based numeric
type, numeric_bit.signed, executed up to 4.0x slower than
numeric_std.signed. The trend for this observation held for
all tools and was on average 2.7x.

• Object based PV TLM models executed roughly 2x slower
than method based PV TLM models. That is less than
expected because object based PV TLM models require a
much higher effort for event handling and thread
synchronization and an additional decoding step for message
decoding.

• Functional models executed 4.1x faster than method based
PV TLM. This shows a relatively small remaining speedup
factor for SoC simulation which is left beyond the currently
propagated PV style.

5.2 Performance Impact of Model Language
Performance of modeling languages is directly impacted by the
optimization implemented in the executing tools. So, this
comparison gives a today’s view on existing environments which
is an important criterion for today’s decision. When the
underlying engines are optioned differently in the future, this
observation may change.
5.2.1 SystemC
SystemC showed to provide the slowest execution amongst all
evaluated modeling languages. Surprisingly, SystemC functional
models executed 2x slower than HDL models and SystemC
method based PV models executed 2.6x slower than
SystemVerilog models. The restrictions for using C++
optimizations for SystemC models may be the reason but at the
moment we do not see how this situation might improve in the
near future.
The RTL performance of SystemC models is 10x slower than
those of HDL RTL models. This excludes SystemC to be an
alternative RTL synthesis language compared to standard HDLs.
Furthermore, we detected a non negligible performance penalty
from embedding SystemC in EDA’s HDL simulators over using
the OSCI SystemC kernel stand alone. Even more restricted
optimization and further hooks for debugging might be the reason

for that observation. This means, the performance benefit of using
SystemVerilog, Verilog, or VHDL over SystemC would be even
greater when we consider the SystemC runtimes of the
commercial EDA tools.
5.2.2 Verilog
Verilog models showed on average 1.9x (1.5x to 2.5x) faster
execution than VHDL models. Verilog RTL models executed on
average 1.8x (1.5x to 2.0x) faster than VHDL models. In addition
to a higher freedom in model optimization from language side and
a four-state vs. a nine-state type, a higher R&D investment in
Verilog tools and their optimization may be the reason for these
results.
5.2.3 SystemVerilog
SystemVerilog models using two-state types executed on average
2.0x (1.4x to 2.4x) faster than VHDL (four-state models on the
other hand are slightly slower than Verilog models). This shows
that a richer set of language features (as typing) and stronger
checking is not necessarily a reason for slower execution (as often
mentioned when VHDL was compared to Verilog).
Considering that several abstraction levels are not possible using
plain Verilog (e.g. bit representation, method based TLM)
SystemVerilog produces the best overall results.

5.3 Tool Observations
As already stated earlier, we do not provide specific information
concerning one tool. So, we summarize just some tool related
items:

• As an extreme case, for one functional model we detected a
factor 10 speed difference between two commercial
simulators. This is one strong indicator that execution speed
should be analyzed as part of the tool evaluation process.

• Each commercial tool optimized one language best. In about
95% of the cases this difference was more than factor 1.8.

• All commercial tools generally showed a faster execution
speed for Verilog RTL than VHDL RTL. The speed of
SystemVerilog models – as well as the currently supported
language standard – differed strongly.

• We found several different interpretations of languages, bugs
and tool crashes even more than 15 years after VHDL’87 and
more than 10 years after Verilog’95 standardization.
Unexpectedly, VHDL showed more problems than Verilog

• For that reason, huge effort was spent to make models
executable on all tools. Unfortunately, this was not possible
for some VHDL models and several SystemVerilog models.

5.4 Accumulated Impacts
All observations presented before focus on single modeling,
language, or tool aspects. Since these aspects are not independent
their individual effects do not stack directly. Instead the overall
effect is usually slightly smaller.
Two overall impacts shall be presented here:

• The VHDL coding style recommended by VSIA for re-use is
to use std_logic types as interface objects. However these
kinds of models executed up to 2.5x slower than not
std_logic based models.

• The fastest HDL RTL model (using the fastest tool and most
efficient coding) executed 4.4x faster than its slowest

counterpart (whereas user defined simulation logic and
numeric_bit types were not considered in the comparison).

These observations suggest that there is still a lot of space for
performance optimization of HDL simulators and a lot to do for
EDA R&D teams. Improvements in the following fields promise
non negligible improvements:

• In-lining optimization and signal optimization at hierarchy
boundaries.

• Avoidance of unnecessary execution by optimized task
ordering

• Optimization of two-state execution, especially the VHDL
numeric_bit package.

• Support of all C/C++ compiler switches for code linked to
EDA tools

• More efficient mapping of vectors of bit to CPU words.
• Most important for SystemC, more efficient thread switching

6 Summaries and Outlook
In this paper we presented the current state of our analysis of
different coding styles, modeling languages, and tools with
respect to simulation performance. Major findings were:

• Tool/language/abstraction impact on RTL execution speed of
factor 4.4

• Verilog RTL executed on average 2x faster than VHDL
• The execution speed of SystemC RTL models was 10x

slower than HDL RTL models and surprisingly SystemC
TLM models executed 2.6x slower than SystemVerilog TLM
PV models.

• On average over all models and all modeling styles,
SystemVerilog showed the best execution speed. This
however holds for one commercial tool only.

We have also shown our analysis framework that we will
continuously use to evaluate the evolution of computation power
and EDA tools.
In the future, we plan to extend the evaluation in the following
directions.

• First, we want to complete the missing models, especially in
the behavioral domain, and add functional C models as a
reference for the highest achievable execution speed of
models.

• Next, we plan to consider the impact of testbench features as
assertions, code coverage, functional coverage, and
constraints.

• Further on, we intend to analyze the impact of language mix
on the performance.

• Last but not least, we aim at measuring the impact of signal
trace on the overall execution speed.

References
[1] Tom Fitzpatric: “Functional Verification Technology and

Methodology Backgrounder”. Available from:
http://www.mentor.com/products/fv/techpubs

[2] Stephen Bailey: “Comparison of VHDL, Verilog and
SystemVerilog”. Available from: http://www.mentor.com
/training_and_services/tech_pubs.cfm

[3] SystemVerilog: “Is this the merge of Verilog and VHDL”:
Proceedings of the SNUG Boston 2004.

[4] Peet James: “Synergy Between VHDL & Verilog”, Proceedings of
VIUF Spring ’95, Users Meeting

[5] Douglas Smith .: “VHDL & Verilog Compared & Contrasted - Plus
Modeled Example Written in VHDL, Verilog and C”, 33th DAC.
1996.

[6] Robertas Damaševièius: “A subset based comparison of major
design languages”, ISSN 1392 – 124X INFORMACINĖS
TECHNOLOGIJOS IR VALDYMAS, 2004, Nr.1(30)

[7] Rajesh Bawankule: “Speed up Verilog Simulations by 10-100x
without spending a penny”. Proceedings of the DVCon2003

[8] Phil Dreike, James McCoy: “Co-Simulating Software and Hardware
in Embedded Systems”. Embedded Systems Programming.
http://www.embedded.com/97/feat9706.htm

[9] Röhm, W.: “Latest Benchmark Results of VHDL Simulation
Systems”, Proceedings of the EURODAC’95.with EUROVHDL’95.

[10] John Sanguinetti: “Simulation Speed in HDLs”,
http://www.angelfire.com/in/rajesh52/papers.html

[11] Matthias Bauer, Wolfgang Ecker, Michael Gasteier, Manfred
Glesner: “Evaluation of Sequential VHDL and C for System
Description and Specification”. Proceedings of the VUIF’96 Fall
Meeting.

[12] Wolfgang Ecker, Joerg Boettger. "Evaluation of Ada’95 and VHDL
for System Level Modeling ", Proceedings of the VIUF '97 Spring
Meeting.

[13] Mario Steinert: “ Using SystemC for Hardware Design Comparison
of results with VHDL, Cossap and CoCentric, Proceedings of the
ESNUG2002

[14] David A. Penry, David I. August: “Optimizations for a Simulator
Construction System Supporting Reusable Components”,
Proceedings of the 40th DAC,

[15] Rapid Prototyping of Application Specific Signal Processors
(RASSP), http://www.eda.org/rassp/

[16] ARM technical paper, Taking Design to the System Level, Chris
Lennard, Davorin Mista, April 2005,
http://www.arm.com/pdfs/ARM%20ESL%20final%20checked%20(
3)JC.pdf

[17] Cliff Cumming, Lionel Benning: “SystemVerilog 2-State Simulation
and Verification Advantages”, Proceedings of Boston SNUG 2004

	Main
	DATE07
	Front Matter
	Table of Contents
	Author Index

