Procrastinating Voltage Scheduling with Discrete Frequency Sets

Zhijian Lu, Yan Zhang, Mircea Stan, John Lach, Kevin Skadron
Department of Electrical and Computer Engineering, Department of Computer Science
University of Virginia
Charlottesville, VA 22904
{zl4j, zhangyan, mircea, jlach}@virginia.edu, skadron@cs.virginia.edu

Abstract
This paper presents an efficient method to find the optimal intra-task voltage/frequency scheduling for single tasks in practical real-time systems using statistical workload information. Our method is analytic in nature and proved to be optimal. Simulation results verify our theoretical analysis and show significant energy savings over previous methods. In addition, in contrast to the previous techniques in which all available frequencies are used in a schedule, we find that, by carefully selecting a subset of a small number of frequencies, one can still design a reasonably good schedule while avoiding unnecessary transition overheads.

1. Introduction
With the scaling of semiconductor technology, power consumption has become a serious issue for both high performance and embedded systems. Dynamic voltage scaling (DVS) has become an efficient technique for power reduction due to the quadratic dependence of circuit switching energy on operating voltage.

However, DVS trades off energy with performance. Many researchers propose various voltage scheduling techniques such that energy is minimized while performance is still guaranteed. One of the major differences among these techniques lies in their workload assumptions. For example, Rao and Vrudhula [8] assume the exact amount of computation is known in advance. In reality, different instances of the same task might have various computation requirements. Therefore some work such as [10] uses the worst-case execution time (WCET) to schedule the voltage profile offline and reclaim the slacks on runtime, while others [6] use formal feedback controller to adapt the system to the workload variations in runtime. On the other hand, the amount of computation for the same task could be well characterized by probability density functions. This observation inspires probabilistic approaches in DVS studies [2, 5, 11, 12, 13].

Lorch and Smith [5] show that using statistical information in DVS is superior to other heuristic DVS techniques whose performances are strongly dependent on the workload distribution. In DVS with probabilistic workload information, a good strategy is to begin with a low frequency, and increase the frequency gradually as the task progresses, such that the task can be finished before deadline even in the worst-case. In other words, high voltage (power) operating points are procrastinated during task execution. Following [13], we call this form of voltage scheduling procrastinating DVS in the rest of the paper. Jejurikar et al. [4] introduce the concept of “procrastination scheduling” which is different from the subject studied here. They focus on inter-task scheduling policies and look for opportunities to delay the execution of tasks such that system shutdown intervals can be increased, thus minimizing leakage energy consumption, while we study intra-task scheduling technique.

The optimal procrastinating DVS for single task is derived in [2, 5, 12] using an ideal processor model. Our previous work [13] extends their solutions to deal with multiple tasks. However, there are several limitations on these prior works. First they assume voltage/frequency can be continuously scaled, and have to round their solutions to the available frequencies in the real system. The rounding could result in energy-inefficient design when the number of available frequency is relatively small [10]. Second, the overhead of frequency/voltage transition is ignored, which is dangerous for real-time systems and leads to non-optimality in practical systems [1, 7]. Third, system-wide power consumption is not explicitly modeled. In this work, we try to address these practical issues. Recently, Xu et al. [11] try to solve the same problem. They adopt a search-based approach to find the optimal scheme, while our solution is analytic in nature and solves the problem very efficiently.

Specifically, we make the following contributions. First, we derive an analytical solution for systems with non-ideal processors when using procrastinating DVS, enabling fast voltage scheduling with arbitrary workload distribution. Our analysis does not assume any specific frequency-voltage relationship (i.e. analytic models), making it suit-
able for various systems and different voltage scaling techniques, such as combined supply voltage and body bias scaling [1]. Second, our solutions minimize the total system energy consumption by including both dynamic and static on-chip power as well as off-chip component power. Third, our results indicate that all efficient operating points (i.e. voltage/frequency pairs) in procrastinating DVS must lie on a convex energy-delay curve. This interesting observation is helpful in low power system design by avoiding inefficient frequency sets. Finally, we find that, for a given deadline, a small number of frequencies are sufficient for forming a schedule to maintain energy savings comparable to that of using all frequencies while avoiding unnecessary transition overheads.

The rest of the paper is structured as follows. In Section 2, the system model is described and the optimization problem is formulated. We solve the problem in Section 3, and extend it to account for frequency switching overheads in Section 4. We present simulation results in Section 5 and conclude the paper in Section 6.

2. System Model and Problem Formulation

2.1. Energy Model

In many low-power systems, there are usually two power states: active state and idle state. In the idle state, the system is in a low-power mode with zero clock frequency, and no useful work can be done. Therefore, we model the system power by $P_{sys} = P_f + P_0$, where P_0 is the idle power which is a constant and exists whenever the system is powered on, and P_f is the power used for computation in active state, which is the sum of on-chip and off-chip power consumption, including both leakage and dynamic power. In general, P_f is dependent both on supply voltage and clock frequency. We define energy efficiency $e(f) = \frac{E}{P_f}$, which represents the energy spent on each cycle for computation. It is obvious that energy efficiency is also voltage/frequency dependent. If a task with X cycles is executed before its deadline D, the total energy spent in the period D is $E_{sys} = \int_0^X e(f) dx + P_0 D$. The second term in the total energy is independent on voltage/frequency scaling. In the following discussion, we will ignore P_0 as if it is zero.

The system is capable of operating on variable voltages/frequencies. Let $\{f_1, f_2, f_3, \ldots, f_r\}$ denotes the set of available frequencies, with total number equal to r, and we have $f_1 < f_2 < f_3, \ldots < f_r$. For each frequency point, there is a voltage and power consumption associated with it, and thus a corresponding energy efficiency under that frequency. Therefore, we have a set of energy efficiencies $e_1, e_2, e_3, \ldots, e_r$, with $e_1 < e_2 < e_3 < \cdots < e_r$. That is true because if $f_i < f_j$ and $e_i \geq e_j$, f_j can finish tasks faster while spend less energy than f_i, and f_i becomes inefficient and never used. Therefore, in a usable frequency set, energy efficiency should be an increasing function of clock frequency, or decreasing function of clock period.

2.2. Procrastinating DVS

A task executed on the system has a deadline D and its actual amount of computation (clock cycles) is randomly distributed between 0 and X_{max} and governed by a probability density function (PDF)\(^1\), which can be obtained, for example, from online profiling. Furthermore, we assume frequency/voltage switching points can be inserted anywhere during task execution. Figure 1 gives an example of procrastinating DVS along with its workload distribution.

Theorem 1. In the optimal procrastinating DVS, the operating frequency is non-decreasing as the number of executed cycles increases.

We omit the proof for Theorem 1 here due to space limitations. Xu et al. [11] presented a similar theorem in their paper. Theorem 1 indicates that in a system with r operating points, the optimal procrastinating DVS scheduling has at most r frequency/voltage transitions, as shown in Figure 1(b) for a system with 4 usable frequency/voltage levels. Therefore the key for the optimal scheduling with discrete frequency sets is to identify the positions where transitions from low frequency to high frequency occur.

\(^1\) We assume the number of cycles executed in each task instance is variable in spite of the operating frequency. This is a reasonable assumption for CPU-bounded applications. How to model the frequency dependence of clock cycles in memory-bounded applications is left for future investigation.

Xu et al. [11] assume that frequency transitions can only happen at some fixed points (e.g. every 10K cycles) and try to find the optimal scheduling by searching a space composed of those transition points. We take a different approach. Observing that a task usually has millions of cycles while the number of frequency transitions is much smaller...
(i.e., equal to the number of the operating points, which is usually less than 50), the number of cycles executed on each frequency has much finer granularity and can be approximated as continuous. For example, in Figure 1, we use real variables $X_{\text{max}} - X_1 - X_2 - X_3 - X_4$ to represent the number of cycles executed at f_1, f_2, f_3, and f_4 respectively. And the expected energy consumption could be modeled as:

$$E(X', X_2', X_3', X_4') = e_1 \int_0^{X_2'} (1 - F(y)) \, dy$$

$$+ e_2 \int_0^{X_3'} (1 - F(X_{\text{max}} - X_4' - X_1' - X_2' + y)) \, dy$$

$$+ e_3 \int_0^{X_4'} (1 - F(X_{\text{max}} - X_4' - X_1' + y)) \, dy$$

$$+ e_4 \int_0^{X_1'} (1 - F(X_{\text{max}} - X_4')) \, dy$$

(1)

where e_i is the energy efficiency (i.e., energy/cycle) associated with frequency f_i, as defined at the beginning of this section. $F(x)$ is the cumulative distribution function (CDF) of task execution cycles. Therefore, the optimal procrastinating DVS problem can be formulated as a mathematical optimization problem:

Minimize $E(X', X_2', X_3', X_4')$

Subject to $X_{\text{max}} - (X_1' + X_2' + X_3' + X_4') f_1 / f_1 + X_3' / f_3 + X_4' / f_4 \leq D$

For simplicity, in the following, we use this example in our calculations, but the results are readily generalizable to systems with r operating points.

3. Solutions for Discrete Frequency Sets

In this section, the optimal procrastinating DVS with discrete frequency sets is solved without considering frequency transition overheads. In the next section, we extend our discussion to account for those overheads.

3.1. Optimal Procrastinating DVS

We apply the Lagrange Multiplier Method to find the number of cycles executed with each operating point. Let

$$L(X', X_2', X_3', X_4', \lambda) = E(X', X_2', X_3', X_4')$$

$$+ \lambda \left(\frac{X_1'}{f_1} + \frac{X_3'}{f_3} + \frac{X_4'}{f_4} + \frac{X_{\text{max}} - (X_1' + X_2' + X_3' + X_4')}{f_1} - D \right)$$

We have

$$\frac{\partial L}{\partial X'} = \frac{X_1'}{f_1} + \frac{X_3'}{f_3} + \frac{X_4'}{f_4} + \frac{X_{\text{max}} - (X_1' + X_2' + X_3' + X_4')}{f_1} - D = 0$$

$$\frac{\partial L}{\partial X_2'} = \frac{\partial E(X', X_2', X_3', X_4')}{\partial X_2'} + \lambda \left(\frac{1}{f_2} - \frac{1}{f_1} \right) = 0$$

$$\frac{\partial L}{\partial X_3'} = \frac{\partial E(X', X_2', X_3', X_4')}{\partial X_3'} + \lambda \left(\frac{1}{f_3} - \frac{1}{f_1} \right) = 0$$

$$\frac{\partial L}{\partial X_4'} = \frac{\partial E(X', X_2', X_3', X_4')}{\partial X_4'} + \lambda \left(\frac{1}{f_4} - \frac{1}{f_1} \right) = 0$$

(2)

By substituting Equation (1) into (2) and after some simplifications, we obtain:

$$1 - F(X_{\text{max}} - X_1' - X_2') = \lambda \left(\frac{1}{f_1} - \frac{1}{f_2} \right)$$

$$1 - F(X_{\text{max}} - X_1' - X_2') = \lambda \left(\frac{1}{f_1} - \frac{1}{f_3} \right)$$

$$1 - F(X_{\text{max}} - X_1' - X_2') = \lambda \left(\frac{1}{f_1} - \frac{1}{f_4} \right)$$

(3)

$$1 - F(X_{\text{max}} - X_4' - X_3') = \lambda \left(\frac{1}{f_2} - \frac{1}{f_3} \right)$$

$$1 - F(X_{\text{max}} - X_4' - X_3') = \lambda \left(\frac{1}{f_2} - \frac{1}{f_4} \right)$$

(4)

$$1 - F(X_{\text{max}} - X_4' - X_3') = \lambda \left(\frac{1}{f_3} - \frac{1}{f_4} \right)$$

(5)

$$\frac{X_{\text{max}} - (X_1' + X_2' + X_3' + X_4')}{f_1} + \frac{X_3'}{f_3} + \frac{X_4'}{f_4} = D$$

(6)

Therefore, given a deadline D, the optimal procrastinating DVS schedule can be found by solving Equations (3-6). Transformations of Equations (3-5) reveal an interesting property of the optimal solution, as illustrated in Figure 2. The frequency transition points partition the area of the probability density function such that

$$\text{area}(II + III + IV) : \text{area}(III + IV) : \text{area}(III + IV) = \left(1 - F(X_{\text{max}} - X_1' - X_2') \right) : \left(1 - F(X_{\text{max}} - X_4' - X_3') \right) : \left(1 - F(X_{\text{max}} - X_4') \right)$$

(6)

$$= \left(\frac{1}{f_2 - f_1} \right) : \left(\frac{1}{f_4 - f_3} \right) : \left(\frac{1}{f_4 - f_3} \right)$$

(7)

Though it might not be straightforward to solve Equations (3-6) for any given deadline, once the value of λ is determined, solutions can be readily obtained. Here we discuss several special cases for λ, which will be helpful for finding the value of λ for a given deadline.

$\lambda_1 = 0$. It follows that $X_2' = X_3' = X_4' = 0$. Let $D_1 = \frac{X_{\text{max}}}{f_1}$. The deadline D in this case is equal to D_1, and the areas of region (II-IV) are equal to 0.

$\lambda_2 = \frac{(c_2 - c_1)}{(f_2 - f_1)}$. As the deadline shrinks from D_1, higher operating points have to be applied. The area of regions (II-IV) will increase from 0 and keep a constant ratio among them. Finally, the sum of these three regions becomes equal to the total area of the PDF. When this happens, there will be no cycles assigned to f_1. Let D_2 denote the deadline in this case.

$\lambda_3 = \frac{(c_3 - c_2)}{(f_3 - f_2)}$. As the deadline reduces further from D_2, regions (III and IV) keep increasing and finally occupy the whole area of the PDF. In this case, no cycles are allocated to f_1 and f_2. Let D_3 denote the deadline in this case.

$\lambda_4 = \frac{(c_4 - c_3)}{(f_4 - f_3)}$. When the deadline shrinks more from D_3, the area of region (IV) increases and finally occupies the whole PDF. In this case, only f_4 is scheduled. Let $D_4 = \frac{X_{\text{max}}}{f_4}$, which is the minimum deadline this system can satisfy.
In other words, when \(D_1 \leq D \), the whole task is executed with \(f_1 \), and \(\lambda(D) = \lambda_1 = 0 \). When \(D_2 < D < D_1 \), all four frequencies are scheduled along task execution, and \(\lambda_1 < \lambda(D) < \lambda_2 \). When \(D_3 < D \leq D_2 \), only \(f_2, f_3 \) and \(f_4 \) are scheduled, and \(\lambda_2 \leq \lambda(D) < \lambda_3 \), and so on. Finally, when \(D = D_4 \), only \(f_1 \) is used to execute the whole task. The value of \(\lambda \) increases from its minimum \(\lambda_{\text{min}} = 0 \) to its maximum \(\lambda_{\text{max}} = \frac{(v_4 - v_3)}{(f_1 - f_3)} \) as the deadline decreases. In fact, it can be shown that \(\frac{\partial \lambda}{\partial D} \leq 0 \). We will know the numerical range of \(\lambda \) when a deadline is given, by comparing the actual deadline to \(D_1 \) through \(D_4 \), as well as the operating points to be used in the schedule. In practice, we can represent this numerical range of \(\lambda \) by a set of constant numbers (samples of this range) and find the approximate numerical value of \(\lambda \) very efficiently by the bisection method. Thus, the complexity of our method is \(O(1) \) with respect to the number of bins in the workload distribution histogram and linear to the number of available frequencies/voltages.

\[
\frac{(v_{3i} - v_{3i-1})}{(f_i - f_{i-1})} \leq \frac{(v_{3i+1} - v_3)}{(f_i - f_{i+1})}
\]

Equation (7) specifies that, in order for all operating points to be efficient, the slope of the energy–delay curve should decrease as the delay increases, or, all operating points should lie on a convex curve.

As one may expect, the energy efficiency decreases as the delay increases for all processor models, as illustrated by the curves in Figure 3. In the ideal processor model, we also include the static power by assuming that it is about one third of the dynamic power. Figure 3 shows that the operating points of the ideal processor are strictly on a convex curve. Xscale and ARM8 processors follow a similar trend with all operating points being efficient. While PowerPC and Mobile Athlon have some operating points that will never be used in the optimal procrastinating DVS, as indicated in the figure.
is obtained by
\[
(1-F(x_{\max}'-x_1')\ldots X_{n-2}') = \lambda \left(\frac{\tau_1}{\tau_2} \right)
\]
\[
(1-F(x_{\max}'-x_1')\ldots X_{n-2}') + \frac{E_{ij}}{\epsilon_{ij}} f(x_{\max}'-x_1') = \lambda \left(\frac{\tau_1}{\tau_2} \right)
\]
\[
(1-F(x_{\max}-x_1')\ldots X_{n-2}') + \frac{E_{ij}}{\epsilon_{ij}} f(x_{\max}-x_1') = \lambda \left(\frac{\tau_1}{\tau_2} \right)
\]
\[
\frac{x_{\max}'-x_1'}{\tau_1} + \frac{x_{\max}-x_1'}{\tau_2} = D
\]

Usually the energy overhead \(E_{ij} \) is small, e.g., using the data in [7], \(\frac{E_{ij}}{\epsilon_{ij}} \approx 7K(\text{cycles}) \), thus \(\frac{E_{ij}}{\epsilon_{ij}} f(x) \approx F(x) - F \left(x - \frac{E_{ij}}{\epsilon_{ij}} \right) \). Letting \(\phi(x) = F(x - \frac{E_{ij}}{\epsilon_{ij}}) \).

Equation (8) can be reduced to the same form as Equations (3–6) by substituting \(F(x) \) with \(\phi(x) \).

4.2. Combined Overheads

Transition time overheads are hard to model using continuous functions. Eliminating an operating point in the scheduling might increase the energy, but it also increases the allowed execution time by releasing the transition time, thus reducing energy. When the number of available operating points is small. We can adopt a brute-force approach.

Using the 4-frequency system as an example, we first assume all frequencies are applied and the actual deadline is adjusted by \(D_{\text{actual}} = D - 3t_o \), where \(t_o \) is the time overhead for one transition. We can find the optimal scheduling in this case by Equation (8). Then we allow only two transitions to happen in task execution, and we solve Equation (8) for all combinations of three operating points, similarly for one transition or even no transitions. Finally we choose the schedule with the lowest energy consumption. This brute-force approach requires \(O(2^r) \) (\(r \) is the number of potential operating points) iterations of solving Equation (8) and is therefore not effective when \(r \) is large.

When the number of efficient operating points is large, we propose a heuristic search algorithm based on dynamic programming. The detailed algorithm is not presented here due to space limitation. We explain the key ideas behind our algorithm. First, we find a schedule using all frequencies by Equation (8), with the deadline adjusted by the transition times. This is the baseline schedule. Second, we define \(\text{energy_reduction}(f_i) \) as the energy reduction after the elimination of \(f_i \) from the baseline schedule. When \(f_i \) and \(f_j \) are not consecutive in the baseline, it is approximated that \(\text{energy_reduction}(f_i, f_j) = \text{energy_reduction}(f_i) + \text{energy_reduction}(f_j) \). Therefore, if \(\text{energy_reduction}(f_i) < \text{energy_reduction}(f_k) \), it is established that \(\text{energy_reduction}(f_i, f_j) < \text{energy_reduction}(f_k, f_j) \) when \(f_j \) is not next to either \(f_i \) or \(f_k \) in the baseline schedule. Thereby, we can reduce the search space without examining the elimination of both \(f_i \) and \(f_j \) from the baseline. The complexity of our algorithm is \(O(r^3) \). In the next section, we use this algorithm to find schedules with a subset of frequencies when the number of transitions is fixed.

5. Experimental Results

In this section, we compare the proposed method with previous techniques. Since transition overheads were not considered in most prior work, in our experiments, we also ignore energy/time overheads for all schemes in comparison. The simulations use a processor model that provides finite frequencies linearly spaced between 500MHz and 1.5GHz, and a power model \(P = a f^p \). We assume the maximum number of cycles in a task is 1,000,000, and generate 5000 task instances for each different workload distribution. The PDFs for the voltage scheduling are obtained from profiling those 5000 task instances using a histogram with 10K cycles in each bin.

![Figure 4. Energy consumption by different scheduling techniques for workloads with different cycle count distributions.](image-url)
the processor is capable of 10 different frequencies. This figure implies that, for a given deadline, a small number of carefully selected frequencies can form a schedule achieving energy savings very close to that of a schedule consisting of the full frequency set (as shown by the right y-axis). Similar results are observed for other workload distributions.

![Figure 5. Average task energy consumption at various deadlines when the number of frequencies in a schedule is fixed. (The y-axis on the right shows the energy values normalized to those of using the full frequency set (10 fs).)](image_url)

When the total number of efficient frequencies is large, it is computationally expensive to find a good subset of frequencies for scheduling when the allowed number of transitions is fixed. We compare our dynamic programming based heuristic method (subsection 4.2) to a brute-force approach. For a system model with 10 total frequencies, experimental results show that our heuristic method is 5 times faster to find “good” schedules for different numbers of allowed frequencies. The average task energy consumption using the schedules found by our method is very close to that found by the brute-force method, and the maximum deviation we observed is within 2%. In fact, the data presented in Figure 5 are based on the schedules found by our heuristic method.

6. Conclusion

In this paper, we introduced the optimal procrastinating DVS for systems with discrete frequency sets. Our techniques efficiently solve the practical issues encountered by previous techniques. The complexity of our method is O(1) with respect to the number of bins in the task workload histogram, and linear to the number of operating points involved in the schedule. We also find that not all available operating points are necessarily efficient even though they consume less power. We extend our method to deal with transition overheads and find that, for a given deadline, a small number of carefully selected frequencies may be sufficient to form a good schedule achieving energy savings comparable to that using all efficient operating points. We develop an efficient heuristic algorithm to find good schedules composed of only a subset of available frequencies, thereby avoiding unnecessary transition overheads. Thus, our techniques are readily applicable to various practical systems.

References