

A Unified System-Level Modeling and Simulation Environment for MPSoC

design: MPEG-4 Decoder Case Study

Víctor Reyes1, Wido Kruijtzer2, Tomás Bautista1, Ghiath Alkadi2, Antonio Núñez1

1Institute for Applied Microelectronics, University of Las Palmas GC, Spain
2Philips Research Laboratories, Eindhoven, The Netherlands

vreyes@iuma.ulpgc.es

Abstract

New generation Electronic System-Level design tools
are the key to overcome the complexity and the increasing
design productivity gap in the development of future
Multiprocessor Systems-on-Chip. This paper presents a
SystemC-based system-level simulation environment,
called CASSE, which helps in the modelling and analysis
of complex SoCs. CASSE combines application modeling,
architecture modeling, mapping and analysis within a
unified environment, with the aim to ease and speed up
these modeling steps. The main contribution of this tool is
to enable this fast modelling and analysis at the very
beginning of the design process, helping in the design
space exploration phase. CASSE capabilities are disclo-
sed in this work by means of a case study where an
MPEG-4 decoder application is implemented on an Altera
Excalibur platform.

1. Introduction
New tools and methodologies that can cope with the

increasing design and verification complexity, as well as
the tight market constraints, of current System-on-Chip
are mandatory. Industry suggests that the new generation
of electronic system level (ESL) design tools, which move
the system designer towards working at higher abstraction
levels, are the key to overcome this complexity [1]. Most
of these new generation tools are based on SystemC, the
de-facto standard for system level modelling. They are
aimed for early software development and performance
analysis of a specific system architecture [2][3].

 Typically, such tools follow a component-based
approach where systems are composed of architectural
blocks described using SystemC. Application
functionality is added to the architecture by means of
embedded software that runs onto processor models,
typically Instruction Set Simulators (ISS), or specific HW
models that have to be integrated into the system
architecture. The drawback of such approach is twofold.
First, creating embedded software and specific HW
models for a new system instance requires a considerable
initial effort that only makes sense if the right HW/SW
partition is known beforehand. Second, due to the usage
of ISS, simulation speed of the complete system is slowed
down to the range of KHz. Such simulation speed is not
adequate to explore diverse architectural or mapping
options of complex applications within a reasonable

amount of time. Although these tools have clear benefits
and improvements compared to conventional solutions,
due to the tight coupling of functionality and architecture
they lack flexibility with respect to design space
exploration (DSE) possibilities. DSE is very important at
the beginning of the design process, especially for those
designs where most of the architectural and mapping
decisions still have to be taken.

This paper presents a SystemC-based system-level
simulation environment, called CASSE, which aims to
ease and speed up the modelling and analysis of complex
SoCs. The main contribution of this tool is to enable this
fast modelling and analysis at the very beginning of the
design process, helping in the design space exploration
phase. CASSE follows a typical Y-chart methodology
where application and architecture are independently
modeled and combined in a separate mapping phase, see
Figure 1. Quantitative information about the system
execution is then obtained by means of simulations. After
analysis this information might guide further
optimizations in architecture, application and/or mapping
structure. The user controls all stages in the design flow
by means of textual description files. These description
files are read and parsed by the tool during elaboration
time in order to create and properly configure the desired
system model. The result is an executable model that is
executed using the SystemC kernel. More information
about this configuration procedure and the internal
structure of the tool can be found in [5]. CASSE
capabilities are disclosed in this work by means of a case
study where an MPEG-4 decoder application is
implemented on an Altera Excalibur platform.

The rest of the paper is organized as follows. Section 2
covers related work. In Sections 3 and 4 more details
about application and architectural modeling are
presented. Sections 5 and 6 explain the mapping and
analysis capabilities of the tool. The MPEG-4 case study
is presented in detail in Section 7. Conclusions are drawn
in Section 8.

2. Related work

Methodologies that emphasize reusability and
standardized SoC design methods to cope with system
complexity have resulted in the platform-based design
notion and in the orthogonalization of concerns [10]. The
Y-chart scheme is a typical example of a methodology
that applies orthogonalization of concerns [4]. The Y-
chart eases the design space exploration process by

3-9810801-0-6/DATE06 © 2006 EDAA

modeling independently functionality and architecture,
and later on combining them in a separated mapping
phase. CASSE follows a Y-chart methodology where
application functionality is separated from architecture,
but also communication is separated from computation by
means of a task level interface [6]. Similar Y-chart
frameworks are Spade [11] and Sesame [12]. Both start
with functional simulations of the application that is
described in the form of a Kahn Process Network.
However, they apply trace-driven architectural simula-
tions where the architectural models (annotated with
timing and performance figures) are fed with traces
obtained during functional simulations. In [13] the
Metropolis framework is presented. Metropolis provides a
meta-model of computation that offers syntactic and
semantics mechanisms to support functionality capture
and analysis, as well as architecture description and
mapping of functionality to architectural elements. Unlike
Metropolis, CASSE uses SystemC (the de-facto industry
modeling standard) to support the mapping of
functionality into architectural models. Finally, Kogel et
al. [14] also propose a SystemC-based simulation
framework, which enables the quantitative evaluation of
an application-to-architecture mapping by means of an
executable performance model. Similar to CASSE, this
framework accelerates the exploration of large design
space by means of description files where individual
timing annotations as well as the mapping are specified.
But, unlike CASSE that follows a streaming-wise
multiprocessor programming model, this framework uses
a general timed Communicating Extended Finite State
Machine programming model.

Application
Modeling

(TTL)

Timing
annotation

Mapping

Architecture
Modeling

(PE,SE,NE)

Functional
Simulations
(only app.)

Functional & Performance
Simulations

(app. + arch.)

TTL
tasks

Task-graph
desc. file

Architectural
desc. file

External
components

Mapping
desc. file

Tracing
desc. file

Simulation
output files

Analysis

Refinement

(Executable models)

UTF TF

Fig. 1: CASSE design flow.

3. Application modeling
CASSE follows a programming model based on the

Task Transaction Level (TTL) interface [6]. TTL can be
used both for developing parallel application models and
as a platform interface for integrating hardware and
software modules on a platform infrastructure. According
to the TTL specification, an application is described as a
process network where parallel tasks communicate with

each other by mean of unidirectional channels. A task is
an entity that performs computations. Tasks are connected
to the channels via ports, and they communicate and
synchronize with each other by calling TTL interface
primitives on their ports. More information about the TTL
implementation in CASSE can be found in [7].

Tasks containing the application functionality are
written in C/C++ (i.e. the functionality per task is fixed at
compile time). However, the network structure (i.e. port to
channel connections) and its configuration (e.g. channel
size) are described in a separate text file. An example of
the syntax is shown in Figure 2 for a simple producer-
consumer application. The tool uses this description file
to instantiate and bind together tasks and channels
creating an executable model of the network. This
architecture-independent executable model can be
simulated using CASSE in order to validate the functional
correctness of the application. Furthermore, at this stage
one can obtain some information about communication
and synchronization load for each task/port composing the
application.

Producer-Consumer Task-Graph file

.CREATE -TASK producer –N_PORT 1 ;

.CREATE -TASK consumer –N_PORT 1 ;

.CREATE -CHANNEL channel1 -SIZE 10 -TIZE 4 ;

.BIND -TASK producer -PORT 0 TO -CHANNEL channel1 -PRODUCER ;

.BIND -TASK consumer -PORT 0 TO -CHANNEL channel1 -CONSUMER ;

Fig. 2: Producer-consumer example.

4. Architectural modeling
CASSE provides easy and fast architectural modeling

by describing a system as a modular composition of
highly configurable predefined elements (provided by the
tool libraries). All elements are connected together in a
‘plug and play’ fashion by means of an inter-component
communication protocol and interface called ICCP.
Besides these predefined elements the architectural
models can be extended with new functionality by means
of external components (EC). These external components
can be described at any abstraction level using SystemC.

The library of predefined elements is composed of:
processing elements (PE), which model generic
multitasking computational units, storage elements (SE),
which model generic multi-port memory elements, and
network elements (NE), which model generic shared bus
interconnections including programmable arbiter, address
decoder, and optional input buffers. Processing elements
include an abstract task scheduler model supporting
different arbitration schemes (e.g. priority-based, round-
robin, TDMA) and advance features like interruptions and
pre-emption. Likewise, ICCP is an abstract communica-
tion protocol, which defines a point-to-point interface and
a group of communication primitives between two entities
named Initiator and Target. ICCP is not a new device
level communication protocol, but its aim is to model a
generic transaction-level communication protocol that can
be parameterized to emulate the timing and basic
functionality of standard protocols such as OCP or AXI.
Both the ICCP interface and the library of predefined
elements have been developed using SystemC and the
recently released Transaction Level Modeling Standard
library [8].

A separate description file is used in order to specify
the architectural composition of the system (i.e. number of
elements of each type, number of interfaces per element,
and their interconnection), and its configuration (e.g.
memory map, memory sizes, communication latencies per
interface, task scheduler policy, etcetera). An example of
such architectural description file is shown in Figure 3.

PE1 SE1

NE1

NE3

SE2PE2

ICCP LINK

Clock domain 1

Clock domain 2

NE2

PE1 SE1

NE1

NE3

SE2PE2

ICCP LINK

Clock domain 1

Clock domain 2

PE1PE1 SE1SE1

NE1

NE3

SE2PE2

ICCP LINK

Clock domain 1

Clock domain 2

NE2

architectural file
.CREATE -CLOCK clock1 -PERIOD 1 -UNIT SC_NS ;

.CREATE -CLOCK clock2 -PERIOD 5 -UNIT SC_NS ;

.CREATE -PROCESSIN G PE1 -N_IN IT 1 ;

.CREATE -STORAGE SE1 -N _TARGET 1 ;

.CREATE -NETW ORK NE1 -N_INPUT 1 -N_OUTPUT 2 ;

.CREATE -LINK link1 -W IDTH 32 ;
… ..

.BIND -CLOCK clock1 TO -PROCESSING PE1 ;

.B IND -L INK link1 TO -PROC ESSING PE1 -INIT 0 ;

.BIND -L INK link1 TO -NETW ORK NE1 -INPUT 0 ;

… .
.CONFIGURE -PROCESSIN G PE1 -IN IT 0 -W IDTH 32 -LAT 1 1 1 0 -CONNID 0 ;

.CONFIGURE -STORAGE SE1 -S IZE 16777216 ;

.CONFIGURE -STORAGE SE1 -TARGET 0 -W IDTH 32 -LAT 1 1 1 ;

.CONFIGURE -NETW ORK NE1 -OUTPU T 0 -RANGE 0x00000000 0x01ffffff ;
… .

Fig. 3: Architectural description file example.

5. Application to architecture mapping
One of the main advantages of the tool as a unified

environment is the straightforward mapping support of
application functionality onto the modeled platform
architecture. That is, CASSE supports the direct mapping
of TTL tasks and channels onto the modeled architecture
with no need for extra source code changes (i.e. original
source code of the tasks is executed directly in the
architectural model). Timing delays reflecting the
computational costs of the functionality can be annotated
into the tasks by either automatic methods like described
in [15] or have to be annotated manually.

The mapping procedure is performed in three steps.
First step is to map TTL tasks onto processing elements.
Processing elements are simply placeholders where the
functionality is assigned during the mapping phase.
Multiple tasks can be mapped into a single PE. Second
step is to map channels onto the storage elements.
Channels are composed of the channel buffer (CHB)
where the channel data (tokens) is stored, and the channel
administration tables (CHAT) that are used for the tasks to
access the channel buffer and for synchronization
purposes. Both CHB and CHATs can be mapped
separately in different storage elements, which bring more
flexibility in order to analyze different architectural
options. Third step of the mapping procedure is the logical
to physical communication mapping. That is, each port of
each task mapped into a specific PE can be independently
configured to access a particular interface in order to carry
out their TTL communication and synchronization

primitives. Such flexibility, of course, depends on the
number of interfaces available in the processing element,
which in turn depends on the kind of component is being
modeled.

Another description file is used for the tool in order to
control this mapping procedure. The outcome of the
mapping stage is an executable model containing the
selected application/architecture instance. This executable
model is executed using the SystemC kernel in order to
validate both the functional correctness and the
performance of the system.

6. Tracing, analysis and refinement
During simulations relevant information about the

system execution can be gathered and dumped into files
for later inspection. CASSE also provides a separate
description file that indicates which parts of the system
have to be traced and the type of information to record.
For instance, the tool allows to the designer to trace and
dump all the data transfers carried out by an individual
interface in the architecture, as well as its statistics about
communication load, latency, etc. Moreover, information
regarding the execution of the tasks in a specific PE can
be collected during the simulation. For instance, the
number of times a task is suspended, total cycles spent in
computation, total overhead cycles due to context
switching, number of TTL primitives executed in a task’s
port, etc.

CASSE allows the system designer to analyze and
identify architectural bottlenecks and possible system
optimizations at the task level. This analysis guide further
iterations where both the application and the architecture
models are tuned, or a new mapping is created. One of the
main contributions of CASSE is to speed up this
procedure by means of the description files that can be
easily modified in order to create a new system instance.
Since changing the description files does not require
recompiling the existing models, extensive parameters
sweeps can be perform easily using scripts.

Finally, once the expected requirements are fulfilled
the system is ready for implementation. Hardware
modules can be progressively refined from more abstract
to more accurate (even synthesizable) descriptions in
SystemC and verified within the platform model, just by
replacing predefined elements of the tool libraries with
external components containing the accurate model.
Likewise, software modules might be directly taken into
an embedded compiler and later integrated again in the
system by means of an external component that integrates
an Instruction Set Simulator.

7. MPEG-4 decoder case study

This case study is part of the ARTEMI project
(ARchiTEctures for Multimedia and Internet), which aims
to develop a system for receiving low-quality digital video
transmitted over the Digital Audio Broadcasting (DAB)
network, using as target technology mixed programmable
platforms. A key part of the ARTEMI system is a MPEG-
4 decoder, which has to be implemented on the Altera
Excalibur FPGA platform [9]. This platform is composed
of a million equivalent gates programmable logic device
(PLD) and an embedded processor (Excalibur Stripe).

Instead of focusing on the final implementation of the
MPEG-4 decoder on the Excalibur platform, this section
focuses on how CASSE is applied at the very beginning of
the design process to obtain meaningful information that
can guide the implementation phase. We also comment on
how this compares with more conventional methods and
tools, which concentrate in accurate platform modeling,
but do not cover application modeling or the direct
mapping of the modeled application onto the platform
architecture.

FrontEnd VLD

IQUANT

MVDEC

IDCT

CMOV BackEnd
bits

VOP_data

motionMB_data
MV

VOL_data

MB_data

blk_vld
blk_IQ blk_IDCT

frame_inf
FrontEnd VLD

IQUANT

MVDEC

IDCT

CMOV BackEnd
bits

VOP_data

motionMB_data
MV

VOL_data

MB_data

blk_vld
blk_IQ blk_IDCT

frame_inf

Fig. 4: MPEG-4 application model.

7.1 Application and architecture modeling
First step in the CASSE design flow is to decompose

the MPEG-4 decoder reference code as a group of
concurrent tasks communicating with each other using the
TTL programming model. The obtained process network,
see Figure 4, is composed of seven tasks (Frontend, VLD,
IQUANT, IDCT, MVDEC, CMOV and Backend) and ten
channels (four multicast and six unicast channels). This
application model is then functionally simulated using
CASSE and the results are verified against the reference
code. At this level, the tool can also be used to derive the
maximum channels size required for the application,
which minimizes the number of times tasks are blocked.
This is achieved by dynamically increasing the channel
size, whenever there is not enough space available to write
in the channel. In Tab. 1, maximum channel size for a
GOP (Group of Pictures) with a sequence pattern
IPBBPBB – being (I) Intra, (P) Inter, and (B)
Bidirectional prediction frames - and QCIF size is shown.

Tab. 1: Maximum channel size

Channel Token size (bytes) Number of tokens
Bits 2 1901
VOL_data 32 1
VOP_data 24 8
MB_data 8 696
motionMB_data 48 594
Blk_VLD 264 1129
Blk_IQ 260 1129
Blk_IDCT 256 1129
MV 68 425
frame_inf 152072 6
 Total memory required: 1.860.058 bytes

Although the partitioning of the reference application

into separate tasks requires some effort, it has two clear
benefits when compared with conventional methodo-
logies. First, the obtained application model remains
architecture-independent and tasks might still be selected
for execution either in hardware or software modules. And
second, there is clear separation between communication
and computation inside each task, where data transport

and synchronization points are made explicit by means of
TTL calls. Thanks to this separation, time occurrence of
those synchronization and communication events can still
be identified once the application is mapped onto the
platform model. This helps in analyzing if the application
is fulfilling all its timing constraints.

Second step in the design flow is to model the
hardware platform on which the application is executed.
In this case, our goal is to create an architectural model
that emulates the Excalibur Stripe architecture using the
predefined elements and interfaces available in the tool
libraries and configuring them accordingly. The Excalibur
Stripe architectural model is shown in Figure 7. RAM
memories are modeled using generic storage elements,
and configuring them with the right sizes, number of
Target interfaces, latencies, etc. AHB busses, bridges, and
memory controllers are modeled using generic network
elements. Network elements modeling AHB busses (i.e.
AHB1 and AHB2) are configured with no buffered input
ports and round-robin arbitration. Likewise, right latencies
according to the AHB specification and response address-
range for all output ports are programmed reflecting the
real memory map of the Stripe. Network elements
modeling bridges (i.e. AHB, PLD2AHB, and AHB2PLD)
are configured with buffered input ports. The ARM9 CPU
is modeled as a generic processing element (PE) with a
single interface. Since the final implementation will
contain an uC/OS operating system running in the ARM9,
the task scheduler of the PE is configured accordingly to
match as close as possible its behaviour (e.g. scheduling
policy, task switching delay, etc). Besides modeling the
embedded stripe of the Excalibur device, a video input
(VIN) and a video output (VOUT) coprocessors, which
will be implemented in the PLD part of the device, are
also modeled using generic processing elements. Finally,
clock information is attached to the elements based on its
clock domain. There are two basic clock domains, the
Stripe domain with a 150 MHz, and the PLD domain with
an estimated 50 MHz clock frequency. Clock domains are
adapted using buffered network elements, that is, the
bridges of the system.

Using CASSE such complex architectural model is
quickly created and configured by means of an
architectural description file that only takes 195 lines.

7.2 Mapping and analysis
7.2.1 Initial architecture and mapping: SW solution

The next step is to map the tasks and channels
composing the MPEG-4 application onto the initial
Excalibur Stripe architecture model. Unlike conventional
tools, architecture-independent tasks are mapped directly
on the architectural model. Likewise, the tool automa-
tically configures all necessary elements when logical
channels are physically mapped onto specific memories
available in the model. This eases very much the mapping
process, since the designer has not to deal with low-level
configuration details (e.g. address calculation).

In this first approach, all channels structures (i.e. CHB
and CHAT) are mapped on the SRAM memory located in
the Stripe model. Likewise, this initial mapping locates
the Frontend (input coded video) and Backend (output
decoded video) tasks onto the VIN and VOUT processing
elements, respectively. The remaining tasks are mapped
on the ARM processing element. This procedure is rapidly

described by means of the mapping description file, which
only requires 60 lines.

Performance simulations are then carried out. At this
point, computation delays were manually annotated in the
software tasks running in the ARM PE. In order to be as
accurate as possible these computation delays were
obtained by analyzing the assembler code of the tasks
after compiling with the ADS compiler. Besides providing
information about the system performance this simulation
can be used to assess functional correctness, that is, to
check whether the application is still providing the same
results when mapped onto the architectural model. For
this example, CASSE took around 90 seconds to simulate
one second of the system execution. For a clock reference
of 150 MHz the simulation throughput (or simulation
speed) reaches approximately 2 Mcycles/s that is three
orders of magnitude higher than typical ISS-based
simulations.

0

5000
10000

15000
20000

25000

Fr
on

ten
d/b

its

VLD
/bi

ts

VLD
/bl

k_
VLD

IQ
UANT/b

lk_
IQ

IQ
UANT/

blk
_V

LD

ID
CT/b

lk_
ID

CT

ID
CT/

blk
_IQ

MVDEC/m
oti

on
MB

CMOV/bl
k_

ID
CT

CMOV/fra
me_

inf

Bac
ke

nd
/fr

am
e_

inf

K
by

te
s/

sc

read write

Fig. 5: SRAM data load per task/port.

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800 900 1000

milliseconds

K
by

te
s

read write

1 1211Frame # 2 3 4 5 6 7 8 9 10

Fig. 6: SRAM data load vs. time.

For this initial architecture and mapping the system is

able to decode 12 frames within this second of execution.
During this simulation, traces are set to measure the data
load in the SRAM memory where the channels are
mapped. In addition, CASSE allows obtaining those
simulation traces every certain period of time within the
total execution time. Figure 6 shows the data load in the
SRAM memory sampled every 100 milliseconds of
execution time and its relationship with the decoded
frame. Total data load measured on the SRAM is
approximately 50 Mbytes. However, this raw data of 50
Mbytes is not enough to provide information about what
is happening in the system and to guide further
optimizations. For that reason CASSE allows to tag all
transactions happening in the system architecture with an
individual identifier. This identifier can be associated to
each port of each task running in the system. For instance,
the data load produced for the port connected to the
channel bits of the task Frontend can be individually
observed in the SRAM memory. Figure 5 shows the data

load produced into the SRAM memory in a task/port
basis. Analyzing this information, it is observed that the
port bits of the Frontend task and the port frame_inf of the
Backend task produce two third of the total data load in
this memory. Furthermore, it is detected that most of this
load is produced during the access to their CHAT
information. This means that those tasks are too often
blocked waiting for data or room in their channels, and
such high load is produced whereas polling the channel
status.

7.2.2 First iteration: architectural optimizations

Communication from VIN and VOUT coprocessors to
the SRAM memory is too costly in terms of latency and
power consumption due to the large path of busses and
bridges that the data has to cross. Therefore, one required
optimization is to reduce the data load produced by the
before mentioned tasks (Frontend and Backend) mapped
in these coprocessors. For that purpose, local memories
are added to the VIN and VOUT coprocessors and their
associated CHATs are mapped into them. Now tasks do
not have to use the complex multi-level bus infrastructure
of the Stripe to read their channel administration
information but they do it locally. Unlike conventional
tools, in CASSE such modification simply requires adding
and modifying a few lines into both the architectural and
mapping description file. After running new simulations
the data load into the SRAM memory has been reduced in
a 77%, that is, from 50 Mbytes to 11.5 Mbytes.

7.2.3 Second iteration: HW-SW solution

Next iteration is intended to increase the decoding
frame rate of the system. Hence, more computational
resources, where to execute some of the task running on
the ARM, are added to the architectural model. In order to
decide which task should be mapped in a separated
processing element, the tool derives the percentage of
time the ARM is used for each task. That information is
shown in the Tab.2.

Tab. 2: ARM computational load per task

Task Cycles % Usage
VLD 14.676.715 7,8
IQUANT 28.263.398 15
IDCT 67.551.091 36
MVDEC 245.888 0,13
CMOV 75.907.139 40
Context Switching Overhead 1.104.250 0,6

According to those results, both the CMOV (motion

compensation) and IDCT (inverse discrete cosine
transform) tasks are the more computational expensive
tasks running on the ARM, respectively. However, since
the IDCT is more suitable for a HW implementation, a
new processing element executing the IDCT task is added
to the architectural model. Channels belonging to the
IDCT task are mapped onto the DPRAM memory that has
a second port available for direct access from the PLD
area. The IDCT processing element and the DPRAM
storage element are connected together by a direct ICCP
link using this available second port. Source code of the
IDCT task is then annotated with new delays taking into
account a hardware implementation. We estimate that an
IDCT coprocessor might process an 8x8 block in 128
cycles (the previous software IDCT implementation

needed around 1000 cycles in the ARM9). This new
architecture and its corresponding mapping are shown in
Figure 7.

VLD MVDEC
IQUANT CMOVSDRAM

SDRAM CTRL

SRAM0 CTRL DPRAM0 CTRL

SRAM0

AHB1

AHB
BRIDGE

STR2PLD
BRIDGE

PLD2STR
BRIDGE

Altera Excalibur stripe model

PLD area model

SDRAM

ARM

SRAM

AHB2

SRAM CTRL DPRAM CTRL

DPRAM

AHB

SDRAM CTRL

STR2PLD PLD2STR

BRIDGE

BRIDGE BRIDGE

PLDBUS
VIN
MEM

VOUT
MEM

IDCT
MEM

VIN VOUT IDCT
COPRO

FrontEnd BackEnd IDCT

blk_IQCHB & P CHAT
blk_IDCT CHB & C CHAT
VOL_data CHB & P CHAT
MB_data CHB & P CHAT

blk_IQC CHAT
blk_IDCT P CHAT
VOL_data C CHAT
MB_data C CHAT

Bits P CHAT

Frame_inf C CHAT

Remaining CHB and CHATs

VLD MVDEC
IQUANT CMOVSDRAM

SDRAM CTRL

SRAM0 CTRL DPRAM0 CTRL

SRAM0

AHB1

AHB
BRIDGE

STR2PLD
BRIDGE

PLD2STR
BRIDGE

Altera Excalibur stripe model

PLD area model

SDRAM

ARM

SRAM

AHB2

SRAM CTRL DPRAM CTRL

DPRAM

AHB

SDRAM CTRL

STR2PLD PLD2STR

BRIDGE

BRIDGE BRIDGE

PLDBUS
VIN
MEM

VOUT
MEM

IDCT
MEM

VIN VOUT IDCT
COPRO

FrontEnd BackEnd IDCTFrontEnd BackEnd IDCT

blk_IQCHB & P CHAT
blk_IDCT CHB & C CHAT
VOL_data CHB & P CHAT
MB_data CHB & P CHAT

blk_IQC CHAT
blk_IDCT P CHAT
VOL_data C CHAT
MB_data C CHAT

Bits P CHAT

Frame_inf C CHAT

Remaining CHB and CHATs

Fig. 7: Architecture model and mapping.

0

50000

100000

150000

200000

250000

1 10 100
tokens

by
te
s

SRAM
DPRAM

Frame rate
14 14 15

 Fig. 8: Channel size vs. frame rate.

With this new architecture and mapping instance,

performance simulation derives a decoding frame rate of
14 fps. In order to squeeze the possibilities of this new
platform model, a brief exploration of the channels size
and their relation with memory usage and frame rate is
performed. Using CASSE this exploration only requires
feeding the tool with different task-graph description files
that change the size of the channels. This analysis is
shown in Figure 8, where it is observed like increasing
channels size to 100 tokens increases the performance in
one extra frame, whereas the total memory used for the
channels remains within the maximum memory available.

It is important to mention that the results shown in this
case study are just brief examples of the tool capabilities
since many others architectures and/or mapping might be
explored, and much other information can be obtained
which can guide further optimizations.

8. Conclusions

This paper shows how a SystemC-based system-level
simulation environment, called CASSE, can be applied on
the modeling and analysis of a complex system such as an
MPEG-4 decoder running on an Altera Excalibur
programmable platform. CASSE covers application and
architecture modeling, as well as direct mapping and
analysis, within a unified simulation environment. This

environment eases and speeds up these modeling steps
and helps in the design space exploration phase, at the
beginning of the design process.

9. Acknowledgements
This work is supported by the Spanish Ministry of
Education and Sciences under the ARTEMI project TIC-
2003-09687-C02-02.

10. References
[1] ITRS Design Working Group, www.itrs.net
[2] ConvergenSCTM, www.coware.com
[3] Axys MaxSimTM, www.axysdesign.com
[4] B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf,

“An Approach for Quantitative Analysis of Application-
Specific Dataflow Architectures”, in Proc. 11-th Int. Conf.
on Application-specific Systems, Architectures and
Processors, Zurich, Switzerland, July 14-16 1997

[5] V. Reyes, W. Kruijtzer, T. Bautista, G. Marrero, P.
Carballo, “CASSE: A System-Level Modeling and Design-
Space Exploration Tool for Multiprocessor Systems-on-
Chip”, In Proc. of Euromicro Symposium on Digital
System Design, September 2004

[6] P. Van de Wolf, E. De Kock, T. Hendrikson, W. Kruijtzer,
G. Essink, “Design and Programming of Embedded
Multiprocessors: An Interface-Centric Approach”, In
Proceedings of CODES+ISSS’04, September 2004

[7] V. Reyes, W. Kruijtzer, T. Bautista, G. Marrero, A. Nuñez,
“A Multicast Inter-Task Communication Protocol for
Embedded Multiprocessor Systems”, In Proceedings of
CODES+ISSS’05, October 2005

[8] Transaction Level Modelling Standard 1.0, June 2005,
http://www.systemc.org

[9] Altera ExcaliburTM, www.altera.com
[10] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, A.

Sangiovanni-Vicentelli, “System-level design:
Orthogonalization of concerns and platform-based design”,
in IEEE Trans. on Computer-Aided Design of Integrated
Circuit and Systems, 19(12): 1523-1543, December 2000

[11] P. Lieverse, P. van der Wolf, E.E. Deprettere, K. Vissers,
“A methodology for architecture exploration of
heterogeneous signal processing systems”, in Proc. of the
IEEE Workshop on Signal Processing Systems, SiPs 99,
pages 181-190, IEEE Press, 1999

[12] A.D. Pimentel and C. Erbas, “An IDF-based trace
transformation method for communication refinement”, in
Proc. of the 40th Design Automation Conference, Anaheim,
CA, USA, pages 402-407, ACM Press, June 2003

[13] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C.
Passerone, A. Sangiovanni-Vicentelli, “Metropolis: An
integrated electronic system design environment”, IEEE
Computer, 36(4): 45-52, April 2003

[14] T. Kempf, M. Doerper, R. Leupers, T. Kogel, B.
Vanthournout, “A Modular Framework for Spatial and
Temporal Task Mapping onto Multi-Processor SoC
Platforms”, in Proc. of Design, Automation and Test in
Europe, Paris, France, pp. 876-881, 2005

[15] S.V. Gheorghita, S. Stuijk, T. Basten and H. Corporaal,
“Automatic Scenario Detection for Improved WCET
Estimation”, in Proc. Design Automation Conference,
Anaheim, USA, June 2005

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

