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Abstract 
 
     Characterization of semiconductor devices is used to 
gather as much data about the device as possible to determine 
weaknesses in design or trends in the manufacturing process. 
In this paper, we propose a novel multiple trip point 
characterization concept to overcome the constraint of single 
trip point concept in device characterization phase. In 
addition, we use computational intelligence techniques (e.g. 
neural network, fuzzy and genetic algorithm) to further 
manipulate these sets of multiple trip point values and tests 
based on semiconductor test equipments, Our experimental 
results demonstrate an excellent design parameter variation 
analysis in device characterization phase, as well as detection 
of a set of worst case tests that can provoke the worst case 
variation, while traditional approach was not capable of 
detecting them.  
 
1. Introduction 
 
     There is a distinction between semiconductor production 
verification tests and engineering characterization and analysis 
tests. Production testing determines if the device meets its 
design specification and, if it does not, stops testing on first fail, 
bins the device and goes on to the next device. In contrast, the 
methodology for characterization is a kind of closed loop test; 
that is, a test repeated many times within a specific timing 
edge varied with a range, looking for the pass/fail point of an 
associated parameter, and this is called trip point as shown in 
figure 1. The key to this process is discovering the trip point as 
accurately as possible, and determines the exact limits of 
device operating values. It is important to note that device 
specifications and limits of operating values are fixed in the 
design phase (such as clock frequency), and are not expected 
to vary during device operation phase. In reality, the exact 
limits of device operating values can be better or worse than 
the expected design specification due to different input tests 
(pattern and test condition variation), and semiconductor 
process variation. Ideally, we want characterization tests for 
the worst case, because it is easier to evaluate than average 
cases and devices passing this test will work for any other 
conditions. This is done by selecting a pre-defined test that 
results in a chip pass/fail decision. Then select a statistically 

significant sample of devices, and repeat the test for every 
combination of two or more environmental variables. This 
essentially means repetitively applying functional tests and 
measuring the limits of various DC or AC parameters, such as 
supply voltage or clock frequency. This set of information 
helps to define the final device specification at the end of the 
characterization phase, and develop a production test program 
in manufacturing test. 
     Various methods for characterization and altering test 
values to find a device’s trip point, such as successive 
approximation, binary search, and linear search are used in 
ATE [1:7] [16] today. A linear search starts at one boundary 
and steps through a specified resolution until the stage changes 
or the end boundary is reached. The trip point is a device pass. 
This approach has some disadvantages. If the resolution is 
small, the search can be time consuming. If the specification 
parameter changes over time due to device heating or other 
factors, an inaccurate reading could result. If the device is 
failing (or passing) over a large range of values the entire 
search must be run for several different ranges to reach this 
conclusion. A binary search method uses a divide-by-two 
approach. The delta between the last known true and last 
known false condition are halved until the trip point is found. 
The search switches directions (toward the starting point and 
ending point) every time the condition changes from pass to 
fail or from fail to pass. The successive approximation 
searches between two values, using one of the boundary values 
and a value half way in between. If both produce the same 
results, the search continues to the other end of boundary. If 
each produces difference results, then the same search 
continues between the passing and failing points until the trip 
point is found. This approach is similar to binary search, 
except the successive approximation uses an algorithm that 
can sense a drifting specification parameter and make a 
judgment as to the direction and span of the search. This 
method is recommended for device performance 
characterization at most of the ATE [1:7] today. However, all 
of these characterization approaches can not address the 
problem of potential specification variation due to different 
tests. This is because the exact limits of device operating 
performance are heavily dependent on input tests. Input tests 
are referred to input test patterns and test conditions. Thus, a 
set of pre-defined tests with a single trip point analysis can not 
guarantee that the trip point stays within the specification 
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     The rest of the paper is organized as follows. In section III, 
we describe the novel multiple trip point characterization 
concept. In section IV, we describe the search until trip point 
technique to improve the time efficiency during the search of 
worst case test in characterization process.  In section V, we 
describe the implementation of computational intelligence 
techniques for device characterization with industrial ATE. 
The experimental results are presented in Section VI. Section 
VII concludes the paper.     

under all admissible conditions. It is practically impossible to 
determine the true worst case test manually using a 
deterministic method. This finally leads to the major technical 
challenges: How to select a set of worst case tests that can 
provoke the worst case variation against specification? How 
can we automate this process intelligently? This paper solves 
the problem efficiently using computational intelligence 
techniques with industrial ATE.    

 

 
3. Multiple Characterization Trip Point 
 
     There are many cases where several design parameters 
were measured and passed within the design specification 
using conventional approaches, but this method failed to 
detect the worst case behavior in real application. The major 
weakness is that it relies only on a small set of pre-defined 
deterministic tests (patterns and test conditions), and a single 
trip point measurement. Typical technical efforts of 
semiconductor device characterization are only focused on 
how to get this trip point as accurate as possible. However, to 
guarantee that the device meets the design specification under 
all test conditions, we can not rely on a few single tests and 
single trip points. Trip point values could fluctuate easily with 
respect to different non-deterministic random tests, such as 
bus control signals in real application board. Therefore, we 
propose to determine the worst case trip point value based on a 
set of multiple trip point measurements with respect to 
different non-deterministic random tests.   

 
Fig. 1. Single trip point concept in device characterization 
process 
  

 2. Contribution  
                         Example: Binary Search for Trip Point  
End point  Comparing to the traditional device characterization concepts 

[1-7] [15-16], our work has the following contributions [11]:                                          Device Fail Region 
                                                            Test 2 ! We propose multiple characterization trip point 

concept instead of conventional single trip point 
method.  

         
                                                            Test 1  
Trip Point ! We develop a search method: search until trip point 

technique, to reduce the repetition of measurement 
during characterization phase. This method 
ultimately speeds up the searching time of worst case 
test in characterization process.   

                                                            Test3 
 
                                        Device Pass Region 
 
                                    Worst Case Trip Point Variation  ! We use neural network (NN) to learn from a set of 

input tests and their corresponding characterization 
trip points via ATE. In addition, we propose to use 
fuzzy set theory to encode the characterization trip 
point information. In operation phase, neural network 
will perform a classification task to identify the worst 
case test. Finally, this set of pre-selected worst case 
tests will be further optimized by genetic algorithm 
(GA) based on the fitness of the trip point value 
obtained from the ATE. Final set of worst case tests 
can be re-simulated or analyzed in detail with ATE 
(e.g. wafer probing analysis) to localize the design 
weakness efficiently.        

Start point                   Analysis  
 
      
                                    Number of search steps  
 
Fig. 2. Multiple trip point concept in device characterization 
process 

 
     For the procedure in figure 2, we use the random test 
generator based on [9-10], combined with a device 
characterization algorithm such as binary search or successive 
approximation. In order to pin-point the potential worst case 
test sequences more precisely, we define small test sequences 
in between 100 to 1000 vector cycles for each characterization  



measurement of a single trip point. As a result, we obtain a set 
of design specifications DSV which is equal to the trip point 
values obtained from different input tests Tn where each test 
(e.g. test 1, 2 and 3 in figure 2) produces individual trip point 
values. (N is number of tests.) 
 

( NTTTPVDSV ,...,1= )                                                    (1)   
 
4. Search Until Trip Point Algorithm  
 
      There are several technical constraints about device 
characterization testing to keep in mind. First, characterization 
is a lengthy process since it involves multiple repetitions of a 
test. Second, the search algorithm requires that starting points 
be chosen on both sides of the good to bad crossover as shown 
in figure 2. It is easy to underestimate the range required and to 
choose starting points that are both good. Very generous 
starting ranges should be selected. Third, characterization tests 
are aimed at characterizing independent parameters one at a 
time. The test conditions must be such that only the parameters 
being tested can cause test failure. All the other parameters 
must be relaxed so they can not cause test failures and false 
convergence.  
     The above constraints create a major technical issue of 
measurement speed if a multiple trip point concept is used. To 
solve this problem practically, we propose to use “search until 
trip point algorithm” during multiple trip point 
characterization process, as in figure 3: assume T is a set of 
random input tests, and the upper boundary value P of the pass 
region is smaller than the lower boundary F of the fail region, 
such as specified operating frequency of the device is 100MHz 
and the device will fail if operating frequency is further 
increased above 110MHz. In order to have a generous starting 
range, we defined the starting frequency is S1=80MHz, and 
ending frequency is S2=130MHz. So the characterization 
range is CR=50MHz and we use successive approximation to 
perform the first trip point detection using any initial random 
test as in equation (2) based on equation (1). The first trip point 
value is then defined as RTP=reference trip point. And the 
next search will be based only on RTP conditions instead of 
full characterization range CR. If the second test passed (N>1) 
with RTP, then RTP+SF is used, where SF is defined as search 
factor resolution, and it is a programmable variable such as 
1MHz or 2MHz per step and IT is defined as search iterations; 
thus SF(IT) can be defined as SF .  SF will further 
increase with IT until the device shows the first failure result 
and the trip point is detected. On the other hand, if the second 
test failed with RTP, then RTP-SF(IT) is used. SF(IT)  is 
further decreased until the device shows the first working 
result again and the trip point is discovered. Instead of 
equation (3), we use equation (4) if the specification value of 
P=pass region is greater than the F=fail region. The major 
motivation of using equation (3) and (4) for multiple trip point 
method is that the variations of semiconductor device 
parameters or performance values are only expected in a very 
narrow range with respect to different input tests if the devices 

are properly designed. Therefore, it is not necessary to search 
through the whole “generous range” for multiple repetitions of 
trip point measurement that would cause a very lengthy 
process, since CR(IT) is much larger than SF(IT) as shown in 
figure 3. In addition, In case of unexpected drift of design 
performance vs target specification due to unexpected design 
weaknesses provoked by a set of worst case tests, our proposal 
is flexible enough to detect the drift while keeping smallest 
effort of searching for the trip point value based on RTP. This 
ultimately leads to huge savings of measurement time and 
guaranteed automatic convergence, keeping the test time as 
low as possible.  
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Fig. 3. Formulation of Search until Trip Point Algorithm 
 

5. Intelligent Device Characterization 
 
     Today, what is missing in typical device characterization 
concepts with industrial ATE is that the test system is not 
designed to perform the worst case device characterization. 
Instead ATE is used to detect the trip point as accurate as 
possible based on a set of pre-defined patterns. A pre-defined 
test is based on deterministic way of testing the circuit. It does 
not for sure emulate the worst case application condition, and 
this ultimately leads to potential application failures, even if 
the circuit has passed all deterministic characterization tests. 
On the other hand, it would be a huge work if we try to analyze 
all different combinations of test sequences and specifications. 
To solve this limitation, we change the major objective of 



! (3) Trip point value coding using either fuzzy set 
data [8] or simple numerical coding; then NN 
starts to learn from input random tests and 
supervised by ATE detects TPV value from (2).  

device characterization, focusing only on how to accurately 
detect the worst case test that can provoke the worst case 
performance vs. specification variation, while keeping the 
time of measurement as low as possible using the techniques 
proposed in section 2 and 3. In addition, we combine 
computational intelligence techniques with industrial ATE to 
perform learning of device characterization and the worst case 
test classification task. To implement this concept, we 
re-configure our previous work [9][10] to use it in 
semiconductor device characterization. The completed device 
characterization learning and optimization scheme can be 
described as follows in figures 4 and 5. 

! (4) The confidence in the classification is 
determined by averaging the mean error for each 
network (i.e. consistency check). After that, NN 
will continue learning with iterative network 
learnability and generalization check [12-14] 
until learning and generalization error is small 
enough; otherwise go back to (1).   

! (5) At the end of NN learning, a NN weight file 
is generated. This file will be used in 
classification task of worst case test based on 
only software computation without measurement 
in optimization phase as in figure 5.   

     
  
                              Random Test Generator: T  
                                 (N=number of tests)              
  

  
                        Fuzzy-Neural Network Test Generator                                    Industrial ATE 
                                          (NN Weight File)   

    T  N                     T  N                 Multiple Trip Point Characterization 
                     

                   If N=1, then TPV  using eq(2)  )( NT                                 Characterization Objective 
                          Maximum or minimum drift analysis?                    If N>1, then TPV  using eq(3)/(4)     )( NT                                 

                            Fuzzy Inference Coding                 (Supervised Learning and Voting Scheme)                          Genetic Algorithm-GA                       Single/Multiple Neural Networks                Optimization of NN worst case test                              based on characterization objective 
                                                                                     Yes  

                       GA Fitness = TPV measurement via ATE          
                                 Learning Error?                         using equation (2), (3) and (4)      

  
                                                                       No 

         No  
                                         WCR/End of GA?                                Final NN Weigh File  
  
                                                          Yes  

Fig. 4. Intelligence Device Characterization Learning Scheme 
with industrial ATE  

 
                                  Worst Case Test (Database)  

  ! (1) To measure how confident the neural net is in 
its classification, we propose to use the NN 
voting machine algorithm, such that multiple 
NNs are trained on different subsets of the 
training input tests, then vote in parallel on 
unknown input tests. Thus, the first step is 
presenting a random test to ATE and neural 
network modules continuously.  

 
Fig. 5. Intelligence Device Characterization Optimization 
Scheme with industrial ATE  
 

! (1) A number of GA test populations are 
initialized by a set of sub-optimal tests selected 
by fuzzy-neural network test generator based on 
its previous learning experience (NN weight 
file). ! (2) Detect the first reference trip point RTP using 

equation (2), and search for the subsequent trip 
point using equation (3) or (4) depending on the 
search parameter conditions.     

! (2) Define the characterization objective: 
generating a worst case test that can provoke the 
worst case characterization parameter drift, such 



     Finally, a major achievement of our approach is the way of 
coding test inputs and measurement values from ATE. It is 
very complicated to model a NN with multiple output 
classification ability. Thus we propose to pre-select a set of 
DC or AC critical parameters; and generate NNs individually 
for each parameter or each characterization analysis task. 
Finally, based on our prior characterization experiences,we 
strongly recommend to use fuzzy variables to encode 
measurement values as fuzzy logic can describe more than one 
analysis parameter; such as if A and B and C, then D is quite 
close to the limit of the target device-spec.  

as drift to the maximum value, or drift to the 
minimum value.    

! (3) Test optimization starts using GA [12-14] 
based on its characterization objectives (2). The 
GA fitness=TRV evaluation is based on equation 
(2), (3) and (4) depending on T conditions as 
described in section 3 and 4.  

N

! (4)  GA optimization process continues until GA 
fitness value can not improve anymore. Then go 
to (1) and a brand new population will start GA 
again. This process will continue until either it 
reaches the maximum optimization steps or the 
worst case is detected based on worst case ratio 
theorem. At last, final worst case tests are 
generated and stored in the database.  

 
6. Experimental Results 
    
     We have tested our approach using 140nm technology 
memory test chip. In our experiment, we select data output 
valid time T (spec = 20ns) to perform the worst case 
parameter variation analysis.  The data output valid time is 
defined as data valid time with respect to address changes. The 
smaller the T value, the longer the required data valid time 
as show by the arrow direction in figure 7. Thus, the minimum 
value is the worst case, since the processor will have to wait 
for a longer time to read the valid information from the 
memory chip. Obviously, T is test dependent, and the 
objective of our experiment is to detect a set of worst case tests 
that can provoke the worst case minimum T  value using 
equation (6)-minimization.   
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     To classify the tests in the GA optimization process, we use 
the Worst Case Ratio (WCR), given in equation (5) and (6) for 
a parameter value va obtained by ATE analysis in test number 
n, when N tests are performed in the total analysis time:  
 
WCR(N) = Max |va(n)/vmax|,  0<n≤N                (5) 
 
WCR(N) = Min |vmin/va(n)|,  0<n≤N                (6) 
 
Where, vmax or vmin are specified max or min values, 
respectively, for parameters such as voltage, current, or timing 
deviation. GA classifications (see figure 6) could then be 
 

 Pass 0≤WCR≤0.8   
                                   Address Weakness 0.8<WCR≤1   

DQT  Data output valid time                      0ns Fail  WCR>1 
  
     Previous data    Not Valid     Data Valid  
  
                            Data Output Bus    0                                  0.8         1      >1    WCR  

                   pass              weakness       fail    Fig. 7. Timing diagram for data output valid time 
  

     In the beginning, we perform the intelligence device 
characterization learning as described in figure 4, using 
multiple trip point concepts as described in section 2 and 3. At 
the end of the learning process (e.g., 50,000 testing patterns 
applied by ATE, 500,000 training patterns applied by 
software), a neural network weight file is generated. This file 
is further used in the sub-optimal worst case test generator. It is 
called sub-optimal because neural network can not guarantee 
that the generated output will closely match the perfect 
approximation. Thus, we further optimize the NN tests using 
genetic algorithm (GA) as explained in figure 5. At the end of 
the GA optimization, a set of worst case tests is generated 
based on WCR. We then further analysed them in detail using 
industrial ATE and circuit-level simulation. In this paper, we 
will only discuss the analysis results based on the 

Fig. 6. Definition of Worst-Case Ratio WCR 
 
     The worst case tests are given by the largest values of WCR. 
In order to deal with two different types of chromosomes – test 
sequences and test conditions - we have developed a GA 
method evolving multiple populations of different individuals 
over a number of generations. A fitness value is assigned to 
each individual in the GA population. According to the 
analysis task, the fitness can be power consumption, peak 
current, voltage or other functionalities obtained from ATE. At 
the end of the complete iterative analysis, a final set of worst 
case tests is identified, covering all considered fitness 
variables. Functional failure patterns (if any) are stored 
separately. Then, we further analyze the potential design 
weaknesses and functional failures, using a transistor-level 
simulator and/or ATE.  



7. Conclusion  measurement from industrial ATE. Functional failure detected 
with our approach is not discussed in this paper.  
     In order to study the efficiency of our approach, we 
compare our approach with typical deterministic method and 
random approach as shown in Table 1. The first column of 
table 1 is the name of test extracted using different methods as 
shown in column two. The third column of table 1 shows 
different WCR values using equation (6)-minimization and the 
fourth column of table 1 shows different T values extracted 
from the worst case parameter shmoo in figure 8 based on 
three different approaches. The shmoo plot shows Vdd power 
supply in Y-axis, and T timing parameters in X-axis. There 
are 1000 tests overlapping in a single shmoo plot, so that we 
can compare the differences between them. Our practical 
experimental result clearly shows that T is test dependent, 
as different tests trigger different trip point values in the shmoo 
plot. This demonstrates the importance of using our multiple 
trip point concept in device characterization. Moreover, in 
table 1 the lowest value of T  (i.e. the value with highest 
WCR compared to the other methods) is detected via neural 
network and genetic algorithm approach.  
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DQ

DQ

DQ

     Our experimental results show that the measured device 
performance is input test dependent. The true worst case test 
can provoke a large drift of the trip point values, which may 
lead to degradation of circuit performance or application 
failure. It is very difficult or not possible at all to obtain this 
information by any existing conventional single trip point and 
single test concept. To detect the worst case test, we use 
computational intelligence techniques with industrial ATE, 
and we further developed a “find until trip point” method to 
improve measurement speed and range selection procedure 
during characterization and search process. To the best of our 
knowledge, our approach creates the first computational 
intelligence characterization concept for semiconductor 
analysis and industrial ATE. This concept changes the focus of 
typical device characterization. The major benefit of our 
approach is the fact that it has a high probability to measure the 
true performance of the device. Although the test time is 
longer than in a single trip-point method, the cost of our 
approach will be much lower if we consider the cost of 
manually performing a detailed analysis on possible 
circuit-weaknesses left behind by single trip-point method. 
Thus, our approach is very attractive to get products to market 
in time.  

 
Table 1 Comparison of T with different approaches: Vdd 
1.8V 

DQ

 
 8. References 

Test Name Technique WCR 
DQT (ns) 

March Test  Deterministic 0.619 32.3ns 
Random Test Random  0.701 28.5ns 
NNGA Test  Neural & Genetic  0.904 22.1ns 

 
[1] TERADYNE J971/J973/ARIES ATE Manual V3.6, 1999-2000 

[2] TERADYNE J750 ATE Manual V3.2, 1999-2000 

[3] HP 83000/95000 ATE Manual, 1999-2002 
 [4] ADVANTEST ATE Manual (T6672…etc), 1999 

 

[5] LTX Fusion ATE Manual, 2000 

[6] CREDENCE ATE – www.credence.com 
[7] SPEA: Comptest 300 MX ATE Manual, 1999 

 [8] James C.Bezdek.: Fuzzy Model- What Are They, and Why?: IEEE 

Fig. 8. Shmo
Analysis 
VDD (Y-axis) V

Transactions on Fuzzy Systems, Vo11. N01, 1993,  PP. 1-5. 

[9] Eric L, D Schmitt-Landsiedel: Automatic Worst Case Pattern Generation 
using NN and GA for Estimation of PSN in CMOS Circuits: Proceedings 
of the 8th IEEE ETW, 2003, PP. 105-110. 

[10] Eric L, D Schmitt-Landsiedel: A Novel Semiconductor Test Equipment 
Concept: ATE with Computational Intelligence Technique: Proceedings 
of the 21th IEEE IMTC, 2004, PP. 2144-2149.  

[11]  Eric L.: Siemens CT Patent File EP/PTO - Patent No: 2003P54261EP  

[12]  Patterson, D.W.: Artificial Neural Network Theory, John Wiley and Sons 
Press 1996. 

[13] A J V van Rooij, L C Jain & R P Johnson: Neural Network Training 
Using Genetic Algorithms, John Wiley and Sons Press 1996. 

 [14]  Timothy Masters: Practical Neural Network Recipes in C++, John Wiley 
and Sons Press 1993. 

[15] R. Jacob Baker, Harry W. Li, David E. Boyce: CMOS Circuit  
 Design, Layout, and Simulation, IEEE Press 1998. s 

o Plot: Worst Case Device Pa
DQT (X-axis) n
VDD=1.8V
Parameter Variation
[16] Ashok k. Sharma: Semiconductor Memories Technology, Testing, and 
Reliability, Solid-State Circuits Council, IEEE Press 1997. 

rameter Variation 

http://www.credence.com/

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index




