Copyright © 2007 by EDAA.

ISBN 978-3-9810801-2-4

Editorial production by Kathy Preas
Table of Contents
Design, Automation and Test in Europe Conference and Exhibition - DATE 2007

DATE Executive Committee .. xxvi
DATE Sponsor Committee ... xxvii
Technical Program Chairs .. xxviii
Technical Program Committee ... xxix
Reviewers ... xxxiii
Foreword .. xxxvii
Best Paper Awards ... xl
Tutorials ... xli
Ph.D. Forum .. vli
Call for Papers: DATE 2008 .. vliii

Keynote Addresses
Challenges of Digital Consumer and Mobile SOC’s: More Moore Possible? .. 1
T. Furuyama

Was Darwin Wrong? Has Design Evolution Stopped at the RTL Level… or Will Software and Custom Processors (or System-Level Design) Extend Moore’s Law? ... 2
A. Naumann

1.2: Design Records
Moderators: G. De Micheli, EPF Lausanne, CH, P. van der Wolf, NXP Semiconductors, NL

ATLAS: A Chip-Multiprocessor with Transactional Memory Support... 3
N. Njoroge, J. Casper, S. Wee, Y. Teslyar, D. Ge, C. Kozyrakis and K. Olukotun

A Dynamically Adaptive DSP for Heterogeneous Reconfigurable Platforms... 9
F. Campi, A. Deledda, M. Pizzotti, L. Ciccarelli, P. Rolandi, C. Mucci, A. Lodi, A. Vitkovski and L. Vanzolini

An 0.9 X 1.2”, Low Power, Energy-Harvesting System with Custom Multi-Channel Communication Interface... 15
P. Stanley-Marbell and D. Marculescu

Interactive Presentation
An FPGA Based All-Digital Transmitter with Radio Frequency Output for Software Defined Radio 21
Z. Ye, J. Grosspietsch, G. Memik

1.3 Design for Testability for SoCs

A Non-Intrusive Isolation Approach for Soft Cores... 27
O. Sinanoglu and T. Petrov

Unknown Blocking Scheme for Low Control Data Volume and High Observability ... 33
S. Wang, W. Wei, S.T. Chakradhar
Test Cost Reduction for SoC Using a Combined Approach to Test Data Compression and Test Scheduling.. ... 39
Q. Zhou and K.J. Balakrishnan

High-Level Test Synthesis for Delay Fault Testability.. ... 45
S.-J. Wang and T.-H. Yeh

1.4: Communication Synthesis under Timing Constraints

Moderators: J. Teich, Erlangen-Nuremberg U, DE, M. Heijligers, NXP Semiconductors, NL

Bus Access Optimisation for FlexRay-based Distributed Embedded Systems.. 51
T. Pop, P. Pop, P. Eles and Z. Peng

A Decomposition-based Constraint Optimization Approach for Statically Scheduling Task Graphs with Communication Delays to Multiprocessors.. 57
N. Satish, K. Ravindran and K. Keutzer

Design Closure Driven Delay Relaxation Based on Convex Cost Network Flow... .. 63
C. Lin, A. Xie and H. Zhou

1.5: Performance Modelling and Synthesis of Analogue/Mixed-Signal Circuits

Moderators: F. V. Fernandez, IMSE, CSIC and Seville U, ES, L. Hedrich, Frankfurt/M U, DE

Simulation-based Reusable Posynomial Models for MOS Transistor Parameters ... 69
V. Aggarwal and U.-M. O'Reilly

Trade-Off Design of Analog Circuits Using Goal Attainment and “Wave Front” Sequential Quadratic Programming.. ... 75
D. Mueller, H. Graeb and U. Schlichtmann

An Efficient Methodology for Hierarchical Synthesis of Mixed-Signal Systems with Fully Integrated Building Block Topology Selection.. 81
T. Eeckelaert, R. Schoofs, G. Gielen, M. Steyaert and W. Sansen

Interactive Presentation

A Coefficient Optimization and Architecture Selection Tool for ΣΔ Modulators in MATLAB ... 87
O. Yetik, O. Sağlandemir, S. Talay and G. Dündar

1.6: System Level Mapping and Simulation

Moderators: T. Henriksson, NXP Semiconductors, NL; L. Thiele, ETH Zurich, CH

Synthesis of Task and Message Activation Models in Real-Time Distributed Automotive Systems .. 93
W. Zheng, M. Di Natale, C. Pinello, P. Giusto and A. Sangiovanni Vincentelli

An ILP Formulation for System-Level Application Mapping on Network Processor Architectures..................................... 99
C. Ostler and K.S. Chatha

A Smooth Refinement Flow for Co-Designing HW and SW Threads... 105
P. Destro, F. Fummi and G. Pravadelli

Speeding Up SystemC Simulation through Process Splitting.. 111
Y. N. Naguib and R. S. Guindi
Interactive Presentation

An FPGA Design Flow for Reconfigurable Network-Based Multi-Processor Systems on Chip
A. Kumar, A. Hansson, J. Huisken and H. Corporaal

1.7: Algorithms and Applications of Run-Time Reconfiguration

Moderators: W. Najjar, UC Riverside, US, F. Kurdahi, UC Irvine, US

Hard Real-Time Reconfiguration Port Scheduling
F. Dittmann and S. Frank

An Efficient Algorithm for Online Management of 2D Area of Partially Reconfigurable FPGAs
J. Cui, Q. Deng, X. He and Z. Gu

Improving Utilization of Reconfigurable Resources Using Two-Dimensional Compaction
A.A. El Farag, H.M. El-Boghdadi and S.I. Shaheen

Low-Power Warp Processor for Power Efficient High-Performance Embedded Systems
R. Lysecky

Interactive Presentations

Using Dynamic Voltage Scaling to Reduce the Configuration Energy of Run Time Reconfigurable Devices
Y. Qu, J.-P. Soininen and J. Nurmi

A Shift Register Based Clause Evaluator for Reconfigurable SAT Solver
M. Safar, M. Shalan, M. W. El-Kharashi and A. Salem

2.2 IP Designs for Media Processing and Other Computational Intensive Kernels

Moderators: J. Dielissen, NXP Semiconductors, NL, N. Dutt, UC Irvine, US

Efficient High-Performance ASIC Implementation of JPEG-LS Encoder
M. Papadonikolakis, V. Pantazis and A. P. Kakarountas

Improve CAM Power Efficiency Using Decoupled Match Line Scheme
Y.-J. Chang, Y.-H. Liao and S.-J. Ruan

Cyclostationary Feature Detection on a Tiled-SoC
A. B. J. Kokkeler, G. J. M. Smit, T. Krol and J. Kuper

Mapping Control-Intensive Video Kernels onto a Coarse-Grain Reconfigurable Architecture:
The H.264/AVC Deblocking Filter
C. Arbelo, A. Kanstein, S. López, J. F. López, M. Berekovic, R. Sarmiento and J.-Y. Mignolet

Interactive Presentations

An Efficient Hardware Architecture for H.264 Intra Prediction Algorithm
E. Sahin and I. Hamzaoglu

An FPGA Implementation of Decision Tree Classification
R. Narayanan, D. Honbo, G. Memik, A. Choudhary and J. Zambreno

Radix 4 SRT Division with Quotient Prediction and Operand Scaling
N.R. Srivastava
2.3: Test Infrastructure of SoCs and its Verification
Moderators: F. Novak, Jozef Stefan Institute, SL, R. Dorsch, IBM, Boeblingen, DE

SoC Testing Using LFSR Reseeding, and Scan-Slice-Based TAM Optimization and Test Scheduling 201
Z. Wang, K. Chakrabarty and S. Wang

Optimized Integration of Test Compression and Sharing for SoC Testing.. 207
A. Larsson, E. Larsson, P. Eles and Z. Peng

A Sophisticated Memory Test Engine for LCD Display Drivers... 213
O. Spang, H.-M. von Staudt and M.G. Wahl

Formal Verification of a Pervasive Interconnect Bus System in a High-Performance Microprocessor 219
T. Le, T. Glökler and J. Baumgartner

Interactive Presentations

Low Cost Debug Architecture Using Lossy Compression for Silicon Debug ... 225
E. Anis and N. Nicolici

An SoC Test Scheduling Algorithm Using Reconfigurable Union Wrappers ... 231
T. Yoneda, M. Imanishi and H. Fujiwara

2.4: HOT TOPIC – Microprocessors in the Era of Terascale Integration
Moderator: A. González, Intel and UPC, ES

Microprocessors in the Era of Terascale Integration... 237
S. Borkar, N.P. Jouppi and P. Stenstrom

2.5: Statistical / Nonlinear Analysis and Verification for Analogue Circuits
Moderators: G. Vandersteen, IMEC, BE, J. Roychowdhury, Minnesota U, US

CMCal: An Accurate Analytical Approach for the Analysis of Process Variations with
Non-Gaussian Parameters and Nonlinear Functions... 243
M. Zhang, M. Olbrich, D. Seider, M. Frerichs, H. Kinzelbach and E. Barke

A Symbolic Methodology for the Verification of Analog and Mixed Signal Designs 249
G. Al-Sammane, M. H. Zaki and S. Tahar

Efficient Nonlinear Distortion Analysis of RF Circuits.. 255
D. Tannir and R. Khazaka

Nonlinearity Analysis of Analog/RF Circuits Using Combined Multisine and Volterra Analysis.................. 261
J. Borremans, L. De Locht, P. Wambacq and Y. Rolain

Interactive Presentation

Optimizing Analog Filter Designs for Minimum Nonlinear Distortions Using Multisine Excitations............ 267
J. Lataire, G. Vandersteen and R. Pintelon

2.6: System Modeling and Specification

Performance Analysis of Complex Systems by Integration of Dataflow Graphs and
Compositional Performance Analysis.. 273
S. Schliecker, S. Stein and R. Ernst
Tackling an Abstraction Gap: Co-Simulating with SystemC DE and Bluespec ESL ... 279
H.D. Patel and S.K Shukla

A Calculator for Pareto Points .. 285
M. Geilen and T. Basten

Modeling and Simulation to the Design of $\Sigma\Delta$ Fractional-N Frequency Synthesizer ... 291
S. Huang, H. Ma and Z. Wang

Interactive Presentations

System Level Power Optimization of Sigma-Delta Modulator .. 297
F. Gong and X. Wu

Executable System-Level Specification Models Containing UML-Based Behavioral Patterns 301
L.S. Indrusiak, A. Thuy and M. Glesner

2.7: Design Space Exploration and Nano-Technologies for Reconfigurable Computing

Assessing Carbon Nanotube Bundle Interconnect for Future FPGA Architectures... 307
S. Eachempati, A. Nieuwoudt, A. Gayasen, N. Vijaykrishnan and Y. Massoud

Two-Level Microprocessor-Accelerator Partitioning ... 313
S. Sirowy, Y. Wu, S. Lonardi and F. Vahid

Design Space Exploration of Partially Re-Configurable Embedded Processors.. 319

Interactive Presentation

Generating and Executing Multi-Exit Custom Instructions for an Adaptive Extensible Processor 325
H. Noori, F. Mehdipour, K. Murakami, K. Inoue and M. Goudarzi

3.2: Implementation of LDPC Codecs for Various Communication Standards
Moderators: M. Heijligers, NXP Semiconductors, NL, N. Wehn, Kaiserslautern U, DE

Low Complexity LDPC Code Decoders for Next Generation Standards ... 331
T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn, N.E. L'Insalata, F. Rossi, M. Rovini and L. Fanucci

Non-Fractional Parallelism in LDPC Decoder Implementations ... 337
J. Dielissen and A. Hekstra

Minimum-Energy LDPC Decoder for Real-Time Mobile Application ... 343
W. Wang and G. Choi

Pipelined Implementation of a Real Time Programmable Encoder for Low Density Parity Check Code on a Reconfigurable Instruction Cell Architecture ... 349
Z. Khan and T. Arslan

Interactive Presentation

Implementation of AES/Rijndael on a Dynamically Reconfigurable Architecture .. 355
C. Mucci, L. Vanzolini, A. Lodi, A. Deledda, R. Guerrieri, F. Campi and M. Toma
3.3: Testing NoCs

Using the Inter- and Intra-Switch Regularity in NoC Switch Testing ... 361
M. Hosseinabady, A. Dalir Sani and Z. Navabi

Toward a Scalable Test Methodology for 2D-Mesh Network-on-Chips .. 367
K. Petersén and J. Öberg

Remote Testing and Diagnosis of System-on-Chips Using Network Management Frameworks 373
O. Laouamri and C. Aktouf

3.4: Synthesis at System and Architectural Levels

Moderators: P. Pop, DTU, DK; S. Chakraborty, National U of Singapore, SG

Fast Memory Footprint Estimation Based on Maximal Dependency Vector Calculation 379
Q. Hu, A. Vandecappelle, P.G. Kjeldsberg, F. Catthoor and M. Palkovic

Mapping Multi-Dimensional Signals into Hierarchical Memory Organizations .. 385
H. Zhu, I.I. Lucian and F. Balasa

The Impact of Loop Unrolling on Controller Delay in High Level Synthesis ... 391
S. Kurra, N.K. Singh and P.R. Panda

Clock-Frequency Assignment for Multiple Clock Domain Systems-on-a-Chip ... 397
S. Sirowy, Y. Wu, S. Lonardi and F. Vahid

Interactive Presentations

System-Level Process VariationDriven Throughput Analysis for Single and Multiple Voltage-Frequency Island Designs ... 403
S. Garg and D. Marculescu

Reliability-Aware System Synthesis .. 409
M. Glass, M. Lukasiewycz, T. Streichert, C. Haubelt and J. Teich

3.5: Analogue and Mixed-Signal Design and Characterization

Moderators: A. Rodriguez-Vazquez, AnaFocus, ES; M. Glesner, TU Darmstadt, DE

Flexibility-Oriented Design Methodology for Reconfigurable Delta Sigma Modulators 415
P. Sun, Y. Wei and A. Dobili

Experimental Validation of a Tuning Algorithm for High-Speed Filters ... 421
G. Matarrese, C. Marzocca, F. Corsi, S. D'Amico and A. Baschirotto

Design of High-Resolution MOSFET-Only Pipelined ADCs with Digital Calibration 427
H. Aminzadeh, M. Danaie and R. Lotfi

A New Technique for Characterization of Digital-to-Analog Converters in High-Speed Systems 433
J. Savoj, A.-A. Abbasfar, A. Amirkhany, B. W. Garlepp and M. A. Horowitz
3.6: PANEL SESSION – Should You Trust the Surgeon or the Family Doctor?
Organizer: M. Casale-Rossi, Synopsys, Italy

DFM/DFY: Should You Trust the Surgeon or the Family Doctor? ... 439

3.7: Automatic Synthesis of Computation Intensive Application Specific Circuits
Moderators: F. Ferrandi, Politecnico di Milano, IT; T. Henriksson, NXP Semiconductors, NL

Automatic Synthesis of Compressor Trees: Reevaluating Large Counters.. 443
 A.K. Verma and P. Ienee

Area Optimization of Multi-Cycle Operators in High-Level Synthesis... 449
 M.C. Molina, R. Ruiz-Sautua, J.M. Mendias and R. Hermida

Data-Flow Transformations Using Taylor Expansion Diagrams.. 455
 M. Ciesielski, S. Askar, D. Gomez-Prado, J. Guillot and E. Boutillon

Automatic Application Specific Floating-Point Unit Generation.. 461
 Y.J. Chong and S. Parameswaran

Interactive Presentation

Time-Constrained Clustering for DSE of Clustered VLIW-ASP ... 467
 M. Schötzel

4.1: EMBEDDED TUTORIAL – Applications for Ubiquitous Computing and Communications (Ubiquitous Communication and Computation Special Day)
Organizer/Moderator: P Liuha, Nokia, FI

Applications for Ubiquitous Computing and Communications ... 473

4.2: Automotive
Moderators: L. Fanucci, Pisa U, IT; J. Gerlach, Robert Bosch GmbH, DE

Timing Simulation of Interconnected AUTOSAR Software-Components... 474
 M. Krause, O. Bringmann, A. Hergenhan, G. Tabanoglu and W. Rosenstiel

FPGA-Based Networking Systems for High Data-Rate and Reliable In-Vehicle Communications..................... 480
 S. Saponara, E. Petri, M. Tonarelli, I. Del Corona and L. Fanucci

Low-g Accelerometer Fast Prototyping for Automotive Applications ... 486
 F. D’Ascoli, F. Iozzi, C. Marino, M. Melani, M. Tonarelli, L. Fanucci, A. Giambastiani, A. Rocchi
 and M. De Marinis

Using an Innovative SOC-Level FMEA Methodology to Design in Compliance with IEC61508...................... 492
 R. Mariani, G. Boschi and F. Colucci

Using Partial-Run-Time Reconfigurable Hardware to Accelerate Video Processing in Driver Assistance Systems ... 498
 C. Claus, J. Zeppenfeld, F. Müller and W. Stechele
Interactive Presentation
Towards a Methodology for the Quantitative Evaluation of Automotive Architectures .. 504
P. Popp, M. Di Natale, P. Giusto, S. Kanajan and C. Pinello

4.3: Test Generation for Diagnosis, Scan Testing and Advanced Memory Fault Models
Moderators: H. Obermeir, Infineon Technologies AG, DE; B. Straube, FhG IIS/EAS Dresden, DE

Dynamic Learning Based Scan Chain Diagnosis ... 510
Y. Huang

Diagnosis, Modeling and Tolerance of Scan Chain Hold-Time Violations .. 516
O. Sinanoglu and P. Schremmer

On Test Generation by Input Cube Avoidance ... 522
I. Pomeranz and S.M. Reddy

Slow Write Driver Faults in 65nm SRAM Technology: Analysis and March Test Solution 528
A. Ney, P. Girard, C. Landrault, S. Pravossoudovitch, A. Virazel and M. Bastian

Interactive Presentations
On Power-Proﬁling and Pattern Generation for Power-Safe Scan Tests ... 534
V.R. Devanathan, C.P. Ravikumar and V. Kamakoti

Automatic Test Pattern Generation for Maximal Circuit Noise in Multiple Aggressor Crosstalk Faults 540
K.P. Ganeshpure and S. Kundu

4.4: Future Design Challenges
Moderators: V. Narayanan, Penn State U, US; C. Guiducci, Bologna U, IT

Temperature-Aware NBTI Modeling and the Impact of Input Vector Control on Performance Degradation........ 546
Y. Wang, H. Luo, K. He, R. Luo, H. Yang and Y. Xie

A Cross-Referencing-Based Droplet Manipulation Method for High-Throughput and
Pin-Constrained Digital Microfluidic Arrays ... 552
T. Xu and K. Chakrabarty

Reversible Circuit Technology Mapping from Non-Reversible Specifications ... 558
Z. Zilic, K. Radecka and A. Khazamiphur

Distributed Power-Management Techniques for Wireless Network Video Systems 564
N. H. Zamora, J.-C. Kao and R. Marculescu

Interactive Presentations
Improving the Fault Tolerance of Nanometric PLA Designs ... 570
F. Angiolini, M.H. Ben Jamaa, D. Atienza, L. Benini, and G. De Micheli

Techniques for Designing Noise-Tolerant Multi-Level Combinational Circuits .. 576
K. Nepal, R.I. Bahar, J. Mundy, W.R. Patterson and A. Zaslavsky
4.5: Application-Specific Architectures
Moderators: T. Austin, U of Michigan, US; B. Calder, Microsoft, US

An Efficient Code Compression Technique Using Application-Aware Bitmask and Dictionary Selection Methods .. 582
S.-W. Seong and P. Mishra

Optimizing Instruction-Set Extensible Processors under Data Bandwidth Constraints ... 588
K. Atasu, R.G. Dimond, O. Mencer, W. Luk, C. Özturan and G. Dündar

Resource Prediction for Media Stream Decoding ... 594
J. Hamers and L. Eeckhout

Register Pointer Architecture for Efficient Embedded Processors ... 600
J.S. Park, S.-B. Park, J.D. Balfour, D. Black-Schaffer, C. Kozyrakis and W.J. Dally

Interactive Presentations

Feasibility of Combined Area and Performance Optimization for Superscalar Processors Using Random Search .. 606
S. Van Haastregt and P.M.W. Knijnenburg

A Decoupled Architecture of Processors with Scratch-Pad Memory Hierarchy ... 612
A. Milidonis, N. Alachiotis, V. Porpodas, H. Michail, A.P. Kakarountas and C.E. Goutis

4.6: Technology and Process Aware Low Power Circuit Design
Moderators: A.J. Acosta, Seville U/IMSE, ES; B.C. Paul, Toshiba, US

An Algorithm to Minimize Leakage through Simultaneous Input Vector Control and Circuit Modification 618
N. Jayakumar and S.P. Khatri

Understanding Voltage Variations in Chip Multiprocessors Using a Distributed Power-Delivery Network 624
M.S. Gupta, J.L. Oatley, R. Joseph, G.-Y. Wei and D.M. Brooks

Process Variation Tolerant Low Power DCT Architecture ... 630
N. Banerjee, G. Karakonstantis and K. Roy

Interactive Presentation

Statistical Dual-Vdd Assignment for FPGA Interconnect Power Reduction ... 636
Y. Lin and L. He

4.7: Hardware Implementation of MPSoCs and NoCs Architectures
Moderators: K. Goossens, NXP Semiconductors, NL; B. Candaele, Thales Communications, FR

Hardware Scheduling Support in SMP Architectures ... 642
A.C. Nácul, F. Regazzoni and M. Lajolo

A Scalable, Timing-Safe, Network-on-Chip Architecture with an Integrated Clock Distribution Method 648
T. Bjerregaard, M.B. Stensgaard and J. Sparsø

Butterfly and Benes-Based On-Chip Communication Networks for Multiprocessor Turbo Decoding 654
H. Moussa, O. Muller, A. Baghdadi and M. Jézéquel
Interactive Presentation

Capturing the Interaction of the Communication, Memory and I/O Subsystems in Memory-Centric Industrial MPSoC Platforms .. 660
S. Medardoni, M. Ruggiero, D. Bertozzi, L. Benini, G. Strano and C. Pistritto

5.1.1: HOT TOPIC I: Security and Trust in Ubiquitous Communication (Ubiquitous Communication and Computation Special Day)
Organizer/Moderator: P. Liuha, Nokia, FI

Cost-Aware Capacity Optimization in Dynamic Multi-Hop WSNs ... 666
J. Suhonen, M. Kohvakka, M. Kuorilehto, M. Hännikäinen, and T.D. Hämäläinen

Design Methods for Security and Trust .. 672
I. Verbauwhede and P. Schaumont

5.1.2: Lunch-Time Keynote (Ubiquitous Communication and Computation Special Day)
Emerging Solutions Technology and Business Views for the Ubiquitous Communication 678
H. Huomo

5.2: Industrial System Designs in Aerospace, Avionics and Automotive
Moderators: L. Fanucci, Pisa U, IT; A. Reutter, Robert Bosch GmbH, DE

Development of on Board, Highly Flexible, Galileo Signal Generator ASIC ... 679
L. Baguena, E. Liégeon, A. Bépoix, J.-M. Dusserre, C. Oustric, P. Bellocq and V. Heiries

New Safety Critical Radio Altimeter for Airbus and Related Design Flow .. 684
D. Hairion, S. Emeriau, E. Combot and M. Sarlotte

Introducing New Verification Methods into a Company’s Design Flow: An Industrial User’s Point of View 689
R. Lissel and J. Gerlach

5.3: Mixed-Signal and RF Test
Moderators: A. Chatterjee, Georgia Institute of Technology, US; B. Kaminska, Simon Fraser U, CA

Testable Design for Advanced Serial-Link Transceivers .. 695
M. Lin and K.-T. Cheng

Method for Reducing Jitter in Multi-Gigahertz ATE .. 701
D.C. Keezer, D. Minier and P. Ducharme

Re-Configuration of Sub-Blocks for Effective Application of Time Domain Tests .. 707
J. Anders, S. Krishnan and G. Gronthoud

An ADC-BiST Scheme Using Sequential Code Analysis ... 713
E.S. Erdogan and S. Ozev

Interactive Presentation

Boosting SER Test for RF Transceivers by Simple DSP Technique .. 719
J. Dabrowski and R. Ramzan

Novel Test Infrastructure and Methodology Used for Accelerated Bring-Up and In-System Characterization of the Multi-Gigahertz Interfaces on the Cell Processor ... 725
P. Yeung, A. Torres and P. Batra
Evaluation of Test Measures for LNA Production Testing Using a Multinormal Statistical Model.......................... 731
J. Tongbong, S. Mir and J.L. Carbonero

5.4: EMBEDDED TUTORIAL AND PANEL – Heterogeneous Systems on Chip and Systems in Package
Organizers/Moderators: B. Courtois, TIMA Laboratory, FR; I. O’Connor, Ecole Centrale de Lyon, FR

Heterogeneous Systems on Chip and Systems in Package .. 737
I. O’Connor, B. Courtois, K. Chakrabarty, N. Delorme, M. Hampton, J. Hartung

5.5: Novel Directions in Architectural Simulation and Validation
Moderators: E.M. Aboulhamid, Montreal U, CA; T. Austin, U of Michigan, US

Engineering Trust with Semantic Guardians ... 743
I. Wagner and V. Bertacco

CATS: Cycle Accurate Transaction-Driven Simulation with Multiple Processor Simulators.......................... 749
D. Kim, S. Ha and R. Gupta

A One-Shot Configurable-Cache Tuner for Improved Energy and Performance ... 755
A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar and E. Barros

Design Fault Directed Test Generation for Microprocessor Validation.. 761
D.A. Mathaikutty, S.K. Shukla, S.V. Kodakara, D. Lilja and A. Dingankar

Interactive Presentation
Impact of Description Language, Abstraction Layer, and Value Representation on Simulation Performance.......................... 767
W. Ecker, V. Esen, L. Schönberg, T. Steininger M. Velten and M. Hull

5.6: Power Management
Moderators: D. Soudris, Thrace Democritus U, GR; M. Poncino, Politecnico di Torino, IT

Adaptive Power Management in Energy Harvesting Systems... 773
C. Moser, L. Thiele, D. Brunelli and L. Benini

Stochastic Modeling and Optimization for Robust Power Management in a Partially Observable System........................... 779
Q. Qiu, Y. Tan and Q. Wu

Efficient and Scalable Compiler-Directed Energy Optimization for Realtime Applications.................................. 785
P.-K. Huang and S. Ghiasi

Interactive Presentations
Peripheral-Conscious Scheduling on Energy Minimization for Weakly Hard Real-Time Systems......................... 791
L. Niu and G. Quan

Task Scheduling under Performance Constraints for Reducing the Energy Consumption of GALS Multi-Processor SoC .. 797
R. Watanabe, M. Kondo, M. Imai, H. Nakamura and T. Nanya
5.7: Advanced Techniques for Embedded Processors Design
Moderators: W. Kruijtzer, NXP Semiconductors, NL; G. Martin, Tensilica, US

Instruction Trace Compression for Rapid Instruction Cache Simulation ... 803
A. Janapsatya, A. Ignjatovic, S. Parameswaran and J. Henkel

Efficient Code Density through Look-Up Table Compression ... 809
T. Bonny and J. Henkel

Microarchitectural Support for Program Code Integrity Monitoring in Application-Specific Instruction Set Processors ... 815
Y. Fei and Z.J. Shi

Interactive Presentation
Soft-Core Processor Customization Using the Design of Experiments Paradigm .. 821
D. Sheldon, F. Vahid and S. Lonardi

6.1: HOT TOPIC II: Power Supply and Power Management in Ubicom (Ubiquitous Communication and Computation Special Day)

Power Supply and Power Management in Ubicom .. 827

6.2: Best Industrial Systems Designs in Communication and Multimedia
Moderators: O. Deprez, Texas Instruments, FR; M. Heijligers, NXP Semiconductors, NL

From Algorithm to First 3.5G Call in Record Time – A Novel System Design Approach Based on Virtual Prototyping and Its Consequences for Interdisciplinary System Design Teams ... 828
M. Brandenburg, A. Schöllhom, S. Heinen, J. Eckmüller and T. Eckart

Portable Multimedia SoC Design: A Global Challenge .. 831
M. Paganini, G. Kimmich, S. Ducrey, G. Caubit and V. Coeffe

What If You Could Design Tomorrow’s System Today? .. 835
N. Wingen

6.3: Nano and FIFO
Moderators: E. Larsson, Linkoping U, SE; D. Gizopoulos, Piraeus U, GR

Circuit-Level Modeling and Detection of Metallic Carbon Nanotube Defects in Carbon Nanotube FETs 841
H. Hashempour and F. Lombardi

Error Rate Reduction in DNA Self-Assembly by Non-Constant Monomer Concentrations and Profiling 847
B. Jang, Y.-B. Kim and F. Lombardi

Design and DFT of a High-Speed Area-Efficient Embedded Asynchronous FIFO .. 853
P. Wielage, E.J. Marinissen, M. Altheimer and C. Wouters

Test Quality Analysis and Improvement for an Embedded Asynchronous FIFO ... 859
T. Dubois, M. Azimane, E. Larsson, E.J. Marinissen, P. Wielage and C. Wouters

Interactive Presentation
Logic Level Fault Tolerance Approaches Targeting Nanoelectronics PLAs ... 865
W. Rao, A. Orailoglu and R. Karri
6.4: System Level Validation

Moderators: F. Fummi, Verona U, IT; M. Lajolo, NEC Laboratories, US

A Multi-Core Debug Platform for NoC-Based Systems ... 870
S. Tang and Q. Xu

Seamless Hardware/Software Performance Co-Monitoring in a Codesign Simulation Environment
with RTOS Support .. 876
L. Moss, M. de Nanclas, L. Filion, S. Fontaine, G. Bois and M. Aboulhamid

Incremental ABV for Functional Validation of TL-to-RTL Design Refinement 882
N. Bombieri, F. Fummi and G. Pravadelli

Efficient Testbench Code Synthesis for a Hardware Emulator System 888
I. Mavroidis and I. Papaefstathiou

Interactive Presentations

Implementation of a Transaction Level Assertion Framework in SystemC 894
W. Ecker, V. Esen, T. Steininger, M. Velten and M. Hull

Automatic Generation of Functional Coverage Models from Behavioral Verilog Descriptions 900
S. Verma, I.G. Harris and K. Ramineni

6.5: Model-Based Design for Embedded Systems

Compositional Specification of Behavioral Semantics .. 906
K. Chen, J. Sztpanovits and S. Neema

Performance Analysis of Multimedia Applications Using Correlated Streams 912
K. Huang, L. Thiele, T. Stefanov and E. Deprettere

Simulation Platform for UHF RFID .. 918
V. Derbek, C. Steger, R. Weiß, D. Wischounig, J. Preishuber-Pfluegl and M. Pistauer

Tool-Support for the Analysis of Hybrid Systems and Models .. 924
A. Bauer, M. Pister and M. Tautschnig

Interactive Presentation

Automatic Model Generation for Black Box Real-Time Systems .. 930

6.6: PANEL SESSION – Life Begins at 65 – Unless You Are Mixed Signal

Organizers: N. Nandra, Synopsys, US; R. Wittmann, Nokia, DE
Moderator: G. Gielen, KU Leuven, BE

Life Begins at 65 – Unless You Are Mixed Signal? .. 936
R. Wittmann, N. Nandra, J. Kunkel, M. Vanzi, J. Franca, H.-J. Wassener, C. Münker

6.7: Resource Optimisation for Best Effort and Quality of Service

Moderators: M. Coppolla, STMicroelectronics, IT; P. Ienne, EPFL Lausanne, CH

Routing Table Minimization for Irregular Mesh NoCs ... 942
E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny
Congestion-Controlled Best-Effort Communication for Networks-on-Chip .. 948
J.W. van den Brand, C. Ciordas, K. Goossens and T. Basten

Undisrupted Quality-of-Service during Reconfiguration of Multiple Applications in Networks on Chip 954
A. Hansson, M. Coenen and K. Goossens

7.1 HOT TOPIC – Testing 35 Billions of Transistors in 2020, Is It Possible?
Organizers: L. Anghel, TIMA Laboratory, FR; M.-L. Flottes, LIRMM, Montpellier, FR
Moderator Y. Zorian, Virage Logic, US

Testing in the Year 2020... 960
R. Galivanche, R. Kapur and A. Rubio

7.2 Designs in Avionics, Military and Space
Moderators: P. Manet, U Catholique de Louvain, BE ; I. Soderquist, SAAB AB, Saab Avitronics, SE

Transaction Level Modeling of SCA Compliant Software Defined Radio Waveforms and Platforms PIM/PSM.. 966
G. Gailliard, E. Nicollet, M. Sarlotte and F. Verdier

Event Driven Data Processing Architecture... 972
I. Söderquist

Reconfigurable System-on-Chip Data Processing Units for Space Imaging Instruments... 977
B. Fiethe, H. Michalik, C. Dierker, B. Osterloh and G. Zhou

Enabling Certification for Dynamic Partial Reconfiguration Using a Minimal Flow... 983

Identification of Process/Design Issues during 0.18 μm Technology Qualification for Space Application ... 989
J. Ferrigno, P. Perdu, K. Sanchez and D. Lewis

Interactive Presentations

RECOPS: Reconfiguring Programmable Devices for Military Hardware Electronics ... 994
P. Manet, D. Maufroid, L. Tosi, M. Di Ciano, O. Mulertt, Y. Gabriel, J.-D. Legat, D. Aulagnier,
C. Gamrat, R. Liberati and V. La Barba

7.4: Timing Analysis and Validation
Moderators: F. Salice, Politecnico di Milano, IT; P. Sanchez, Cantabria U, ES

WAVSTAN: Waveform Based Variational Static Timing Analysis ... 1000
S.K Tiwary and J.R. Phillips

Rapid and Accurate Latch Characterization via Direct Newton Solution of Setup/Hold Times............................. 1006
S. Srivastava and J. Roychowdhury

Temperature and Voltage Aware Timing Analysis: Application to Voltage Drops... 1012
B. Lasbouygues, R. Wilson, N. Azemard and P. Maurine

Accurate Timing Analysis Using SAT and Pattern-Dependent Delay Models... 1018
D. Tadesse, D. Sheikh, E. Lenge, R.I. Bahar and J. Grodstein
7.5: Model-Based Analysis and Middleware of Embedded Systems
Moderators: S. van Loo, Philips Research, NL; H. De Groot, European Microsoft Innovation Centre, DE

E. Bondarev, M. Chaudron and P.H.N. de With

Modeling and Simulation Alternatives for the Design of Networked Embedded Systems........................... 1030
E. Alessio, F. Fummi, D. Quaglia and M. Turolla

Middleware Design Optimization of Wireless Protocols Based on the Exploitation of Dynamic Input Patterns .. 1036
S. Mamagkakis, D. Soudris and F. Catthoor

Lightweight Middleware for Seamless HW-SW Interoperability, with Application to Wireless Sensor Networks .. 1042
F.J. Villanueva, D. Villa, F. Moya, J. Barba, F. Rincón and J.C. López

Interactive Presentation
A Middleware-Centric Design Flow for Networked Embedded Systems .. 1048
F. Fummi, G. Perbellini, R. Pietrangeli and D. Quaglia

7.6: Advanced Architectures for Low Power Optimization
Moderators: J. Henkel, Karlsruhe U, DE; A. Macii, Politecnico di Torino, IT

Dynamic Reconfiguration in Sensor Networks with Regenerative Energy Sources... 1054
A. Nahapetian, P. Lombardo, A. Acquaviva, L. Benini and M. Sarrafzadeh

Dynamic Power Management under Uncertain Information .. 1060
H. Jung and M. Pedram

Very Wide Register: An Asymmetric Register File Organization for Low Power Embedded Processors 1066
P. Raghavan, A. Lambrechts, M. Jayapala, F. Catthoor, D. Verkest and H. Corporaal

Interactive Presentations
 Single-Ended Coding Techniques for Off-Chip Interconnects to Commodity Memory 1072
M. Choudhury, K. Ringgenberg, S. Rixner and K. Mohanram

PowerQuest: Trace Driven Data Mining for Power Optimization .. 1078
P. Babighian, G. Kamhi and M. Vardi

7.7: Performance Analysis for NoC Architectures
Moderators: S. Murali, Stanford U, US; L. Carloni, UCB, ES

System Level Assessment of an Optical NoC in an MPSoC Platform ... 1084
M. Brière, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot and I. O'Connor

Systematic Comparison between the Asynchronous and the Multi-Synchronous Implementations of a Network on Chip Architecture ... 1090
A. Sheibanyrad, I. Miro Panades and A. Greiner

Analytical Router Modeling for Networks-on-Chip Performance Analysis .. 1096
U.Y. Ogras and R. Marculescu
Interactive Presentation

Hard- and Software Modularity of the NOVA MPSoC Platform ... 1102
C. Sauer, M. Gries and S. Dirk

Organizers: S. Prudhomme, Airbus, FR; E. Lansard, Alcatel Alenia Space, FR
Moderator: S. Prudhomme, Airbus, FR

The Methodological and Technological Dimensions of Technology Transfer for Embedded Systems in Aeronautics and Space .. 1108
T. Pardessus, H. Daembkes, and R. Arning

8.2: Secure Systems
Moderators: R. Pacalet, ENST, FR; R. Locatelli, STMicroelectronics, FR

Energy Evaluation of Software Implementations of Block Ciphers under Memory Constraints 1110
J. Großschädl, S. Tillich, C. Rechberger, M. Hofmann and M. Medwed

An Area Optimized Reconfigurable Encryptor for AES-Rijndael .. 1116

Performance Aware Secure Code Partitioning ... 1122
S.H.K. Narayanan, M. Kandemir and R. Brooks

Energy and Execution Time Analysis of a Software-Based Trusted Platform Module 1128
N. Aaraj, A. Raghunathan, S. Ravi and N.K. Jha

8.3: Reliable Microarchitectures
Moderators: S. Vassiliadis, TU Delft, NL; P. Ienne, EPFL Lausanne, CH

Utilization of SECDED for Soft Error and Variation-Induced Defect Tolerance in Caches 1134
L.D. Hung, H. Irie, M. Goshima and S. Sakai

Transient Fault Prediction Based on Anomalies in Processor Events .. 1140
S. Narayanasamy, A. Coskun and B. Calder

Low-Cost Protection for SER Upsets and Silicon Defects .. 1146
M. Mehrara, M. Attariyan, S. Shyam, K. Constantimides, V. Bertacco and T. Austin

Working with Process Variation Aware Caches ... 1152
M. Mutyam and V. Narayanan

Interactive Presentations

An Enhanced Technique for the Automatic Generation of Effective Diagnosis-Oriented Test Programs for Processor ... 1158
E. Sánchez, M. Schillaci, G. Squillero and M. Sonza Reorda

Functional and Timing Validation of Partially Bypassed Processor Pipelines ... 1164
Q. Zhu, A. Shrivastava and N. Dutt
8.4: Formal Techniques to Enhance the Verification Flow

Moderators: V. Bertacco, U of Michigan, US; S. Quer, Politecnico di Torino, IT

A Compositional Approach to the Combination of Combinational and Sequential Equivalence Checking of Circuits without Known Reset States .. 1170
I.-H. Moon, B. Bjesse and C. Pixley

Estimating Functional Coverage in Bounded Model Checking .. 1176
D. Große, U. Kühne and R. Drechsler

Abstraction and Refinement Techniques in Automated Design Debugging ... 1182
S. Safarpour and A. Veneris

Interactive Presentation

Automatic Hardware Synthesis from Specifications: A Case Study ... 1188

8.5: Interconnect Extraction and Synthesis

pFFT in FastMaxwell: A Fast Impedance Extraction Solver for 3D Conductor Structures over Substrate 1194
T. Moselhy, X. Hu and L. Daniel

Optimization-Based Wideband Basis Functions for Efficient Interconnect Extraction 1200
X. Hu, T. Moselhy, J. White and L. Daniel

Thermally Robust Clocking Schemes for 3D Integrated Circuits .. 1206
M. Mondal, A.J. Ricketts, S. Kirolos, T. Ragheb, G. Link, N. Vijaykrishnan and Y. Massoud

Double-Via-Driven Standard Cell Library Design ... 1212

Interactive Presentation

Analysis of Power Consumption and BER of Flip-flop Based Interconnect Pipelining 1218
J. Xu, A. Roy and M.H. Chowdhury

8.6: EMBEDDED TUTORIAL/PANEL – A Future of Customizable Processors: Are We There Yet?

Organizers: L. Pozzi, Lugano U, CH; P. Paulin, STMicroelectronics, CA
Moderator: P. Paulin, STMicroelectronics, CA

A Future of Customizable Processors: Are We There Yet? ... 1224
L. Pozzi and P. G. Paulin

8.7: Placement and Floorplanning

Moderators: J. Dielissen, NXP Semiconductors, NL; T. Shiple, Synopsys, FR

Fast and Accurate Routing Demand Estimation for Efficient Routability-Driven Placement 1226
P. Spindler and F.M. Johannes

Yield-Aware Placement Optimization .. 1232
P. Azzoni, M. Bertoletti, N. Dragone, F. Fummi, C. Guardiani and W. Vendraminetto

Microarchitecture Floorplanning for Sub-Threshold Leakage Reduction ... 1238
H. Mogal and K. Bazargan
9.1.1: HOT TOPIC I – Industrial Applications (Space and Aeronautics Special Day)
Organizers: S. Prudhomme, Airbus, FR; E. Lansard, Alcatel Alenia Space, FR
Moderator: E. Lansard, Alcatel Alenia Space, FR

Industrial Applications .. 1244
 X. Olive, J.-M. Pasquet and D. Flamant

9.1.2: LUNCH TIME KEYNOTE – Setting the Industrial Scene (Space and Aeronautics Special Day)
Organizers/Moderators: S. Prudhomme, Airbus, FR; E. Lansard, Alcatel Alenia Space, FR

Flying Embedded: The Industrial Scene and Challenges for Embedded Systems in Aeronautics and Space .. 1246
 J. Botti

9.2: Crypto Blocks and Security
Moderators: R. Locatelli, STMicroelectronics, IT; R. Pacalet, ENST, FR

Compact Hardware Design of Whirlpool Hashing Core ... 1247
 T. Alho, P. Hämmäläinen, M. Hännikäinen and T.D. Hämmäläinen

An Efficient Polynomial Multiplier in GF(2^m) and Its Application to ECC Designs ... 1253
 S. Peter and P. Langendörfer

Flexible Hardware Reduction for Elliptic Curve Cryptography in GF(2^m) .. 1259
 S. Peter, P. Langendörfer and K. Piotrowski

Overcoming Glitches and Dissipation Timing Skews in Design of DPA-Resistant Cryptographic Hardware .. 1265
 K.J. Lin, S.C. Fang, S.-H. Yang, and C.C. Lo

9.3: Variation Tolerant Mixed Signal Test
Moderators: A. Rubio, UP Catalunya, ES; S. Mir, TIMA Laboratory, FR

Dynamic Critical Resistance: A Timing-Based Critical Resistance Model for Statistical Delay Testing of Nanometer ICs ... 1271
 J.L. Rosselló, C. de Benito, S.A. Bota, J. Segura

Sensitivity Analysis for Fault-Analysis and Tolerance in RF Front-End Circuitry ... 1277
 T. Das and P.R. Mukund

A Two-Tone Test Method for Continuous-Time Adaptive Equalizers .. 1283
 D. Hong, S. Saberi, K.-T. Cheng and C.P. Yue

Worst-Case Design and Margin for Embedded SRAM .. 1289
 R. Aitken and S. Idgunji

Interactive Presentations

Pulse Propagation for the Detection of Small Delay Defects ... 1295
 M. Favalli and C. Metra

BIST Method for Die-Level Process Parameter Variation Monitoring in Analog/Mixed-Signal Integrated Circuits ... 1301
 A. Zjajo, M.J. Barragan Asian and J. Pineda de Gyvez
9.4: SAT Techniques for Verification

Moderators: R. Bloem, TU Graz, AT; R. Drechsler, Bremen U, DE

- A New Hybrid Solution to Boost SAT Solver Performance... 1307
 L. Fang and M.S. Hsiao

- QuteSAT: A Robust Circuit-Based SAT Solver for Complex Circuit Structure................................. 1313

- Boosting the Role of Inductive Invariants in Model Checking.. 1319
 G. Cabodi, S. Nocco and S. Quer

Interactive Presentation

- Image Computation and Predicate Refinement for RTL Verilog Using Word Level Proofs..................... 1325
 D. Kroening and N. Sharygina

9.5: Compiler Techniques for Customisable Architectures

Moderators: A. Darte, ENS Lyon, FR; H. van Someren, ACE Associated Compiler Experts, NL

- Polynomial-Time Subgraph Enumeration for Automated Instruction Set Extension 1331
 P. Bonzini and L. Pozzi

- Interrupt and Low-Level Programming Support for Expanding the Application Domain of Statically-Scheduled Horizontally-Microcoded Architectures in Embedded Systems 1337
 M. Reshadi and D. Gajski

- DRIM: A Low Power Dynamically Reconfigurable Instruction Memory Hierarchy for Embedded Systems .. 1343
 Z. Ge, W.-F. Wong and H.-B. Lim

Interactive Presentations

- SoftSIMD – Exploiting Subword Parallelism Using Source Code Transformations.................................. 1349
 S. Kraemer, R. Leupers, G. Ascheid and H. Meyr

- A Process Splitting Transformation for Kahn Process Networks ... 1355
 S. Meijer, B. Kienhuis, A. Turjan and E. de Kock

9.6: Interconnect Optimization and Metastability

Moderators: S. Sapatnekar, Minnesota U, US; T. Shiple, Synopsys, FR

- Computing Synchronizer Failure Probabilities... 1361
 S. Yang and M. Greenstreet

- Layout-Aware Gate Duplication and Buffer Insertion.. 1367
 D. Bañeres, J. Cortadella and M. Kishinevsky

- Self-Heating-Aware Optimal Wire Sizing under Elmore Delay Model.. 1373
 M. Ni and S.O. Memik
9.7: Physical and Device Simulation
Moderators: M. Zwolinski, Southampton U, UK; F. Gaffiot, Ecole Centrale de Lyon, FR

Statistical Blockade: A Novel Method for Very Fast Monte Carlo Simulation of Rare Circuit Events, and Its Application ... 1379
A. Singhee and R.A. Rutenbar

Clock Domain Crossing Fault Model and Coverage Metric for Validation of SoC Design .. 1385
Y. Feng, Z. Zhou, D. Tong and X. Cheng

Fast Statistical Circuit Analysis with Finite-Point Based Transistor Model ... 1391
M. Chen, W. Zhao, F. Liu and Y Cao

Interactive Presentation
Statistical Simulation of High-Frequency Bipolar Circuits .. 1397
W. Schneider, M. Schroter, W. Kraus and H. Wittkopf

10.1: HOT TOPIC II – Development and Industrialization (Space and Aeronautics Special Day)
Organizers/Moderators: S. Prudhomme, Airbus, FR; E. Lansard, Alcatel Alenia Space, FR

Development and Industrialization ... 1403
M. Riffiod, P. Caspi, C. Piala and J.-L. Voirin

10.2: Wireless Communication and Networking System Implementation
Moderators: C. Heer, Infineon Technologies, DE; O. Deprez, Texas Instruments, FR

Low Power Design on Algorithmic and Architectural Level: A Case Study of an HSDPA Baseband Digital Signal Processing System .. 1406
M. Schämann, S. Hessel, U. Langmann and M. Bücker

Mapping the Physical Layer of Radio Standards to Multiprocessor Architectures .. 1412
C. Grassmann, M. Richter and M. Sauermann

Development of an ASIP Enabling Flows in Ethernet Access Using a Retargetable Compilation Flow 1418
K. Van Renterghem, P. Demuytere, D. Verhulst, J. Vandewege and X.-Z. Qiu

An Effective AMS Top-Down Methodology Applied to the Design of a Mixed-Signal UWB System-on-Chip 1424
M. Crepaldi, M.R. Casu, M. Graziano and M. Zamboni

Interactive Presentation
E. Barajas, R. Cosculluela, D. Coutinho, D. Mateo, J. L. González, I. Cairò, S. Banda, M. Ikeda

10.3: Soft Error Evaluation and Tolerance
Moderators: C. Metra, Bologna U, IT; B. Gottlieb, Intel, US

Soft Error Rate Analysis for Sequential Circuits .. 1436
N. Miskov-Zivanov and D. Marculescu

Verification-Guided Soft Error Resilience .. 1442
S.A. Seshia, W. Li and S. Mitra
A Low-SER Efficient Core Processor Architecture for Future Technologies .. 1448
 E.L. Rhod, C.A. Lisbôa and L. Carro

Accurate and Scalable Reliability Analysis of Logic Circuits .. 1454
 M.R. Choudhury and K. Mohanram

Interactive Presentation

A New Asymmetric SRAM Cell to Reduce Soft Errors and Leakage Power in FPGA ... 1460
 B.S. Gill, C. Papachristou and F.G. Wolff

10.4: EMBEDDED TUTORIAL – EDA – A Pivotal Theme in the European Technology Platforms - ARTEMIS and ENIAC

Organizers/Moderators: P. Magarshack, STMicroelectronics, FR; E. Schutz, STMicroelectronics, BE

Design Challenges at 65nm and Beyond ... 1466
 A.B. Kahng

The ARTEMIS Cross-Domain Architecture for Embedded Systems .. 1468
 H. Kopetz

HW/SW Implementation from Abstract Architecture Models .. 1470
 A.A. Jerraya

10.5: Memory and Instruction-Set Customization for Real-Time Systems

Moderators: T.-W. Kuo, National Taiwan U, ROC ; H. van Someren, ACE Associated Compiler Experts, NL

Instruction-Set Customization for Real-Time Embedded Systems .. 1472
 H.P. Huynh and T. Mitra

A Novel Technique to Use Scratch-Pad Memory for Stack Management ... 1478
 S. Park, H.-W. Park and S. Ha

Scratchpad Memories vs Locked Caches in Hard Real-Time Systems: A Quantitative Comparison ... 1484
 I. Puaut and C. Pais

Task Scheduling for Reliable Cache Architectures of Multiprocessor Systems ... 1490
 M. Sugihara, T. Ishihara and K. Murakami

10.6: Order Reduction and Variation-Aware Interconnect Modelling

Moderators: L. Daniel, Massachusetts Institute of Technology, US; L.M. Silveira, TU Lisbon, PT

Fast Positive-Real Balanced Truncation of Symmetric Systems Using Cross Riccati Equations 1496
 N. Wong

Random Sampling of Moment Graph: A Stochastic Krylov-Reduction Algorithm ... 1502
 Z. Zhu and J. Phillips

Statistical Model Order Reduction for Interconnect Circuits Considering Spatial Correlations 1508
 J. Fan, N. Mi, S.X.-D. Tan, Y. Cai and X. Hong

Interactive Presentation

Simulation Methodology and Experimental Verification for the Analysis of Substrate Noise on LC-VCO's........ 1520
S. Bronckers, C. Soens, G. Van Der Plas, G. Vandersteen and Y. Rolain

10.7: Temperature and Process Aware Low Power Techniques
Moderators: C. Silvano, Politecnico di Milano, IT; E. Schmidt, ChipVision Design Systems, DE

Accurate Temperature-Dependent Integrated Circuit Leakage Power Estimation Is Easy......................... 1526
Y. Liu, R.P. Dick, L. Shang and H. Yang

Low-Overhead Circuit Synthesis for Temperature Adaptation Using Dynamic Voltage Scheduling 1532
S. Ghosh, S. Bhunia and K. Roy

Maximum Circuit Activity Estimation Using Pseudo-Boolean Satisfiability.. 1538
H. Mangassarian, A. Veneris, S. Safarpour, F.N. Najm and M.S. Abadir

Interactive Presentations

Efficient Computation of Discharge Current Upper Bounds for Clustered Sleep Transistor Sizing 1544
A. Sathanur, A. Calimera, L. Benini, A. Macii, E. Macii and M. Poncino

Process Tolerant Beta-Ratio Modulation for Ultra-Dynamic Voltage Scaling.. 1550
M.-E. Hwang, T. Cakici and K. Roy

11.1: PANEL SESSION – Towards Total Open Source in Aeronautics and Space?
(Space and Aeronautics Special Day)
Organizers: S. Prudhomme, Airbus, FR; E. Lansard, Alcatel Alenia Space, FR
Moderator: P. Aycinena, Editor, EDA Confidential, US

Towards Total Open Source in Aeronautics and Space? ... 1556
Panelists: E. Bantegnie, G. Ladier, R. Mueller, F. Gasperoni and A. Wilson

11.2: Wireless Communication and Networking Algorithms
Moderators: C. Grassmann, Infineon Technologies, DE ; O. Deprez, Texas Instruments, FR

A Tiny and Efficient Wireless Ad-Hoc Protocol for Low-Cost Sensor Networks 1557
P. Gburzynski, B. Kaminska and W. Olesinski

Scalable Reconfigurable Channel Decoder Architecture for Future Wireless Handsets.......................... 1563
G. Krishnaiah, N. Engin and S. Sawitzki

A New Pipelined Implementation for Minimum Norm Sorting Used in Square Root
Algorithm for MIMO-VBLAST Systems... 1569
Z. Khan, T. Arslan, J.S. Thompson, A.T. Erdogan

Optimization of the ‘FOCUS’ Inband-FEC Architecture for 10-Gbps SDH/SONET Optical
Communication Channels... 1575
A. Tychopoulos and O. Koufopavlou
11.3: System Reliability and Security Issues
Moderators: C. Bolchini, Politecnico di Milano, IT; S. Bocchio, STMicroelectronics, IT

A Framework for System Reliability Analysis Considering Both System Error Tolerance and Component Test Quality .. 1581
S.-J. Pan and K.-T. Cheng

Experimental Evaluation of Protections against Laser-Induced Faults and Consequences on Fault Modeling .. 1587
R. Leveugle, A. Ammari, V. Maingot, E. Teyssou, P. Moitrel, C. Mourtel, N. Feyt, J.-B. Rigaud and A. Tria

Evaluation of Design for Reliability Techniques in Embedded Flash Memories .. 1593
B. Godard, J.-M. Daga, L. Torres and G. Sassatelli

Reduction of Detected Acceptable Faults for Yield Improvement via Error-Tolerance 1599
T.-Y. Hsieh, K.-J. Lee and M.A. Breuer

11.4: Statistical Timing and Worst-Delay Corner Analysis
Moderators: M. Berkelaar, Magma Design Automation, NL; J. Cortadella, UP Catalunya, ES

Use of Statistical Timing Analysis on Real Designs ... 1605
A. Nardi, E. Tuncer, S. Naidu, A. Antonau, S. Gradinaru, T. Lin and J. Song

A Novel Criticality Computation Method in Statistical Timing Analysis .. 1611
F. Wang, Y. Xie and H. Ju

Efficient Computation of the Worst-Delay Corner ... 1617
L. Guerra e Silva, L.M. Silveira and J.R. Phillips

11.5: Real-Time Methodologies

Accounting for Cache-Related Preemption Delay in Dynamic Priority Schedulability Analysis 1623
L. Ju, S. Chakraborty and A. Roychoudhury

Energy-Efficient Real-Time Task Scheduling with Task Rejection .. 1629
J.-J. Chen, T.-W. Kuo, C.-L. Yang and K.-J. King

Feasibility Intervals for Multiprocessor Fixed-Priority Scheduling of Arbitrary Deadline Periodic Systems .. 1635
L. Cucu and J. Goossens

Energy Minimization with Soft Real-Time and DVS for Uniprocessor and Multiprocessor Embedded Systems .. 1641
M. Qiu, C. Xue, Z. Shao and E.H.-M. Sha

11.6: Impact of Nanometer Technologies in MPSoCs and SoC Design

Joint Consideration of Fault-Tolerance, Energy-Efficiency and Performance in On-Chip Networks 1647
A. Ejlali, B.M. Al-Hashimi, P. Rosinger and S.G. Miremadi

Impact of Process Variations on Multicore Performance Symmetry .. 1653
E. Humenay, D. Tarjan and K. Skadron
Temperature Aware Task Scheduling in MPSoCs... 1659
 A. Kivilcim Coskun, T. Simunic Rosing and K. Whisnant

11.7: High-Level Memory and Clock Power Optimization
Moderators: R. Zafalon, STMicroelectronics, IT; J. Haid, Infineon Technologies, DE

Architectural Leakage-Aware Management of Partitioned Scratchpad Memories.......................... 1665
 O. Golubeva, M. Loghi, M. Poncino and E. Macii

Memory Bank Aware Dynamic Loop Scheduling... 1671
 M. Kandemir, T. Yemliha, S.W. Son and O. Ozturk

System Level Clock Tree Synthesis for Power Optimization... 1677
 S.A. Butt, S. Schermbeck, J. Rosenthal, A. Pratsch and E. Schmidt

Author Index.. 1683
<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chair</td>
<td>Rudy Lauwereins</td>
<td>IMEC and KU Leuven, BE</td>
</tr>
<tr>
<td>Vice General Chair</td>
<td>Donatella Sciuto</td>
<td>Politecnico di Milano, IT</td>
</tr>
<tr>
<td>Finance Chair & DAC rep</td>
<td>Herbert Wehn</td>
<td>University of Kaiserslautern, DE</td>
</tr>
<tr>
<td>Special Sessions Chair</td>
<td>Christian Piguet</td>
<td>CSEM, CH</td>
</tr>
<tr>
<td>Test Co-Chair</td>
<td>Joanne Sigur</td>
<td>University of Slie Bainsens, ES</td>
</tr>
<tr>
<td>Exhibition Programme & Publicity Chair</td>
<td>Juergen Rease</td>
<td>Echternaut, DE</td>
</tr>
<tr>
<td>System Design Records Chair</td>
<td>Giovanni de Michetti</td>
<td>EPFL, CH</td>
</tr>
<tr>
<td>Space and Aeronautics Day Chair</td>
<td>Sylvain Prudhomme</td>
<td>Airbus, FR</td>
</tr>
<tr>
<td>Ubiquitous Computing Day Chair</td>
<td>Piot Liuba</td>
<td>Nokia Research Center, FS</td>
</tr>
<tr>
<td>Audio Visual Chair</td>
<td>Udo Kebschull</td>
<td>University of Heidelberg, DE</td>
</tr>
<tr>
<td>Press Chair</td>
<td>Fred Santamaria</td>
<td>Infineon, Paris, FR</td>
</tr>
<tr>
<td>Awards Chair</td>
<td>Luca Remini</td>
<td>University of Bologna, IT</td>
</tr>
<tr>
<td>Travel Grants Chair</td>
<td>Marta Remisz</td>
<td>TU Budapest, HG</td>
</tr>
<tr>
<td>University Booth</td>
<td>Gilles Jacquemond</td>
<td>University of Nice Sophia Antipolis, FR</td>
</tr>
<tr>
<td>Vendors Committee Chair</td>
<td>Carsten Elgert</td>
<td>Mentor Graphics, DE</td>
</tr>
<tr>
<td>EDAA Liaison</td>
<td>Bernard Courtois</td>
<td>TDK Laboratory, FR</td>
</tr>
<tr>
<td>EDAC Liaison & Audit Co-Chair</td>
<td>Robert Gardner</td>
<td>EDA Consortium, US</td>
</tr>
<tr>
<td>Programme Chair</td>
<td>Jan Hudson</td>
<td>DITU, DK</td>
</tr>
<tr>
<td>Vice Programme & Tutorials Chair</td>
<td>Zebo Peng</td>
<td>University of Linkoping, SE</td>
</tr>
<tr>
<td>Past General Chair & DATE rep at DAC</td>
<td>Georges Elsener</td>
<td>KU Leuven, BE</td>
</tr>
<tr>
<td>Friday Workshops Chair</td>
<td>Bastir Al-Hashemi</td>
<td>University of Southampton, UK</td>
</tr>
<tr>
<td>Embedded Software Co-Chair</td>
<td>Joseph Sifakis</td>
<td>VERSPAG, FR</td>
</tr>
<tr>
<td>Test Co-Chair</td>
<td>Patrick Girard</td>
<td>LSIMPL, FR</td>
</tr>
<tr>
<td>Applications Design Chair</td>
<td>Luca Fanucci</td>
<td>University of Pisa, IT</td>
</tr>
<tr>
<td>Interactive Presentations Chair</td>
<td>Ingrid Verbauwhede</td>
<td>KU Leuven, BE</td>
</tr>
<tr>
<td>Space and Aeronautics Day Chair</td>
<td>Erick Lavand</td>
<td>Aker, FR</td>
</tr>
<tr>
<td>Electronic Review Chair</td>
<td>Wolfgang Hueller</td>
<td>University of Paderborn, DE</td>
</tr>
<tr>
<td>Web Chair</td>
<td>Fabrice Gordon</td>
<td>UPMC, FR</td>
</tr>
<tr>
<td>Proceedings Chair</td>
<td>Christopher Bobda</td>
<td>University of Kaiserslautern, DE</td>
</tr>
<tr>
<td>fringe Workshops Chair</td>
<td>Gabriela Windescu</td>
<td>ECE Polytechnical de Montreal, LA</td>
</tr>
<tr>
<td>Local Arrangements Chair</td>
<td>Cyril Lousy</td>
<td>University of Nice, FR</td>
</tr>
<tr>
<td>University Booth</td>
<td>Jean-Pierre Dumeano</td>
<td>University of Nice Sophia Antipolis, FR</td>
</tr>
<tr>
<td>PCB Design Chair</td>
<td>Retir Arsfug</td>
<td>Mentor Graphics, DE</td>
</tr>
<tr>
<td>DAC rep at DATE</td>
<td>Ellen M Sentovich</td>
<td>Cadence, US</td>
</tr>
<tr>
<td>EBDC Liaison</td>
<td>Anne Cirkel</td>
<td>Mentor Graphics, US</td>
</tr>
</tbody>
</table>
technical programme topic chairs

System Level Specification &
Modeling
Satnam Singh
Microsoft, US
Ian Oliver
Novia,

System Design Methods & Case
Studies
Donatella Sciuto
Politecnico di Milano, IT
Luciano Lavagno
Cadence, US

System Synthesis and Optimization
Jurgen Tech
U of Erlangen, DE
Paul Pop
DFU, DK

Simulation and Validation
Mustapha Aboulhamid
U of Montreal, CA
Franco Fummi
U of Texas, US

Design of Low Power Systems
and Case Studies
Miguel Miranda
UMEC, ES
Tapani Soini
UC San Diego, US

Power Estimation and Optimization
Eike Schmidt
Chip Vision, DE
Markus Wachinger
U of Erlangen, DE

Innovative and Emerging
Technologies, Systems and
Applications
Vijaykrishnan Narayanan
Pennsylvania State U, US
Christian Paulus
Siemens, DE

Formal Verification
Valeria Bertacco
U of Michigan, US
Rob Verbrugge
U of North Carolina, US

Multi Processor & Network on Chip
Grégory Demange
U of North Carolina, US

Microarchitecture and
Architectural Design
Todd Austin
U of Michigan, US

Architectural Synthesis
Fabrizio Vernieri
Politecnico di Milano, IT
Ryan Kastner
UC Santa Barbara, US

Reconfigurable Computing
Moldi Najjar
UC Riverside, US
Wayne Luk
Imperial College, UK

Synthesis for Deep-Submicron
Circuits
Tiziana Villa
Pavone, IT
Jordi Cortadella
U Politecnica Catalunya, ES

Physical Design and Verification
Andrew Kuehlman
Cadence, US
Frank Johannes
TU Munich, DE

Analog & Mixed A/D Systems
Angel Rodriguez-Vazquez
U of Seville, ES
Manfred Glesner
TU Dresden, DE

Testing of Analog, Mixed-
Signal, RF and Heterogeneous
Circuits and Systems
Achrit Chatterjee
Georgia Inst. of Technology, US
Salvador Mir
UMT, FR

Statistical, Physical, Defect-
Based Testing and Test of
Regular Structures
Bob Atkin
ARM, US
Antonio Rubino
U P Catalunia, ES

Real-Time Systems
Gerhard Staller
U of Karlsruhe, DE
Sanjay Barsh
U of North Carolina, US

Compliance, architectures, and
software synthesis for
embedded systems
Hans van Senneman
ACE, NL
Nigel Topham
U of Edinburgh, UK

Model-based Design for
Embedded Systems
Jens Sattelberger
Vanderbilt U, US
Peter Mockenman
The MathWorks, US

Middleware and Hardware-
dependent software for
embedded systems
Sjir van Loo
Philips, NL
Harrie de Groot
European Microsoft Innovation
Centre, DE

System Design Records
Pieter van der Wolf
NXP Research, NL

System and Industrial Test
Rainer Dorsch
SVH Deutschland Entwicklung, DE
Erik Larsson
Linkoping U, SE

Design for Test and BIST
Splitter Heildbrand
Paderborn U, DE
Alfredo Benno
Politecnico di Torino, IT

Testing, Simulation and
Diagnoses
Matteo Succo-Navarra
Politecnico di Torino, IT
Bernd Becker
Purdue U, DE

On-Line Testing, Fault
Tolerance, and Reliability
Cecilia Metro
Bologna U, IT
Fabrice Lombardi
Northeastern U, US

Testing of Analog, Mixed-
Signal, RF and Heterogeneous
Circuits and Systems
Achrit Chatterjee
Georgia Inst. of Technology, US
Salvador Mir
UMT, FR

Statistical, Physical, Defect-
Based Testing and Test of
Regular Structures
Bob Atkin
ARM, US
Antonio Rubino
U P Catalunia, ES

Real-Time Systems
Gerhard Staller
U of Karlsruhe, DE
Sanjay Barsh
U of North Carolina, US

Compliance, architectures, and
software synthesis for
embedded systems
Hans van Senneman
ACE, NL
Nigel Topham
U of Edinburgh, UK

Model-based Design for
Embedded Systems
Jens Sattelberger
Vanderbilt U, US
Peter Mockenman
The MathWorks, US

Middleware and Hardware-
dependent software for
embedded systems
Sjir van Loo
Philips, NL
Harrie de Groot
European Microsoft Innovation
Centre, DE

System Design Records
Pieter van der Wolf
NXP Research, NL

System and Industrial Test
Rainer Dorsch
SVH Deutschland Entwicklung, DE
Erik Larsson
Linkoping U, SE

Design for Test and BIST
Splitter Heildbrand
Paderborn U, DE
Alfredo Benno
Politecnico di Torino, IT

Testing, Simulation and
Diagnoses
Matteo Succo-Navarra
Politecnico di Torino, IT
Bernd Becker
Purdue U, DE

On-Line Testing, Fault
Tolerance, and Reliability
Cecilia Metro
Bologna U, IT
Fabrice Lombardi
Northeastern U, US

Testing of Analog, Mixed-
Signal, RF and Heterogeneous
Circuits and Systems
Achrit Chatterjee
Georgia Inst. of Technology, US
Salvador Mir
UMT, FR

Statistical, Physical, Defect-
Based Testing and Test of
Regular Structures
Bob Atkin
ARM, US
Antonio Rubino
U P Catalunia, ES

Real-Time Systems
Gerhard Staller
U of Karlsruhe, DE
Sanjay Barsh
U of North Carolina, US

Compliance, architectures, and
software synthesis for
embedded systems
Hans van Senneman
ACE, NL
Nigel Topham
U of Edinburgh, UK

Model-based Design for
Embedded Systems
Jens Sattelberger
Vanderbilt U, US
Peter Mockenman
The MathWorks, US

Middleware and Hardware-
dependent software for
embedded systems
Sjir van Loo
Philips, NL
Harrie de Groot
European Microsoft Innovation
Centre, DE

System Design Records
Pieter van der Wolf
NXP Research, NL

System and Industrial Test
Rainer Dorsch
SVH Deutschland Entwicklung, DE
Erik Larsson
Linkoping U, SE

Design for Test and BIST
Splitter Heildbrand
Paderborn U, DE
Alfredo Benno
Politecnico di Torino, IT

Testing, Simulation and
Diagnoses
Matteo Succo-Navarra
Politecnico di Torino, IT
Bernd Becker
Purdue U, DE

On-Line Testing, Fault
Tolerance, and Reliability
Cecilia Metro
Bologna U, IT
Fabrice Lombardi
Northeastern U, US

Testing of Analog, Mixed-
Signal, RF and Heterogeneous
Circuits and Systems
Achrit Chatterjee
Georgia Inst. of Technology, US
Salvador Mir
UMT, FR

Statistical, Physical, Defect-
Based Testing and Test of
Regular Structures
Bob Atkin
ARM, US
Antonio Rubino
U P Catalunia, ES

Real-Time Systems
Gerhard Staller
U of Karlsruhe, DE
Sanjay Barsh
U of North Carolina, US

Compliance, architectures, and
software synthesis for
embedded systems
Hans van Senneman
ACE, NL
Nigel Topham
U of Edinburgh, UK

Model-based Design for
Embedded Systems
Jens Sattelberger
Vanderbilt U, US
Peter Mockenman
The MathWorks, US

Middleware and Hardware-
dependent software for
embedded systems
Sjir van Loo
Philips, NL
Harrie de Groot
European Microsoft Innovation
Centre, DE

System Design Records
Pieter van der Wolf
NXP Research, NL

System and Industrial Test
Rainer Dorsch
SVH Deutschland Entwicklung, DE
Erik Larsson
Linkoping U, SE

Design for Test and BIST
Splitter Heildbrand
Paderborn U, DE
Alfredo Benno
Politecnico di Torino, IT

Testing, Simulation and
Diagnoses
Matteo Succo-Navarra
Politecnico di Torino, IT
Bernd Becker
Purdue U, DE

On-Line Testing, Fault
Tolerance, and Reliability
Cecilia Metro
Bologna U, IT
Fabrice Lombardi
Northeastern U, US

Testing of Analog, Mixed-
Signal, RF and Heterogeneous
Circuits and Systems
Achrit Chatterjee
Georgia Inst. of Technology, US
Salvador Mir
UMT, FR

Statistical, Physical, Defect-
Based Testing and Test of
Regular Structures
Bob Atkin
ARM, US
Antonio Rubino
U P Catalunia, ES

Real-Time Systems
Gerhard Staller
U of Karlsruhe, DE
Sanjay Barsh
U of North Carolina, US

Compliance, architectures, and
software synthesis for
embedded systems
Hans van Senneman
ACE, NL
Nigel Topham
U of Edinburgh, UK

Model-based Design for
Embedded Systems
Jens Sattelberger
Vanderbilt U, US
Peter Mockenman
The MathWorks, US

Middleware and Hardware-
dependent software for
embedded systems
Sjir van Loo
Philips, NL
Harrie de Groot
European Microsoft Innovation
Centre, DE

System Design Records
Pieter van der Wolf
NXP Research, NL

System and Industrial Test
Rainer Dorsch
SVH Deutschland Entwicklung, DE
Erik Larsson
Linkoping U, SE
<table>
<thead>
<tr>
<th>Topic</th>
<th>Chair</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Level Specification & Modelling</td>
<td>Satnam Singh</td>
<td>Microsoft</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>Ian Oliver</td>
<td>Nokia</td>
<td></td>
</tr>
<tr>
<td>System Design Methods & Case Studies</td>
<td>Donatella Sciuto</td>
<td>Politecnico di Milano</td>
<td>IT</td>
</tr>
<tr>
<td></td>
<td>Luciano Lavagno</td>
<td>Cadence</td>
<td>US</td>
</tr>
<tr>
<td>System Synthesis and Optimisation</td>
<td>Jurgen Tuch</td>
<td>U of Erlangen</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td>Paul Pop</td>
<td>DFKU</td>
<td>DK</td>
</tr>
<tr>
<td>Simulation and Validation</td>
<td>Marco Abate</td>
<td>U of Montana</td>
<td>CA</td>
</tr>
<tr>
<td></td>
<td>Luciano Lavagno</td>
<td>Cadence</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>Fabrizio Ferrandi</td>
<td>Politecnico di Milano</td>
<td>IT</td>
</tr>
<tr>
<td></td>
<td>Ryan Kastner</td>
<td>UC Santa Barbara</td>
<td>US</td>
</tr>
<tr>
<td>Synthesis for Deep-Submicron Circuits</td>
<td>Tiziana Villa</td>
<td>Paderborn</td>
<td>IT</td>
</tr>
<tr>
<td></td>
<td>Jordi Cortesadillo</td>
<td>U Politecnica Catalunya</td>
<td>ES</td>
</tr>
<tr>
<td>Physical Design and Verification</td>
<td>Andrew Kuhlmann</td>
<td>Kaiserslauter</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td>Frank Johannes</td>
<td>TU Munich</td>
<td>DE</td>
</tr>
<tr>
<td>Analogue & Mixed Systems</td>
<td>Angel Rodriguez-Vazquez</td>
<td>U of Seville</td>
<td>ES</td>
</tr>
<tr>
<td></td>
<td>Manfred Glumen</td>
<td>TU Braunschweig</td>
<td>DE</td>
</tr>
<tr>
<td>Digital Interconnect, EMC and Packaging</td>
<td>Peter Feldmann</td>
<td>IBM</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td>Luca Daniel</td>
<td>IBM</td>
<td>DE</td>
</tr>
<tr>
<td>Media and Signal Processing</td>
<td>Marc Hoffmann</td>
<td>NONVEM</td>
<td>NL</td>
</tr>
<tr>
<td></td>
<td>Svenfriese</td>
<td>Deutsche Electricien, DE</td>
<td>DE</td>
</tr>
<tr>
<td>Wireless Communication and Networking</td>
<td>Cyprian Grossmann</td>
<td>Kema</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td>Jeroen Vliegen</td>
<td>Texas Instruments</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>Luca Fancetti</td>
<td>Bosch</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td>Annette Ruttler</td>
<td>Bosch</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td>Steven and Security Systems</td>
<td>Marcella Capoia</td>
<td>NL</td>
</tr>
<tr>
<td></td>
<td>Frenkoolaw</td>
<td>NonVEM</td>
<td>NL</td>
</tr>
<tr>
<td></td>
<td>Randal Parcell</td>
<td>SET / Telecom Paris, ENLIS</td>
<td>FR</td>
</tr>
<tr>
<td></td>
<td>Philippa Hanet</td>
<td>SET / Telecom Paris, ENLIS</td>
<td>FR</td>
</tr>
<tr>
<td>Testing and Instrumentation</td>
<td>Filippo Micchi</td>
<td>U of Roma</td>
<td>IT</td>
</tr>
<tr>
<td></td>
<td>Bernd Becker</td>
<td>University of Arizona</td>
<td>US</td>
</tr>
<tr>
<td>Testing of Analog, Mixed-Signal, RF and Heterogeneous Circuits and Systems</td>
<td>Christel Markov</td>
<td>University of Lille, France</td>
<td>FR</td>
</tr>
<tr>
<td>Automotive</td>
<td>Bob Atkin</td>
<td>ARK</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>Antonio Ribone</td>
<td>U of Cambridge</td>
<td>CA</td>
</tr>
<tr>
<td>Real-Time Systems</td>
<td>Gerhard Faber</td>
<td>U of Kaiserslauter</td>
<td>DE</td>
</tr>
<tr>
<td></td>
<td>Sanjay Barush</td>
<td>U of North Carolina</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>Compliers, architectures, and software synthesis for embedded systems</td>
<td>Hans van Someren</td>
<td>NL</td>
</tr>
<tr>
<td></td>
<td>Nigel Topham</td>
<td>U of Edinburgh</td>
<td>UK</td>
</tr>
<tr>
<td>Model-Based Design for Embedded Systems</td>
<td>James Sajithappilly</td>
<td>Verdeckel</td>
<td>US</td>
</tr>
<tr>
<td></td>
<td>Peter Robinson</td>
<td>The Madlarks</td>
<td>US</td>
</tr>
<tr>
<td>Middleware and Hardware-Dependent Software for Embedded Systems</td>
<td>Sjir van Loo</td>
<td>Philips</td>
<td>NL</td>
</tr>
<tr>
<td></td>
<td>Harmke de Groot</td>
<td>European Microsoft Innovation Centre</td>
<td>DE</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Country</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Anteneh Abbo, NXP, NL</td>
<td></td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>El Mostapha Abouhamid, University of Montreal, CA</td>
<td></td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>Jacob Abraham, University of Texas at Austin, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Antonio J. Acosta, University of Seville/IMSE, ES</td>
<td></td>
<td>ES</td>
<td></td>
</tr>
<tr>
<td>Allon Adir, IBM Haifa Labs, IL</td>
<td></td>
<td>IL</td>
<td></td>
</tr>
<tr>
<td>Rob Aitken, ARM, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Zaid Al- Ars, TU Delft, NL</td>
<td></td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>James Aldis, Texas Instruments, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Bashir M. Al-Hashimi, University of Southampton, UK</td>
<td></td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>Amara Amara, ISEP, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Giulio Antonini, University of L'Aquila, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>David Atienza, Complutense University of Madrid/DACYA, ES</td>
<td></td>
<td>ES</td>
<td></td>
</tr>
<tr>
<td>Todd Austin, University of Michigan, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Florence Azais, LIRMM, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Louis Baguena, Alcatel Alenia Space, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Iris Bahar, Brown University, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Felice Balarin, Cadence, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Sanjoy Barua, University of North Carolina, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Giovanni Basso, University of Pisa, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Twan Basten, TU Eindhoven, NL</td>
<td></td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Murat Becer, CLK Design Automation</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Bernd Becker, Albert-Ludwigs-University, Freiburg, DE</td>
<td></td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>Juergen Becker, University of Karlsruhe (TH), DE</td>
<td></td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>Marc Belleville, CEA LETI, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Giovanni Beltrame, Politecnico di Milano, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Luca Benini, DEIS/University of Bologna, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Alfredo Benso, Politecnico di Torino, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Reinaldo Bergamaschi, IBM T J Watson</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Research Center, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Michel Berkelaar, Magna, NL</td>
<td></td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Amine Bermak, Hong Kong Univ. of Science & Technology, HK</td>
<td></td>
<td>HK</td>
<td></td>
</tr>
<tr>
<td>David Bernstein, IBM Haifa Labs, IL</td>
<td></td>
<td>IL</td>
<td></td>
</tr>
<tr>
<td>Valeria Bertacco, University of Michigan, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Koen Bertels, TU Delft, NL</td>
<td></td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Davide Bertozzi, DEIS/University of Bologna, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Swarup Bhunia, Case Western Reserve University, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Armin Biere, Johannes Kepler University Linz, AT</td>
<td></td>
<td>AT</td>
<td></td>
</tr>
<tr>
<td>Shawn Blanton, Carnegie Mellon University, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Roderick Bloem, TU Graz, AT</td>
<td></td>
<td>AT</td>
<td></td>
</tr>
<tr>
<td>Eduardo Boemo, Universidad Autonoma de Madrid, ES</td>
<td></td>
<td>ES</td>
<td></td>
</tr>
<tr>
<td>Alessandro Bogliolo, University of Urbino, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Guy Bois, Ecole Polytechnique de Montreal, CA</td>
<td></td>
<td>CA</td>
<td></td>
</tr>
<tr>
<td>Cristiana Bolchini, Politecnico di Milano, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Dominique Borronne, TIMA Laboratory, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Christos-Savvas Bouganis, Imperial College London, UK</td>
<td></td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>Ian Broster, Rapita Systems Ltd</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Joe Buck, Synopsys, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Philippe Butel, MBDA, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Giorgio Buttazzo, Scuola Superiore S. Anna, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Gianpiero Cabodi, Politecnico di Torino, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Flavio Canavero, Politecnico di Torino, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Bernard Candaele, Thales Communications, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Andreas Cangellaris, University of Illinois, Urbana-Champaign, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Jean-Lous Carbonero, STMicroelectronics, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Luca Carloni, UC Berkeley, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Luigi Carro, UFRGS, BR</td>
<td></td>
<td>BR</td>
<td></td>
</tr>
<tr>
<td>Sergio Casciato, IFC-CNR, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Krishnendu Chakrabarty, Duke University, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Samarjit Chakraborty, National University of Singapore, SG</td>
<td></td>
<td>SG</td>
<td></td>
</tr>
<tr>
<td>Yao-Wen Chang, National Taiwan University, ROC</td>
<td></td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>Abhijit Chatterjee Georgia Institute of Technology, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Peter Cheung, Imperial College London, UK</td>
<td></td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>Kiyoung Choi, Seoul National University, KR</td>
<td></td>
<td>KR</td>
<td></td>
</tr>
<tr>
<td>Alessandro Cimatti, ITC-irst, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Koen Lindstroom Claessen, TU Chalmers, SE</td>
<td></td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>Pierre J M Cluitmans, TU Eindhoven, NL</td>
<td></td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Osvaldo Colavin, STMicroelectronics, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>George Constantinides, Imperial College London, UK</td>
<td></td>
<td>UK</td>
<td></td>
</tr>
<tr>
<td>Marcello Coppola, STMicroelectronics, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Jordi Cortadella, UP Catalunya, ES</td>
<td></td>
<td>ES</td>
<td></td>
</tr>
<tr>
<td>Sorin Cotofana, TU Delft, NL</td>
<td></td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Al Crouch, Inovys, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Paolo D'Abramo, Austriamicrosystems, AT</td>
<td></td>
<td>AT</td>
<td></td>
</tr>
<tr>
<td>Gabriele D'Antona, Politecnico di Milano, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Antonio Manuel Da Cruz Serra, Instituto Superior Tecnico, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Jean-Luc Danger, GET-ENST / CNRS-LTCI, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Luca Daniel, Massachusetts Institute of Technology, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Alain Darve, ENS Lyon, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Koen De Bosschere, University of Ghent, BE</td>
<td></td>
<td>BE</td>
<td></td>
</tr>
<tr>
<td>Harmke De Groot, European Microsoft Innovation Centre, NL</td>
<td></td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Marco De Marinis, SensorDynamics AG, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Giovanni De Micheli, EPFL, Lausanne, CH</td>
<td></td>
<td>CH</td>
<td></td>
</tr>
<tr>
<td>Alex Dean, North Carolina State University, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Jean-Dominique Decotignie, CSEM, CH</td>
<td></td>
<td>CH</td>
<td></td>
</tr>
<tr>
<td>Wim Dehaene, KU Leuven, BE</td>
<td></td>
<td>BE</td>
<td></td>
</tr>
<tr>
<td>Andre Dehon, Caltech, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Manuel Delgado-Restituto, Inst. of Microelectronics of Seville/CNM-CSIC, ES</td>
<td></td>
<td>ES</td>
<td></td>
</tr>
<tr>
<td>Laurent Demeure, CISSOID, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Alper Demir, Koç University</td>
<td></td>
<td>TR</td>
<td></td>
</tr>
<tr>
<td>Olivier Deprez, Texas Instruments, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Mario Diaz-Nava, STMicroelectronics, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>John Dielissen, NXP, NL</td>
<td></td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Eva Dokladalova, CEA, FR</td>
<td></td>
<td>FR</td>
<td></td>
</tr>
<tr>
<td>Rainer Dorsch, IBM Boeblingen, DE</td>
<td></td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>Rolf Drechsler, University of Bremen, DE</td>
<td></td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>Christian Drewes, Infineon Technologies, DE</td>
<td></td>
<td>DE</td>
<td></td>
</tr>
<tr>
<td>Elena Dubrova, Royal Institute of Technology, SE</td>
<td></td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>Surrendra, Dudani, Synopsys, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Nikol Dutt, UC Irvine, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Carl Ebeling, University of Washington, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Petru Eles, Linkoping University, SE</td>
<td></td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>Abe Elfdel, IBM T J Watson Research Center, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Peeter Ellerbee, TU Tallinn, EE</td>
<td></td>
<td>EE</td>
<td></td>
</tr>
<tr>
<td>Francesco Faita, IFC-CNR, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
<tr>
<td>Farzan Fallah, Fujitsu Labs of America, US</td>
<td></td>
<td>US</td>
<td></td>
</tr>
<tr>
<td>Luca Fanucci, University of Pisa, IT</td>
<td></td>
<td>IT</td>
<td></td>
</tr>
</tbody>
</table>
Reviewers

The DATE Executive Committee gratefully acknowledges the assistance of the following persons in the review process.

Tariq Abdullah Christian Bernard Huang-Yu Chen
Javed Absar Lava Bhargava Tai-Chen Chen
Andrea Acquaviva Angelos Bilas Tung-Chieh Chen
Astrit Ademaj Eyal Bin Yar-Shu Chen
Manvi Agarwal Labros Bisdounis Allen Cheng
Giovanni Agosta Partha Biswas Ray Cheung
Jason Agron Per Bjesse Yu-Tsun Chien
Mahmood Ahmadi Massimo Bocchi Eli Chiprout
Yongjin Ahn Nicola Bombieri Minsik Cho
S Sermet Akbay Bradley Bond Hyun Choi
Benny Akesson Unmesh D Bordoloi Jude Angelo Choi
Marcus Alanen Andrew Borg Philip Chong
Christoph Albrecht Demid Borodin Yee Jem Chong
Fernando Alegre Fraidy Bouesse Shih-Chun Chou
Sobeeh Almukhaizim Christos Bouganis Szu-Jui Chou
Kiarash Amiri Thomas Brandtner Kun Y Chung
Madhava Andagunda Philip Brisk Marcelo Cintra
Zaher Andraus Alisson Britto Calin Ciordas
David Andrews Roberto Brutomesso Valentina Ciriani
Su-Shin Ang Paul A M Bune Jonathan Clarke
Josef Angermeier Artur Burchard Rolando Cledat
Lorena Anghel Saif Ali Butt Fabien Clermidy
Federico Angiolini Adam Cabe Martijn Coenen
Karl-Erik Arzen Yici Cai Antoine Colin
Thomas J Ashby Humberto Calderon Rebecca Collins
Kubilay Atasu Mauro Caporuscio Kypros Constantinides
Jose Luis Ayala Rafael Castro-Lopez MarinoCorrado
Dimitris Bakalis Michele Casula Olivier Couvreur
Christos Baloukas Stefano Michele Casula Silviu Craciunas
David Baneres Franjo Cecelja Liliana Cucu
Nilanjan Banerjee Herwin Chan Miro Cupak
Sudarshan Banerjee Jeremy Chan Crescenzio D'Alessandro
Omer Bar-ilan Kai-Hui Chang Klaus Danne
Shubhankar Basu Yuan-Hao Chang Angan Das
Luis Anghel Batzen Z Chang Animesh Datta
Jason Baumgartner Panayiotis Charalambous Erwin de Kock
Matthias Beck Francois Charot Eduardo de la Torre
Jens Becker Satrajit Chatterjee Pepijn de Langen
Edith Beigne Ricardo Chaves Serge De Paoli
Richard Bennett Guoqing Chen Kristof Denolf
<table>
<thead>
<tr>
<th>Rajarajan Senguttuvan</th>
<th>Martin Thiede</th>
<th>Huiying Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohad Shacham</td>
<td>Alexander Thomas</td>
<td>Yana Yankova</td>
</tr>
<tr>
<td>Asadollah Shahbahrami</td>
<td>David Thomas</td>
<td>Junhee Yoo</td>
</tr>
<tr>
<td>Shideh Shahidi</td>
<td>Marc Tiebout</td>
<td>Kun Zhang</td>
</tr>
<tr>
<td>Seng Lin Shee</td>
<td>Daniel Tille</td>
<td>Yan Zhang</td>
</tr>
<tr>
<td>Feng Shi</td>
<td>Yoshinori Tomita</td>
<td>Qiang Zhou</td>
</tr>
<tr>
<td>Dongwan Shin</td>
<td>Marco Tonarelli</td>
<td>Qi Zhu</td>
</tr>
<tr>
<td>Doochul Shin</td>
<td>Spiros Tragoudas</td>
<td>Avi Ziv</td>
</tr>
<tr>
<td>Kirill Shokhet</td>
<td>Yiorgos Tsiatouhas</td>
<td></td>
</tr>
<tr>
<td>Smitha Shyam</td>
<td>Kieron Turkington</td>
<td></td>
</tr>
<tr>
<td>Gilles Sicard</td>
<td>Inigo Ugarte</td>
<td></td>
</tr>
<tr>
<td>Dirk Siemer</td>
<td>Alexandre Valention</td>
<td></td>
</tr>
<tr>
<td>Kamana Sigdel</td>
<td>Gabriel Valiente</td>
<td></td>
</tr>
<tr>
<td>David A Siguenza-Tortosa</td>
<td>Brian Van Essen</td>
<td></td>
</tr>
<tr>
<td>Maryline Silly-Cheto</td>
<td>Bart Vanhoof</td>
<td></td>
</tr>
<tr>
<td>B V N Silpa</td>
<td>Dmitri Vasiliev</td>
<td></td>
</tr>
<tr>
<td>Kostas Siozios</td>
<td>Nikolaos Vassiliadis</td>
<td></td>
</tr>
<tr>
<td>Wichian Sirisaengtaksin</td>
<td>Dimitry Vasilyiev</td>
<td></td>
</tr>
<tr>
<td>Prasssanna Sithambaram</td>
<td>Tatyana Veksler</td>
<td></td>
</tr>
<tr>
<td>Alastair Smith</td>
<td>Jos Verhaegh</td>
<td></td>
</tr>
<tr>
<td>Oliver Soffke</td>
<td>Vijaykumar Vidyasagar</td>
<td></td>
</tr>
<tr>
<td>Hyunjik Song</td>
<td>Jason Villareal</td>
<td></td>
</tr>
<tr>
<td>Kin Sou</td>
<td>Arnaud Virazel</td>
<td></td>
</tr>
<tr>
<td>Ioannis Sourdis</td>
<td>Seppo Virtanen</td>
<td></td>
</tr>
<tr>
<td>Roberto Speicys</td>
<td>Arseni Vitkovski</td>
<td></td>
</tr>
<tr>
<td>Peter Spindler</td>
<td>Francesco Vitullo</td>
<td></td>
</tr>
<tr>
<td>Jaswanth Sreeram</td>
<td>Pascal Vivet</td>
<td></td>
</tr>
<tr>
<td>Richard Stahl</td>
<td>Ilya Wagner</td>
<td></td>
</tr>
<tr>
<td>Phillip Stanley-Marbell</td>
<td>Klaus Waldschmidt</td>
<td></td>
</tr>
<tr>
<td>Robert Staudinger</td>
<td>Chao Wang</td>
<td></td>
</tr>
<tr>
<td>Radu Stefan</td>
<td>Hua Wang</td>
<td></td>
</tr>
<tr>
<td>Martin Strasser</td>
<td>Xiaoying Wang</td>
<td></td>
</tr>
<tr>
<td>Paul Stravers</td>
<td>Ingomar Wenzel</td>
<td></td>
</tr>
<tr>
<td>Thilo Streichert</td>
<td>Stephan Wilhelm</td>
<td></td>
</tr>
<tr>
<td>Martin Streubuehr</td>
<td>Robert Wille</td>
<td></td>
</tr>
<tr>
<td>Sander Stuijk</td>
<td>Frank Wolff</td>
<td></td>
</tr>
<tr>
<td>Dongkwan Su</td>
<td>Frederic Worm</td>
<td></td>
</tr>
<tr>
<td>Pei-Lun Suci</td>
<td>Maryse Wouters</td>
<td></td>
</tr>
<tr>
<td>Sriraman Tallam</td>
<td>Cheng-Wen Wu</td>
<td></td>
</tr>
<tr>
<td>Kalle Tammemae</td>
<td>Roel Wuyts</td>
<td></td>
</tr>
<tr>
<td>Andrei Tchaltsev</td>
<td>Polychronis Xekalakis</td>
<td></td>
</tr>
<tr>
<td>Wilfried Tenten</td>
<td>Fei Xia</td>
<td></td>
</tr>
<tr>
<td>Andrei Terechko</td>
<td>Jianghao Xu</td>
<td></td>
</tr>
<tr>
<td>Bart Theelen</td>
<td>Tatsuya Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Theocharis Theocharides</td>
<td>Chuan-Yue Yang</td>
<td></td>
</tr>
<tr>
<td>George Theodoridis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FOREWORD

Dear Colleague,

Welcome to the DATE 07 Conference Proceedings. DATE combines the world’s leading electronic systems design conference and Europe’s leading international exhibition for electronic design, automation and test, from system level hardware and software implementation right down to integrated circuit design. The DATE 07 event features a technical program with 78 sessions covering the latest in system design and embedded software, IC design methodologies and EDA tool developments, together with an exhibition with the leading EDA, silicon and IP providers showing their new products and services. Challenges that you all face or soon will face in your daily practice are the increasing design complexity of highly integrated systems, the introduction of reconfigurability and embedded software, and the control of power, reliability and variability in nanometer IC designs. All these issues will be addressed in this year’s DATE event.

At its tenth anniversary, DATE 07 has again reached a record number (933) of submissions, compared to previous years and compared to other EDA conferences worldwide. With submissions coming from all five continents and almost fifty countries, DATE has truly become an international conference. DATE is now the world’s premier event in electronic system design. The submissions have been reviewed by the more than 600 members of the Technical Programme Committee. After a thorough review and selection process (with an average of 4.6 reviews per paper), finally 208 papers were selected for presentation at the conference. In addition, 57 papers were selected for Interactive Presentations, which highlight quality work in progress. Together with the invited special sessions (panels, embedded tutorials and hot topic sessions) this has resulted in a high-quality technical programme with 78 sessions covering the latest in system design and embedded software, IC design methodologies and EDA tool developments. One of the main strengths of the conference is a wide but high-quality coverage of design, design automation and test topics, from the system level (including PCB and FPGA) to the integrated circuit level. In addition, for the third year a special embedded software track is offered to allow for the increasing importance of software in embedded systems. Compared with previous years, submissions in design, test and embedded software have grown significantly, showing a clear trend toward a holistic view and a comprehensive system design focus. This year, papers are organized in 4 major areas:

- D – Design Methods, Tools, Algorithms and Languages
- A – Application’s Design
- T – Test Methods, Tools and Innovative Experiences
- E – Embedded Software

The DATE week opens on Monday April 16, 2006 at the Acropolis, Nice, France, with the offer of pre-conference tutorials. This year the five full-day tutorials cover topics of great interest to industrial designers. The first tutorial reviews the current state-of-the-art in NoC research and elaborates the main challenges for research and industrial applications. The second one provides detailed knowledge about the development of reconfigurable embedded systems from architecture and basic mechanisms up to high-level tools for system integration and application exploitation. The third tutorial discusses interactions between layout and manufacturability for devices and interconnects. Toward the system level, the tutorial discusses how on-die and on-wafer test and calibration structures can accelerate yield learning and adaptivity. The fourth tutorial introduces state-of-the-art technologies based on Simulink/Matlab for the design of multiprocessors on chip. The fifth tutorial starts by motivating the needs for and opportunities of Software Defined Radios, then discusses the trends and most promising approaches to implement reconfigurable digital baseband processing as well as reconfigurable RF front-ends and finally concludes by showing how a cross-layer optimization methodology can be used to translate the flexibility and energy-scalability into low-energy operation. Furthermore, six half-day tutorials are also proposed, three in the morning and three in the afternoon, covering aspects related to system-level design, test, analog and mixed signal design, packaging and bio-electronics.
The main conference opens on Tuesday April 17, 2007 with two very interesting keynote speeches. Tohru Furuyama, General Manager at Toshiba, will talk about the challenges of digital consumer and mobile SoCs, and Alan Naumann, CEO of CoWare, will challenge Darwin’s law by questioning whether design evolution stopped at RTL level. On the same day, the completely revamped Executive Track offers a series of panels with executives discussing their design needs: the fables companies, the consumer electronics market and the embedded automotive system designers.

On Wednesday April 18, 2007 a special full-day track is devoted to Ubiquitous Communication and Computation. Ubiquitous computing and communications bring the era where computing is part of everyday practices and natural environments at home, at work and in public spaces. By embedding computing resources and communicating seamlessly with them, we can hide the technology and provide services that are natural for humans to use. What was standard for a desktop computer technology in the early 80’s is available for numerous embedded devices that are used in the devices, rooms and buildings. Connecting anything, anywhere all the time opens possibilities for numerous new services and solutions. The many options and opportunities set challenges for the design, interoperability and verification for these systems. The design process is one key success factor in creating these heterogeneous systems. To manage the high design complexity and to manage the high variety of the systems and technologies the design and test tools have to support the abstraction of heterogeneous implementations, distributed specification, interoperability testing and test activities in general. Also, the design of efficient communications solutions, co-design on several abstraction levels, and system architectures as well as the development and integration of standards are major success factors. This special day focuses on some key technical challenges and potential uses of the ubicomp concepts. The sessions focus specifically on the applications, system architecture, communication and interoperability, security issues, power supply and power management issues.

New this year and to emphasize that DATE is the major event for the designers, DATE07 features two invited sessions where Europe’s famous consumer industry presents their best designs and design practices.

On Thursday April 19, 2007 a second special full-day track focuses on Space and Aeronautics applications. Space and Aeronautics have been innovative and technology pioneering industries in safety critical embedded systems for a long time, transferring state of the art concepts and technologies to other industries and setting standards in systems and software engineering. Recently, the fast growth of new high tech industries with mass markets has opened more and more opportunities for the space and aeronautics industries to transfer back a broad range of generic and high performance technologies, particularly in information and communication. Each transfer path has its own challenges, linked to different characteristics of each industry. The special day is illustrating these transfer challenges, and analyses what makes a difference in terms of:
- the value expected from the technology
- the nature and severity of the requirement set for the technology
- the role of the technology in the product context, being its hierarchy or its life-cycle
- the way technology is managed in the industrial context, being the development process or the 10
- internal and supply chain organisation

The special day is articulated around a keynote address, given by an executive representative of the European space and aeronautics industry. It introduces the strategic stakes and the international competitive landscape, for further development and understanding of the sizing dimensions of technology transfer all along the special day.

Seven special sessions complement the main conference program, with embedded tutorials, hot topics and panels on the most interesting issues today in electronic design. A first session looks at microprocessor architectures in the era of terascale integration. This raises the question addressed in a second session whether testing systems with multiple billions of transistors will be feasible. The increasing NRE cost of deep sub-micron silicon designs leads to the increased use of flexible application domain specific systems. This is discussed in two
sessions, one looking at heterogeneous systems on chip and systems in package, the other covering the future of customizable processors. The evolution to nano-scale semiconductor process technologies ripples through into the design area. Two panels discuss its influence on mixed signal and digital design, respectively. A last special session sketches the pivotal place EDA takes in the European Technology Platforms Artemis and Eniac, which structure the European government funded research in enabling hardware and software technologies for embedded systems.

Friday April 20 is the day for the DATE workshops. DATE offers the possibility to attend workshops as a complement to the regular conference. Seven workshops will run in parallel, covering emerging and important design topics including UML for SoCs, software and compilers for embedded systems, secure embedded implementations, embedded system design, diagnostic services for networks-on-chip, FPGAs and reconfigurable systems, and robust computing with nano-scale devices. Each workshop is structured into presentations from highly distinguished academic and industrial researchers.

Finally, throughout the conference days the DATE Exhibition is open to designers. The more than hundred exhibitors include the leading EDA, silicon, FPGA and IP providers showing their new products and services. This year, we welcome a record number of start-up companies, clearly showing the healthiness of the community. In addition, there is an Exhibition Theatre featuring talks from engineering managers of the leading electronic manufacturers on first-hand design experiences of commercial EDA tools. This year, the PCB symposium will also take place on Thursday afternoon as part of the exhibition theatre programme. The exhibition program offers also designers’ solutions workshops, which are short training sessions organized by vendors on specific topics such as closing the gap between design and test teams, transaction level modeling, IP verification, combining SystemC with SystemVerilog and DSP implementation techniques for FPGAs. The DATE week will also be a possibility for students and universities to show their research works, through the PhD Forum on Monday and the University Booth in the exhibition where hardware and software demonstrations will be shown by different universities on a rotation schedule. New this year is that the university booth is also open to demonstrate the pre-commercial results obtained in government funded projects.

The DATE 07 event’s program will be particularly attractive to industrial designers, both at IC, FPGA and embedded system level, to researchers and academics as well as to design managers, and an increasing attendance is anticipated.

We therefore invite you to take full advantage of the many opportunities offered to you by DATE 07, to improve and extend your knowledge and/or business in electronic system’s design and for socializing with peers and colleagues. We hope that you will fully enjoy this 10th anniversary of DATE.
Each year the Design, Automation and Test in Europe Conference presents awards to the authors of the most outstanding papers of the previous year's conference. The selection is performed by an award committee, based on the results of the reviewing process, the quality of the final paper and the quality of the presentation.

The paper selected as the most outstanding in the field of Design Methodologies is:

Optimizing Sequential Cycles through Shannon Decomposition and Retiming

by S Soviani, O Tardieu and S A Edward, Columbia University, USA

The paper selected as the most outstanding in the field of Test is:

An Effective Technique for Minimizing the Cost of Processor Software-Based Diagnosis in SoCs

by P Bernardi, E Sanchez, M Schillaci, G Squillero and M Sonza Reorda, Politecnico di Torino, Italy

The paper selected as the most outstanding Interactive Presentation is:

Dynamically Reconfigurable Packet-Switched Network-on-Chip

by T Pionteck, C Albrecht and R Koch, Luebeck University, Germany

Congratulations to the winners!
Tutorials

A NoC at the Age of Six: Advanced Topics, Current Challenges and Trends
Organiser: Axel Jantsch, Royal Institute of Technology, SE
Speakers: Axel Jantsch, Royal Institute of Technology, SE
Luca Benini, DEIS – Bologna U, IT
Timothy M Pinkston, National Science Foundation and USC, US
Kees Goossens, NXP Semiconductors, NL
Pieter van der Wolf, NXP Semiconductors, NL
Alain Fanet, Arteris, FR
Marcello Coppola, STMicroelectronics, FR

The tutorial briefly reviews the current state of the art in NoC research and what has been accomplished during the last six years. The main challenges for research and industrial applications are elaborated.
Memory organisation: The pressing need to integrate the communication architecture with the memory architecture is analysed in the context of multimedia applications.
Design for performance: The tutorial presents a throughput-driven NoC design and evaluation approach that enables the designer to reason about various network design trade-offs.
Quality of Service: For many applications not only average but also worst case performance matters. Concepts and techniques for providing guaranteed bandwidth and latency.
Middleware: The software environment, middleware services and abstractions, required to efficiently support NoC-based platforms will be discussed in detail.
Finally, two industrial NoC based platforms, Arteris and Spidergon, are discussed and analysed.
The tutorial targets researchers, engineers and teachers that want to gain a thorough understanding of the current state of the art of NoC research, of the main challenges and the near future possibilities for industrial exploitation of this technology.

B Reconfigurable Computing: Architectures, Tools and Applications
Organisers: Juergen Becker and Michael Huebner, Karlsruhe U, DE
Speakers: Juergen Becker, Karlsruhe U, DE
Michael Huebner, Karlsruhe U, DE
Andreas Herkersdord, TU Munich, DE
Walter Stechele, TU Munich, DE
Adam Donlin, Xilinx, US

Recent methods and reconfigurable architectures provide an increased design space by exploiting the dynamic and partial reconfiguration of hardware. The multi-adaptivity of this heterogeneous reconfigurable architectures reaches from adaptation to performance, to power consumption in relation of energy budgets, and to real-time adaptation for on-demand user requirements. The tutorial presents major issues in multi-adaptive system design:
- Hardware and techniques providing multi adaptivity during operation.
- Abstraction levels for operating dynamically reconfigurable architectures, incl. system level tool support.
- Efficient application exploitation of provided architectures and methods.

A detailed knowledge about the development of reconfigurable embedded systems will be provided by presenting a bottom-up approach from architecture and basic mechanisms up to high-level tools for system integration incl. application exploitation. The tutorial is addressed to hardware and system engineers as well as to researchers.

C DFM Challenges and Practical Solutions in 65nm and 45nm
Organiser: Andrew B Kahng, UC San Diego, US
Speakers: N S Nagaraj, Texas Instruments, US
Jean-Pierre Schoellkopf, STMicroelectronics, FR
Mike Smayling, Applied Materials, US
Ban P Wong, Chartered Semiconductor, US
Andrew B Kahng, UC San Diego, US
In the 65nm and 45nm nodes, DFM tools and methodologies must solve growing challenges of systematic and random manufacturing variations, leakage power, reliability, and random defectivity - while remaining consistent with productivity and flow requirements. This tutorial will first discuss interactions between layout and manufacturability for devices and interconnects, including circuit impacts of both intrinsic and transient variability. Special circuits (analogue, SRAM), layout techniques (layout regularity, restricted design rules, new router capabilities, high-yielding cell libraries), modelling (stress and strain engineering), and IP development techniques (integration in arbitrary SoC density contexts) will be discussed.

Toward the system level, the tutorial will discuss how on-die and on-wafer test and calibration structures can accelerate yield learning and adaptivity, as well as the process abstractions used by design optimisations. Also treated will be the topic of IP qualification, portability and integratability in the face of fab-specific manufacturing challenges. Finally, the tutorial will review current and emerging DFM tools and methodologies (e.g., “yield score” metrics, parametric yield optimisations, and design for reliability), along with concrete opportunities for high-ROI DFM deployment.

The tutorial is targeted to IC and SOC designers and product engineers, IP core providers and integrators, R&D engineers in EDA and mask/equipment supplier industries, foundry interface engineers, and managers who are trying to solve parametric and defect yield challenges, and who would like to learn how DFM techniques can help.

D Simulink for Design and Programming Multiprocessor SoC
Organiser: Ahmed Jerraya, TIMA Laboratory, FR
 Pieter Mosterman, The MathWorks, US
 Janos Sztpanovits, Vanderbilt U, US
 Edward Power, SELEX Sensors and Airborne Systems, UK
 Tom Pitchforth, SELEX Sensors and Airborne Systems, UK
 Ahmed Jerraya, TIMA Laboratory, FR
 Gabriela Nicolescu, Ecole Polytechnique de Montreal, CA

Multi-processor SoC (MPSoC) are required for many emerging applications such as multimedia, telecommunication, and even consumer and automotive. Simulink/Matlab is emerging as the solid candidate for MPSoC design and programming. This tutorial introduces state-of-the art technologies based on Simulink/Matlab for the design of MPSoC:

- Prof. Wolf will give a brief introduction for designing and programming MPSoC.
- Dr Mosterman will talk about using Matlab/Simulink for embedded system design.
- Prof. Sztpanovits will talk about applying model-based techniques to refine Simulink models.
- Edward Power and Tom Pitchforth will detail a case study using Model Driven Design Techniques
- Dr Jerraya will introduce an approach using Simulink to program heterogeneous MPSoC.
- Prof. Nicolescu will present the usage of Simulink for modelling and simulation of heterogeneous systems.

E Software Defined Radios: Design for Scalability and Low Energy
Organisers: Liesbet Van der Perre and Bruno Bougard, IMEC, BE
Speakers: Trevor Mudge, U of Michigan, US
 Kees Van Berkel, NXP, NL
 Gerd Vandersteen, VUB/IMEC, BE
 Bruno Bougard, IMEC, BE
 Liesbet Van der Perre, IMEC, BE

“Anything, anywhere, anytime”, still, the motto having celebrated its 10th anniversary, today ubiquitous broadband wireless communication bringing multimedia services is not yet fully available. One of the major bottlenecks is the need for low cost, low power, multi-purpose chipsets. Indeed, the variety of wireless standards is large and evolving rapidly. Multi-mode terminals will be needed to provide optimised access according to virtually all those standards.
Software Defined Radios (SDRs) turn out to be the only valid solution to enable such versatile chipset in deeper submicron technology. Low power consumption SDR architectures are a vital asset of multi-mode wireless multimedia terminals.

In this tutorial, we will first introduce and motivate the needs and opportunities for SDRs. Next, we will go deeper into the technological challenges. Energy-aware SDRs require both an energy-scalable reconfigurable digital baseband modem and a energy-scalable reconfigurable RF section. The trends and most promising approaches to implement reconfigurable digital baseband processing will be first discussed. Special focus will be set on opportunistically partitioned heterogeneous MPSOC platform, SIMD processor architecture dedicated to baseband processing and hybrid coarse-grain-array/SIMD accelerators. Next, technologies and challenges to design reconfigurable RF front-end will be discussed. We will then show how a cross-layer optimisation methodology and a multi-level adaptive control approach can be used to translate the flexibility and energy-scalability into low-energy operation. Last but not least, we will analyse the consequence of the design paradigm shift induced by SDR on the design flow and tools, also identifying missing technologies towards future generations of SDRs.

Target audience: The tutorial is targeted towards designers (system, architectures, circuits, methods and tools) with interest in integrated wireless systems.

F1 Microfluidic Lab-on-a-Chip Systems: Emerging Opportunities for EDA Researchers and Practitioners

Organiser: Krishnendu Chakrabarty, Duke U, US
Speakers: Krishnendu Chakrabarty, Duke U, US
S (Krish) Krishnamoorthy, CFD Research Corporation, US

Advances in microfluidic technology have opened up non-traditional applications for electronic circuits and systems. Miniaturised lab-on-chip systems, which combine microfabrication and microfluidics with biological/chemical sciences, can be used for DNA sequencing, immunoassays, blood chemistry, environmental monitoring, etc.

This tutorial will first provide an introduction to microfluidics, underlying physical principles, applications, and advances in design automation techniques. Attendees will learn about continuous-flow systems, where tiny quantities of samples and reagents flow through microchannels and are subjected to analysis. Component level design issues involving filling, dispensing, mixing, dispersion, separation, heating, and biochemical assays will be illustrated, and solution strategies will be assessed with the help of simulations. The next part of the tutorial will focus on “digital” microfluidics, where discrete droplets are manipulated on-chip. The “digital core” of a lab-on-a-chip system can be viewed as a programmable processor, while the continuous-flow components can be used to implement specialised tasks such as chemical separation.

This tutorial is targeted towards EDA researchers and practitioners who are interested in the emerging area of microfluidic lab-on-a-systems, and who are looking for exciting new application areas for EDA algorithms.

G1 Modelling, Analysis and Design of Bus-based SoC Communication Architectures

Organiser: Nikil Dutt, UC Irvine, US
Speakers: Nikil Dutt, UC Irvine, US
Kanishka Lahiri, NEC Laboratories America, US
Sudeep Pasricha, UC Irvine, US

On-chip communication architectures often dominate and critically affect the performance, power and cost of SoC (System-on-Chip) designs. Bus-based on-chip communication architectures that are frequently used in SoC designs today are evolving rapidly due to the combined effect of rapid changes in VLSI technology, coupled with the need to map ever more complex applications on to SoCs. This tutorial covers modelling abstractions suitable for communication-centric design, analysis techniques for estimating power, performance and reliability of different communication configurations, and the synthesis of current bus protocols and standards such as AMBA, CoreConnect and OCP-IP. We will also focus on advanced architectural concepts in bus-based communication architecture design, and present design examples from industry.
The tutorial is intended for designers, architects, managers, CAD tool developers, researchers and students interested in System-on-Chip design, platform-based design methodologies, interconnect issues at the system level and trends in on-chip communication architectures. Attendees should have a basic (undergraduate-level) knowledge of VLSI Design and SoC design flows. No specific knowledge of CAD tools or modelling languages is required for this tutorial.

H1 Scan Delay Testing of Nanometer SoCs
Organisers: Dimitris Gizopoulos, Piraeus U, GR and Kaushik Roy, Purdue U, US
Speaker: Adit D Singh, Auburn U, US

Scan based delay testing is being widely considered as a cost effective solution for detecting delay defects that are emerging to be a major problem in nanometer technologies. This tutorial presents the basics of the scan based delay test methodology, including application of launch-on-capture and launch-on-shift patterns, and timing issues associated with the scan enable control signal. We also discuss challenges in effectively applying scan delay tests, including addressing poor test coverage, multi-cycle faults, false paths, power supply noise, clock stretching etc. Recently proposed methods to enhance delay test effectiveness, including targeting small delay defects, is also be presented. Prerequisites are basic familiarity with test and DFT.

The tutorial is targeted at designers and DFT engineers of integrated circuits (ICs) and system-on-chips (SoCs), IP core providers and integrators, test engineers, researchers, and managers responsible for ensuring the tested quality and reliability of advanced semiconductor components.

This tutorial is part of the annual IEEE Computer Society TTTC Test Technology Educational Program (TTEP)

F2 Die and Package Power Delivery Analysis and Design for High-Performance and Low-Power Systems
Organiser: Eli Chiprout, Intel Strategic CAD Labs, US
Speakers: Byron Krauter, IBM Corp., US
Rajendran Panda, Freescale Semiconductor, US
Eli Chiprout, Intel Strategic CAD Labs, US

Power supply fluctuations can result in loss of performance or even system failure. This tutorial covers the underlying impact, analysis and design of a power delivery network (PDN) from the die to the package. It describes the impact of reliability, performance, and signal integrity constraints on PDN design. It covers electrical modelling approaches used on die, the tradeoffs involved and the dynamic impact of a die-wide model including interaction with the package. It includes practical modelling and analysis from an industrial point of view. Additionally, it covers recent progress in simulation-based and static PDN excitation approaches.

The tutorial is targeted at designers of power delivery constrained systems, engineers wishing to learn about power delivery issues and solutions, and CAD developers and researchers.

G2 ESL, New Models and Methods to Advance System Level Design
Organiser: Sandeep K Shukla, Virginia Tech, US
Speakers: Arvind, MIT, US
Rajesh Gupta, UC San Diego, US
Sandeep K Shukla, Virginia Tech, US

ESL can be an enabler for advancing system level design, especially for effective SoC integration. In this tutorial, we examine recent advances in models, and methods that can lead to meaningful ESL tools. Some of these are incremental, e.g., enhancements to high-level modelling languages such as SystemC. Some represent ongoing work in improving abstraction and reuse of IP blocks. We focus on innovations being pursued related to capture and use of meta-data, meta-modeling and reflection mechanisms for reuse. We discuss how these can lead to easier system
modelling. Another area we cover is the paradigm of atomic action-oriented modelling for high level concurrency control, corresponding behavioural synthesis, and trade-offs. In particular, we will cover Bluespec’s programming model for a powerful ESL methodology that relieves designers from concurrency control concerns, thereby increasing productivity.

The tutorial targets designers of integrated circuits (ICs) and system-on-chips (SoCs), IP core providers and integrators, researchers, and managers who are involved in embedded system design at the system level.

H2 Practices in Analogue, Mixed-Signal and RF Testing
Organisers: Dimitris Gizopoulos, Piraeus U, GR and Kaushik Roy, Purdue U, US
Speakers: Salem Abdennadher, Intel Corporation, US
Saghir A Shaikh, Sun Microsystems, US

This tutorial describes the existing industry ATE-, DFT- and BIST-based testing solutions for mixed-signal and RF SoCs. Firstly, it looks at the basic concepts in analogue and RF measurements (i.e. eye diagram, jitter, gain, power compression, harmonics, noise figure, phase noise, BER, etc.). Secondly, it presents several examples of production testing of wired (SERDES) and wireless transceivers, as well as high-speed IO interfaces (e.g. PCI-Express and XAUI, etc). In addition, block-DFT solutions are also discussed for PLLs, equalisers, filters, mixers, AGCs, LNAs, DACs and ADCs.

A prerequisite for this tutorial is a basic knowledge of the design and production-test flows for mixed-signal devices. The tutorial is aimed specifically at design, test and DFT engineers involved in the actual implementation of mixed-signal and wireless devices and systems. However, architects and engineering managers would also benefit considerably from this session.

This tutorial is part of the annual IEEE Computer Society TTTC Test Technology Educational Program (TTEP)
The EDAA/DATE PhD Forum offers the opportunity for PhD students to present their thesis work to a broad audience in the design automation and test community from both academia and industry. During the presentation at the DATE Conference it helps students to establish contacts when entering the job market. On the other side, representatives from industry and academia get a glance of state-of-the-art research in design automation and test.

This year we received a total of 125 submissions out of which 53 have been accepted for presentation at a dinner reception. The review process was conducted by a team of 10 internationally renowned reviewers. Our thanks go to all presenters, the PhD Forum Committee and all who were involved in conducting the review process and arranging and organizing the Forum event at DATE in Nice. We also thank the EDAA and DATE organizers and representatives for making this Forum possible.

Jörg Henkel
Chair 2007 EDAA/DATE PhD Forum

PhD Forum Committee
J. Henkel (Chair), Univ. Karlsruhe, Germany
R. Buchty, Univ. Karlsruhe, Germany
R. Dick, Northwestern University, USA
R. Dorsch, IBM Böblingen, Germany
W. Najjar, Univ. California Riverside, USA
M. Poncino, Politecnico di Torino, Italy
A. Rodríguez-Vázquez, Centro Nacional de Microelectronicà, Spain
A. Shrivastava, Arizona State University, USA
F. Slomka, Univ. Oldenburg, Germany
Y. Xie, Penn. State University, USA

Presentations
Angiolini, F., Univ. Bologna, “NoCs: From Idea to Implementations”
Arteaga, A., Univ. Seville, “Digital Background Calibration of Pipeline ADCs”
Bacivarov, I., ETH Zürich, “Performance evaluation for heterogeneous MPSoC design”
Bombieri, N., Univ. Verona, “A TLM Design for Verification Methodology”
Braun, A., Univ. Tübingen, “A semi-automated heuristics for guided performance optimization”
Dopatka, F., Univ. Siegen, “A Framework for Implementing Realtime Industrial Ethernet Networks with Variable Compatibility to Standard Ethernet including Hot-Pluggable Asynchronous Devices”
Faurax, O., Lab. SESAM Gardanne, “Model and tools for the evaluation of circuit robustness against fault attacks”
Fawaz, N., HS Offenburg, “Biomedical Telemetry Application of an Electronic Capsule with Enhanced Performance”
Fey, G., Univ. Bremen, “Increasing Robustness and Usability of Circuit Design Tools by Using Formal Techniques”
Gorden-Ross, A., Univ. California Riverside, “Dynamic Optimization of Highly Configurable Caches for Reduced Energy Consumption”
Hack, S., Univ. Karlsruhe, “Register Allocation for Programs in SSA-Form and possible Implications for Processors”
Harutyunyan, G., Yerevan Univ. Armenia, “Minimal March Tests for Fault Detection. Location an Diagnostics of Static and Dynamic Faults in SRAMS”
Kikkeri, N., South. Meth. Univ. Dallas, “Towards efficient Formal Hardware Verification by Theorem Proving”
Klingauf, W., Univ. Braunschweig, “Transaction-level HW/SW System Modeling with SystemC”
Lange, S., Univ. Leipzig, “Concepts and Methods for Hyperreconfigurable Architectures”
Ma (Ms.), M., McGill Univ. Montreal, “Model Order Reduction Methods for Efficient Modeling and Simulation fo Interconnect Networks”
Morra, C., Univ. Karlsruhe, “A flexible framework for hardware/software design space exploration using rewriting logic”
Muenker, C., Infineon Munich, “Spectral PLL BIST for Integrated Cellular Transceivers”
Narayanan, S., Penn. State Univ., “DATE 2007 PhD Forum Submission”
Neumann, B., RWTH Aachen, “Design and quantitative analysis of ASIPs with eFPGA-based accelerators as flexible ISA-extension”
Paci, G., Univ. Bologna, “Exploring temperature-aware design in low-power MPSoCs”
Padmanabhan, A., Lindquist Center Iowa, “SOG: A Self-organized Grouping Infrastructure for Grid Resource Discovery”
Rodriguez, F., Univ. Madrid, “Avoiding CAM structures on memory-disambiguation hardware”
Ruggiero, M., Univ. Bologna, “Abstract”
Shukla, S., Univ. Queensland, “QUKU: A Coarse Grain rSoC Architecture on FPGA”
Soffke, O., Univ. Darmstadt, “Modeling and Simulation of Printed RFID Tags in Inductively Coupled Systems”
Stitt, G., Univ. California Riverside, “Synthesis from Software Binaries”
Telando, V., Lab.Mat. & Microel. Toulon, “On-chip Voltage Regulator Protecting Smart Cards Against Power Analysis Attacks”
Troeger G., Univ. Heidelberg, “Improving Radiation Tolerance of FPGAs in High-Energy Physics applications”
Viana P., Univ. Bosque, Brasil, “A Methodology to Explore the Design Space of Memory Hierarchies for Embedded Systems”
Wang F., Penn. State Univ., Reliable “System Design atop of Unreliable Components”
Wedler M., Univ. Kaiserslautern, “Model generation for SAT-based property checking”
Wei Y., Univ. Stony Brook, “Research Abstract”
Zhu G., Univ. Waterloo, “Nonlinear Circuit Sensitivity Calculation and Distortion Decomposition”
Call for Papers

Scope of the Event
The 11th DATE conference and exhibition is the main European event bringing together designers and design automation users, researchers and vendors, as well as specialists in the hardware and software design, test and manufacturing of electronic circuits and systems. It puts strong emphasis on both ICs/SoCs, reconfigurable hardware and embedded systems, including embedded software.

Structure of the Event
The five-day event consists of a conference with plenary invited papers, regular papers, panels, hot-topic sessions, tutorials, workshops, two special focus days and a track for executives. The scientific conference is complemented by a commercial exhibition showing the state-of-the-art in design and test tools, methodologies, IP and design services, reconfigurable and other hardware platforms, embedded software, and (industrial) design experiences from different application domains, such as automotive, wireless, telecom and multimedia applications. The organisation of user group meetings, fringe meetings, a university booth, a PhD forum, vendor presentations and social events offers a wide variety of extra opportunities to meet and exchange information on relevant issues for the design and test community. Special space will also be allocated for EU-funded projects to show their results. More details are given on the website.

Areas of Interest
Within the scope of the conference, the main areas of interest are: embedded systems, design methodologies, CAD languages, algorithms and tools, testing of electronic circuits and systems, embedded software, applications design and industrial design experiences. Topics of interest include, but are not restricted to:

- System Design Methods, Algorithm and Tools
- Reconfigurable Computing
- System Level Specification and Modeling
- Innovative and Emerging Technologies, Systems and Applications
- System Synthesis and Optimization
- Simulation and Validation
- Design of Low Power Systems
- Power Estimation and Optimization
- Formal Verification
- Multi Processor and Network on Chip
- Microarchitectural and Architectural Design
- Architectural Synthesis
- Logic and Technology Dependent Synthesis for Deep-submicron Circuits
- Physical Design and Verification
- Analogue and Mixed A/D Systems
- Analogue and Mixed Signal Design, Symbolic Techniques
- Interconnect, EMC and Packaging Modeling
- Design and Application Case Studies
- System and Industrial Test
- BIST and Design for Testability
- Test Generation, Simulation and Diagnosis
- On-line Testing, Fault Tolerance and Reliability
- Testing of Analogue, Mixed-Signal, RF and Heterogeneous Circuits and Systems
- Defect-based Testing and Test of Regular Structures
- Real-time Systems and Middleware
- Compilers, Architectures, and Software Synthesis for Embedded Systems
- Model-based Design for Embedded Systems
- Hardware-Dependent Software for Embedded Systems
- Media and Signal Processing
- Wireless Communication and Networking
- Automotive Electronics and Software
- Dependable Embedded Systems
- Secure and Security Systems
- Industrial Design Methods
- Sensor Network
- MEMS and Nanotechnology

Submission of Papers
All papers have to be submitted electronically before September 9th, 2007, via the conference web page: http://www.date-conference.com/

Papers can be submitted either for standard oral presentation or for interactive presentation.

Conference Secretariat
European Conferences
3 Coates Place, Edinburgh, EH3 7AA, UK
Tel: +44-131-225-2892 Fax: +44-131-225-2925
Email: sue.menzies@ec.u-net.com

Exhibition Secretariat
EDA Exhibitions Ltd.
63/66 Hatton Garden, London, EC1N 8SR, UK
Tel: +44-20-7681-1000 Fax: +44-20-7242-5124
Email: exhibitions@edaltd.co.uk

Chairs
General Chair: Donatella Sciuto, Politecnico di Milano, Italy, <sciuto@elet.polimi.it>
Program Chair: Zebo Peng, Linkoping University, <zpe@ida.liu.se>
Author Index

─A─
Aaraj, N. · 1128
Abadir, M.S. · 1538
Abbasfar, A.-A. · 433
Aboulhamid, M. · 876
Acquaviva, A. · 1054
Aggarwal, V. · 69
Ahmed, W. · 319
Aitken, R. · 439, 1289
Aktouf, C. · 373
Alachiotis, N. · 612
Alam, M. · 1116
Alessio, E. · 1030
Al-Hashimi, B.M. · 1647
Alho, T. · 1247
Alles, M. · 331
Al-Sammam, G. · 249
Altheimer, M. · 853
Aminzadeh, H. · 427
Amirkhani, A. · 433
Ammari, A. · 1587
Anders, J. · 707
Angiolini, F. · 570
Anis, E. · 225
Antonau, A. · 1605
Arbelo, C. · 177
Arning, R. · 1108
Arslan, T. · 349, 1569
Ascheid, G. · 319, 1349
Askar, S. · 455
Atasu, K. · 588
Atienza, D. · 570
Attarian, M. · 1146
Aulagnier, D. · 994
Austin, T. · 1146
Azemard, N. · 1012
Azimane, M. · 859
Azzoni, P. · 1232

─B─
Babighian, P. · 1078
Baghdadi, A. · 654
Baguena, L. · 679
Bahar, R.I. · 576, 1018
Balakrishnan, K.J. · 39
Balasa, F. · 385
Balfour, J.D. · 600
Banda, S. · 1430
Bañeres, D. · 1367
Banerjee, N. · 630
Bantegnie, E. · 1556
Barajas, E. · 1430
Barba, J. · 1042
Barke, E. · 243
Barragan Asian, M.J. · 1301
Barros, E. · 755
Baschirotto, A. · 421
Basten, T. · 285, 948
Bastian, M. · 528
Batra, P. · 725
Bauer, A. · 924
Baumgartner, J. · 219
Bazargan, K. · 1238
Bello, T. · 679
Benali, L. · 570, 660, 773, 1054, 1544
Ben Jamaa, M.H. · 570
Bépoix, A. · 679
Berekovic, M. · 177
Bertacco, V. · 743, 1146
Bertoletti, M. · 1232
Bertozzi, D. · 660
Bhunia, S. · 1532
Bjerregaard, T. · 648
Bjesse, B. · 1170
Black-Schaffer, D. · 600
Bloem, R. · 1188
Bois, G. · 876
Boqat, E. · 942
Bomberi, N. · 882
Bondarev, E. · 1024
Bonn, T. · 809
Bonzini, P. · 1331
Borkar, S. · 237
Borremans, J. · 261
Boschi, G. · 492
Bota, S.A. · 1271
Botti, J. · 1246
Bouchebaba, Y. · 1084
Boutillon, E. · 455
Brack, T. · 331
Brandenburg, M. · 828
Breuer, M.A. · 1599
Brière, M. · 1084
Bringmann, O. · 474
Bronckers, S. · 1520
Brooks, D.M. · 624
Brooks, R. · 1122
Brunelli, D. · 773
Bücker, M. · 1406
Butt, S.A. · 1677

─C─
Cabodi, G. · 1319
Cai, W. · 1514
Cai, Y. · 1508
Cairò, I. · 1430
Honbo, D. · 189
Hong, D. · 1283
Hong, X. · 1508
Horowitz, M.A. · 433
Hosseinabady, M. · 361
Hsiao, M.S. · 1307
Hsiieh, T.Y. · 1599
Hu, Q. · 379
Hu, X. · 1194, 1200
Huang, C.-Y. · 1313
Huang, K. · 912
Huang, P.-K. · 785
Huang, S. · 291
Huang, Y. · 510
Huiskens, J. · 117
Hull, M. · 767, 894
Humenay, E. · 1653
Hung, L.D. · 1134
Huomo, H. · 678
Huynh, H.P. · 1472
Hwang, M.-E. · 1550
—I—
Idgunji, S. · 1289
Ienee, P. · 443
Ignjatovic, A. · 803
Ikeda, M. · 1430
Imae, M. · 797
Imanishi, M. · 231
Indrusiak, L.S. · 301
Inoue, K. · 325
Inozzi, F. · 486
Irie, H. · 1134
Ishihara, T. · 1490
—J—
Janapsatya, A. · 803
Jang, B. · 847
Jayakumar, N. · 618
Jayapala, M. · 1066
Jerraya, A.A. · 1470
Jézéquel, M. · 654
Jha, N.K. · 1128
Jobstmann, B. · 1188
Johannes, F.M. · 1226
Joseph, R. · 624
Jouppi, N.P. · 237
Ju, H. · 1611
Ju, L. · 1623
Jung, H. · 1060
—K—
Kahng, A.B. · 1466
Karakountas, A.P. · 159, 612
Kamakoti, V. · 534
Kamhi, G. · 1078
Kaminska, B. · 1557
Kammler, D. · 319
Kanajan, S. · 504, 930
Kandemir, M. · 1122, 1671
Kanstein, A. · 177
Kao, J.-C. · 564
Kapur, R. · 960
Karakonstantis, G. · 630
Karri, R. · 865
Karuri, K. · 319
Keezer, D.C. · 701
Keutzer, K. · 57
Khan, Z. · 349, 1569
Khatri, S.P. · 618
Khazaka, R. · 255
Khan, M. · 1367
Kivilcim Coskun, A. · 1659
Kjeldsberg, P.G. · 379
Knijnenburg, P.M.W. · 606
Kodakara, S.V. · 761
Kohvakka, M. · 666
Kokkelber, A.B.J. · 171
Kolodny, A. · 942
Kondo, M. · 797
Kopetz, H. · 1468
Koufopavlou, O. · 1575
Kozyrakis, C. · 3, 600
Kraemer, S. · 1349
Kraus, W. · 1397
Krause, M. · 474
Krishnaiah, G. · 1563
Krishnan, S. · 707
Kroening, D. · 1325
Kroen, T. · 171
Kühne, U. · 1176
Kumar, A. · 117
Kundra, S. · 540
Kunkel, J. · 936
Kuo, T.-W. · 1629
Kuorilehto, M. · 666
Kuper, J. · 171
Kurra, S. · 391
—L—
La Barba, V. · 994
Landier, G. · 1556
Lajolo, M. · 642
Lambrechts, A. · 1066
Landrault, C. · 528
Magarshack, P. · 439
Maingot, V. · 1587
Mamagkakis, S. · 1036
Manet, P. · 983, 994
Mangassarian, H. · 1538
Marculescu, D. · 15, 403, 1436
Marculescu, R. · 564, 1096
Mariani, R. · 492
Marinissen, E.J. · 853, 859
Marino, C. · 486
Marzocca, C. · 421
Massoud, Y. · 307, 1206
Matarrese, G. · 421
Mateo, D. · 1430
Mathaiikutty, D.A. · 761
Maufrid, D. · 994
Maurine, P. · 1012
Mavroidis, I. · 888
Medardoni, S. · 660
Medwed, M. · 1110
Mehdipour, F. · 325
Mehrra, M. · 1146
Meijer, S. · 1355
Melani, M. · 486
Memik, G. · 21, 189
Memik, S.O. · 1373
Mencer, O. · 588
Mendias, J.M. · 449
Merkenbraeck, D. · 983
Metra, C. · 1295
Meyr, H. · 319, 1349
Mi, N. · 1508
Michail, H. · 612
Michalik, H. · 977
Mieyeville, F. · 1084
Mignolet, J.-Y. · 177
Milidonis, A. · 612
Minier, D. · 701
Mir, S. · 731
Miremadi, S.G. · 1647
Miro Panades, I. · 1090
Mishra, P. · 582
Miskov-Zivanov, N. · 1436
Mitra, S. · 1442
Mitra, T. · 1472
Mogal, H. · 1238
Mohanram, K. · 1072, 1454
Mottrel, P. · 1587
Molina, M.C. · 449
Mondal, M. · 1206
Moon, I.-H. · 1170
Moselhy, T. · 1194, 1200
Mosser, C. · 773
Moss, L. · 876
Mourtel, C. · 1587
Moussa, H. · 654
Moya, F. · 1042
Mucci, C. · 9, 355
Mueller, D. · 75
Mueller, R. · 1556
Mukhopadhyay, D. · 1116
Mukund, P.R. · 1277
Mulertt, O. · 994
Muller, O. · 654
Müller, F. · 498
Mundy, J. · 576
Münker, C. · 936
Murakami, K. · 325, 1490
Mutyam, M. · 1152

—N—
Nácul, A.C. · 642
Naguib, Y.N. · 111
Nahapetian, A. · 1054
Naidu, S. · 1605
Najjar, W. · 755
Najm, F.N. · 1538
Nakamura, H. · 797
Nandra, N. · 936
Nanya, T. · 797
Narayanan, R. · 189
Narayanan, S.H.K. · 1122
Narayanan, V. · 1152
Narayanasamy, S. · 1140
Nardi, A. · 1605
Naumann · 2
Navabi, Z. · 361
Neema, S. · 906
Nepal, K. · 576
Ney, A. · 528
Ni, M. · 1373
Nicolescu, G. · 1084
Nicolic, N. · 225
Nicollet, E. · 966
Nieuwoudt, A. · 307
Niu, L. · 791
Njoroge, N. · 3
Nocci, S. · 1319
Noori, H. · 325
Nurmi, J. · 147

—O—
Oatley, J.L. · 624
Öberg, J. · 367
O'Connor, I. · 737, 1084
Ogras, U.Y. · 1096
Olbrich, M. · 243
Olesen, K. · 1557
Olive, X. · 1244
Olofsson, K. · 3
Orailoglu, A. · 865
O'Reilly, U.-M. · 69
Osterloh, B. · 977
Ostler, C. · 99
Oustric, C. · 679
Ozev, S. · 713
Özturan, C. · 588
Ozturk, O. · 1671

—P—
Paganini, M. · 831
Pais, C. · 1484
Palkovic, M. · 379
Pan, S.-J. · 1581
Panda, P.R. · 391
Pantazis, V. · 159
Papachristou, C. · 1460
Papadonikolakis, M. · 159
Papaefstathiou, I. · 888
Parameswaran, S. · 461, 803
Parthasarathy, T. · 1108
Park, H.-W. · 1478
Park, J.S. · 600
Park, S. · 1478
Park, S.-B. · 600
Pasquet, J.-M. · 1244
Patel, H.D. · 279
Patterson, W.R. · 576
Pattullo, D. · 439
Paulin, P.G. · 1224
Pedram, M. · 1060
Peng, Z. · 51, 207
Perbellini, G. · 1048
Perdu, P. · 989
Peter, S. · 1253, 1259
Petersén, K. · 367
Petri, E. · 480
Petrov, T. · 27
Phillips, J. · 1502
Phillips, J.R. · 1000, 1617
Piala, C. · 1403
Pietrangeli, R. · 1048
Pineda de Gyvez, J. · 1301
Pinello, C. · 93, 504
Pintelon, R. · 267
Piotrowski, K. · 1259
Pistauer, M. · 918
Pister, M. · 924
Pistritto, C. · 660
Piterman, N. · 1188
Pixley, C. · 1170
Pizzotti, M. · 9
Pnueli, A. · 1188
Pomeranz, I. · 522
Poncin, M. · 1544, 1665
Pop, P. · 51
Pop, T. · 51
Popp, P. · 504
Porpodas, V. · 612
Pozzi, L. · 1224, 1331
Pratsch, A. · 1677
Wee, S. · 3
Wehn, N. · 331
Wei, G.-Y. · 624
Wei, W. · 33
Wei, Y. · 415
Weighlhofer, M. · 1188
Weiss, R. · 918
Whismant, K. · 1659
White, J. · 1200
Wielage, P. · 853, 859
Wilson, A. · 1556
Wilson, R. · 1012
Wingen, N. · 835
Wischounig, D. · 918
Wittkopf, H. · 1397
Wittmann, R. · 936
Wolff, F.G. · 1460
Wong, N. · 1496
Wong, W.-F. · 1343
Wouters, C. · 853, 859
Wu, C.-A. · 1313
Wu, Q. · 779
Wu, X. · 297
Wu, Y. · 313, 397
—Y—
Yang, C.-L. · 1629
Yang, H. · 546, 1526
Yang, S. · 1361
Yang, S.-H. · 1265
Ye, Z. · 21
Yeh, T.-H. · 45
Yemliha, T. · 1671
Yetik, O. · 87
Yeung, P. · 725
Yoneda, T. · 231
Yue, C.P. · 1283
—Z—
Zaki, M.H. · 249
Zamboni, M. · 1424
Zambreno, J. · 189
Zamora, N.H. · 564
Zaslavsky, A. · 576
Zeng, X. · 1514
Zeppenfeld, J. · 498
Zhang, M. · 243
Zhao, W. · 1391
Zheng, W. · 93, 930
Zhou, D. · 1514
Zhou, G. · 977
Zhou, H. · 65
Zhou, Q. · 39
Zhou, Z. · 1385
Zhu, H. · 385, 1514
Zhu, Z. · 1502
Zhu, Q. · 1164
Zilic, Z. · 558
Zjajo, A. · 1301
—X—
Xie, A. · 63
Xie, Y. · 546, 1611
Xu, J. · 1218
Xu, Q. · 870
Xu, T. · 552
Xue, C. · 1641
Xue, J. · 1514
Xue, J. · 1514