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ABSTRACT 

Capturing RLCK circuit responses accurately with existing 
model order reduction (MOR) techniques is very expensive. Direct 
metrics for fast analysis of RC circuits exist but there is no such 
technique for RLCK circuits. This paper introduces a new family of 
MOR techniques based on piece-wise functions to capture RLCK 
circuit responses accurately using only four or five moments. The 
time-domain response is approximated using a piece-wise function 
whose pieces are simple polynomials. The proposed method is fast 
and guaranteed stable and it avoids the calculation of poles and 
residues associated with existing model order reduction techniques. 
Results for many different industrial netlists indicate that delay and 
transition time can be captured within 5% error using only four 
moments. To the authors’ knowledge, there is no existing method 
that can extract as much information about RLCK circuits with 
only four or five moments. 

Categories and Subject Descriptors 

B.7.2 Integrated Circuits (Design Aids), Simulation 

General Terms 
Algorithms, Performance 

Keywords 
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1. INTRODUCTION 
Interconnect timing analysis is one of the fundamental 

components of a static timing analysis tool. Until recently, most 
interconnect timing analyzers were tuned for handling RC circuits. 
The ease and simplicity of computing circuit moments from large 
extracted netlists made model order reduction (MOR) techniques 
([1]-[3]) based on moment matching very useful for interconnect 
timing analysis. Only a few moments can produce good results for 
RC circuits. However, tens of moments are required for accurate 
estimation of RLCK circuit responses and existing techniques can 
suffer instability, inaccuracies, and/or long runtimes. Inductive 
effects have become much more significant recently ([4],[5]) and 
interconnect timing analyzers must be modified to efficiently 
handle complex RLCK networks present in high speed digital 
circuits. 

One feature common to all existing model order reduction 
techniques is their approximation of a time-domain circuit response 

y(t) using a sum of exponential (SOE) terms as given by 
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where ki and pi are generally complex numbers. The values pi in the 
above equation are closely related to the dominant eigenvalues or 
poles of the original circuit and the values ki are the residues. 

There are many problems associated with the sum of 
exponential representation. First, the approximation of the exact 
circuit response can be unstable if any pi has a positive real part. 
Second, it can be very expensive to find accurate approximations 
for RLCK circuits. Third, it is hard to extract timing information 
such as delay and risetime from the SOE form. 

The form shown in equation (1) cannot be readily used for 
timing analysis. In any case, static timing analyzers do not need all 
the details contained in the sum of exponential representation. 
Most static timing analyzers require the computation of timing 
parameters such as delay for computing path delay and transition 
time for computing next gate delay using pre-characterized cell 
library lookups. Extracting these parameters from the form shown 
in (1) is usually expensive and requires iterative methods. Hence, 
the SOE form is unnecessarily complex for static timing purposes. 

Direct metrics for delay and transition time calculation were 
introduced to avoid problems associated with model order 
reduction techniques and to reduce runtime. Elmore and Wyatt 
delay models approximate the 50% delay as -m1 and -0.693m1, 
respectively, where m1 is the first order moment of the response in 
frequency domain ([6],[7]). Recently, more accurate delay and 
transition time metrics have been developed based on higher order 
moments ([8]-[15]). These metrics also assume that the circuit 
response follows some time-domain function. 

Most of the direct metrics are based on only two or three 
moments and they give accurate delay and transition time for RC 
circuits. However, similar direct metrics do not exist for RLCK 
circuits whose responses are very complex and require more 
moments. Another problem with the direct methods is that the 
closed form expressions for delay and transition time are not 
scalable with the number of moments. There is no general method 
to extend these methods to make use of more information 
contained in higher order moments. 

In this paper, a new family of model order reduction 
techniques based on piece-wise functions is introduced to 
approximate RLCK circuit responses using moment matching. As 
with previous methods, it is assumed that the response follows 
some pre-specified time-domain function, which is piece-wise 
here. An example of such a function is the piece-wise linear (PWL) 
function (see Figure 1). Obvious extensions to the PWL function 
are the piece-wise quadratic (PWQ) and piece-wise cubic (PWC) 
functions. In fact the methodology presented in this paper can be 
applied to any piece-wise polynomial function of time efficiently. 
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Representing circuit responses using piece-wise functions has 

several advantages over the SOE form for computing delays and 
transition times. Finding the piece-wise approximation is much 
easier than finding the SOE approximation. Additionally, much 
fewer moments are needed to get the required information about 
signals (see Figure 1) than required for a single-piece SOE 
representation. As seen in Figure 1, the RLCK circuit response is 
approximated well using the PWL function using just four 
moments. In comparison, the SOE form returns very inaccurate 
result with four moments. Although the method is easily 
extendable to use the information contained in higher order 
moments, it will be shown in the results section that using only 
four to five moments produces very good results for complex 
RLCK responses. The method is stable since poles are not involved 
at all. As long as the piece-wise function is kept simple (PWL, 
PWQ, etc.), it is very easy to extract timing parameters such as 
delay and transition time from the piece-wise description. The 
runtime is comparable to some of the direct methods which only 
handle RC circuits. 

The rest of the paper is organized as follows. Background 
information is presented in section 2 and the new theory is 
presented in section 3. Results are provided in section 4 for RC and 
RLCK circuits. Finally, the paper is concluded in section 5. 

2. BACKGROUND 
Many model order reduction techniques assume that the time-
domain response can be represented by the SOE form given by (1), 
which resembles the exact response for nth order interconnect 
systems. A reduced order model is produced when n is less than the 
order of the original system. The poles and residues of the reduced 
order system are computed by moment matching. 

Moment matching has been famous since the introduction of 
AWE because of the ease of computing circuit moments ([16]). 
Matching the circuit response moments mi for i=0,…,(2n-1) with 
the moments of (1) yields the system of equations 
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The above system is a set of 2n nonlinear equations in 2n 
unknowns and it can be solved using the method in [1]. 

The SOE form works well for RC circuits. For RLCK circuits 
however, higher orders are needed and AWE typically fails at 
higher orders because of numerical instability issues. Methods such 

as PRIMA and PVL were introduced to capture these responses but 
they are more complex and they typically require many moments 
to accurately capture RLCK responses. Figure 2 shows an exact 
RLCK circuit response obtained using SPICE and its 
approximation using the SOE form (equation (1)) for many 
different approximation orders n. The circuit was extracted from an 
industrial layout and the response shown is for a step input. The 
figure shows that a second order approximation using four 
moments is not sufficient at all to capture the complex response. 
The SOE form requires as many as 20 moments to get close to the 
exact response and 40 or more moments for exactness. 

 

3. THEORY 
In this section, the theory for calculating a piece-wise 

approximation from circuit moments will be presented. Section 3.1 
presents the details for calculating the moments of a general piece-
wise function. The details about calculating piece-wise linear, 
piece-wise quadratic, and piece-wise hybrid approximations from 
the circuit moments are presented in sections 3.2, 3.3, and 3.4, 
respectively. The method is general enough to be extended easily 
for other types of piece-wise functions. 

3.1 Moments of a General Piece-Wise Function 
Figure 3 shows the response of an RLCK circuit at a receiver 

node. This signal starts rising at time t=0 and can be considered 
settled at time t=tn. The figure also shows a piece-wise function 
approximation x(t) with n pieces between t0,t1,…,tn and a last 
horizontal piece at v=VDD from tn to t=∞. The equation of a general 
piece-wise function is given by 
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where u(t) is the unit-step function and the function xk(t) describes 
the kth piece. 

Figure 2. The SOE (SOE) representation requires too many 
moments for RLCK circuit response approximation, 

requiring long runtimes. 
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Figure 1. Piece-wise waveform (PWL) is better than 
SOE using just 4 moments. 
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Figure 3. Representing a circuit response as a piece-wise 
function x(t). 
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The s-domain moments of the piece-wise function x(t) can be 
computed easily using the definition of Laplace transform. The 
Laplace transform X(s) of x(t) is 
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since x(0-)=0. Expanding the exponent in (4) around s=0 results in  
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Since x’(t) = 0 for t > tn, equation (5) can be rewritten as 
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The integral in equation (6) can be further expanded in terms of the 
pieces of the function x’(t) as 
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The frequency domain response X(s) is assumed to be in the form 
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where mi
X, i=0 to n, are the s-domain moments of X(s) for a voltage 

signal x(t). Comparing equation (7) with (8) results in the 
following formula for moments mi

X of a general piece-wise 
function: 
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As long as the pieces xk(t) are polynomials in t, the integral in 
(9) can be evaluated quickly and the piece-wise description of x(t) 
results in much simpler moment matching equations than the 
system (2) for the SOE representation. Polynomials form a large 
class of functions and a lot of freedom is available to design the 
pieces to approximate very complex RLCK responses. 

3.2 Calculating a Piece-Wise Linear (PWL) 
Approximation from Circuit Moments 

Figure 4 shows the piece-wise linear version of the function 
x(t). Each piece xk(t) is defined by 

.)( kkk btatx +⋅=  (10) 

Substituting the PWL x(t) from (10) into (9), the s-domain 
moments mX of the PWL function x(t) have a compact analytical 
representation given by 
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Circuit response moments mC can be computed easily using 
any of the existing moment calculation techniques ([17]). Matching 
the circuit response moments with equation (11) yields the system 
of equations 
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There are two types of unknowns to be determined in the 
PWL approximation. The first set of unknowns are the time-points 
tk (k=1,2,…,n) where the consecutive pieces of x(t) intersect (t0=0 
without any loss of generality). The second set consists of the 
parameters that define each of the pieces xk(t). For the PWL 
function, only (a1,a2,…,an) have to be calculated. If ak’s are known, 

then the parameters (b1,b2,…,bn) can be calculated easily by 
matching the end-points of the pieces. Hence bk’s are not 
considered as unknowns. Thus, there are 2n unknowns to be 
calculated for an nth order PWL approximation. 

Equation (12) is non-linear in the time-points tk for k=1 to n. 
However, if the values of time-points tk are fixed, there are only n 
unknowns (a1,a2,…,an). Moreover, the system (12) becomes linear 
and can be solved quickly. Now only n circuit moments are 
necessary to calculate the n unknowns (a1,a2,…,an). The set of 
time-points are known to be real and positive and they can be 
easily estimated from the moments as will be shown in section 3.5. 
The set of parameters (a1,a2,…,an) can thus be obtained by solving 
the following linear system where tk are known 
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(13) 

The values of ak are always real numbers if the time-points tk 
are real non-negative numbers, which is guaranteed. The constants 
bk for equation (10) can be calculated recursively using 
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where the formula for k>1 results from equating xk-1(t) and xk(t) at 
t=tk-1. The results of approximating circuit responses using the 
PWL function are discussed in section 4. 

3.3 Calculating a Piece-Wise Quadratic (PWQ) 
Approximation from Circuit Moments 

The PWQ function offers a lot of variety in the possible 
waveshapes that it can capture. The pieces of xk(t) of the piece-wise 
quadratic version of the function x(t) are defined by 
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Substituting (15) into (9), the s-domain moments of the PWQ 
function are given by 
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for i = 0 to n. Since xk(t) is a piece-wise quadratic function, there 
are n extra unknowns as compared to the PWL function. As with 
the PWL function, the time-points tk for the PWQ function can be 
calculated based on the method presented in section 3.5. 

The system of 2n equations can be formed as follows. The 
first n equations can be obtained by matching m1

X to mn
X with the 

circuit response moments m1
C to mn

C. The next (n-1) equations can 
be obtained by matching the first time derivative of xk(t) with the 
first time-derivative of xk+1(t) at time-points tk, k=1,2,…,(n-1). This 

Figure 4. Representing a circuit response as a piece-wise 
linear (PWL) function x(t). 
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not only guarantees the smoothness of response where the pieces of 
x(t) meet but it also uses only n circuit response moments. The last 
equation results from setting xn’(t=tn) equal to zero. This 
guarantees that the response is steady at t=tn. Thus, the linear 
system of 2n equations in 2n unknowns is given by 
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and it can be solved easily by Gaussian elimination. 
Again, the values ak and bk obtained by solving (17) are real 

numbers. A tradeoff can be made between matching moments and 
matching the first derivatives of xk(t) and xk+1(t) at time-points tk to 
form the system of equations. If more than n moments are matched, 
then less than n derivatives should be matched. 

The general recursive formula for calculating ck is given by 
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The results of approximating circuit responses using the PWQ 
function are presented in section 4. 

The method presented in this section for PWQ functions can 
be extended easily for higher order polynomials (e.g. cubic). 
Higher order polynomials require calculation of more parameters 
and this can be done by either matching more moments and/or by 
matching higher order derivatives of xk(t) and xk+1(t) at tk, 
(k=1,2,…,n-1) and solving the resulting linear system of equations. 

3.4 Calculating a Hybrid Piece-Wise (HPW) 
Approximation from Circuit Moments 

In addition to polynomials in powers of t, polynomials in 
powers of 1/t also result in linear equations for moment matching. 
Based on many experiments and observations, it was determined 
that a hybrid piece-wise function defined by 







≤<
=

++

+⋅+⋅
=

nk
k

c
t

b
t
a

ctbta
tx

k
kk

kkk

k 1
1

)(
2

2

 (19) 

produces the best results for RLCK as well as RC circuits. The first 
piece of the HPW function is a quadratic function with respect to 
time t and the remaining n-1 pieces are quadratic functions with 
respect to inverse time 1/t. 

The s-domain moments of the HPW function can be 
determined by using equation (9) and are given by 
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where mQ refers to the integral evaluation of the quadratic piece 
x1(t) from time t=t0 to t=t1 and mIQ refers to the integral evaluation 

of the pieces x2(t) to xn(t) which are quadratic functions of inverse 
time 1/t. 

Assuming that the time-points tk are known (see section 3.5), 
there are 2n unknowns (a1,b1,a2,b2,…,an,bn). As with the PWQ 
function, the system of 2n equations for the HPW function can be 
formed by matching n moments (n equations), by matching the first 
time-derivatives of xk(t) and xk+1(t) at time-points t1 to tn-1 (n-1 
equations) to guarantee smoothness, and by setting xn’(t=tn) equal 
to zero (1 equation) to guarantee a settled value at time tn. The 
system of 2n equations is given by 

nk
t
b

t
a

ntok
t

b
t
a

t
b

t
a

k
t
b

t
abta

ntoimmim

k

k

k

k

k

k

k

k

k

k

k

k

kk
k

IQ
i

Q
ii

C
i

=+=

−=++−−=

=+++=

=+=
−

⋅

++

for20

)1(2for220

1for220

1for
)1(

!

23

2
1

3
1

23

2
2

3
2

11

 

(21) 

where mQ and mIQ are defined in equation (20). 
As with the PWQ function, the above linear system can be 

solved easily. Again, a tradeoff can be made between matching 
more moments and matching the first derivatives. 

The general recursive formula for calculating ck is given by 

1
1

)(

fallingfor1rising,for0

1
2

1
11 >

=









−−
=

−−
−− k

k

t
b

t
a

tx
c

k

k

k

k
kk

k

 
(22) 

where xk-1(t) is defined by equation (19). The results of 
approximating circuit responses using the HPW function are 
presented in section 4. 

3.5 Selection of the Time-points tk 
Selection of the time-points tk is very easy as compared to 

solving for poles in the model order reduction techniques based on 
the SOE method. The method presented here selects real non-
negative time-points tk which produce very good results for RLCK 
as well as RC circuits. 

The algorithm for selecting the time-points tk proceeds as 
follows. The initial time-point t0 is set to zero (t0=0) without the 
loss of any generality. Then a guess for the final time-point tn is 
made based on the first moment m1

C. The value tn=10⋅|m1
C| works 

very well because most RLCK and RC signals settle down (stop 
changing) by this time. Then the remaining time-points t1 to tn-1 are 
calculated such that they divide the range [0,tn] uniformly. Thus, 
the formula for tk is given by 

nk tnkt ⋅= )/(  (23) 

for k=0 to n. Sometimes, using a ratio approach given by 
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where r=1.15 gives very good results for RC, RLC, and RLCK 
circuits. For the ratio approach, note that the final value of tn is 
greater than the initial guess. 

The computation of x(t) then proceeds as presented in the 
previous sections. The result based on initial tn=10⋅|m1

C| works 
very well but it can be made more accurate by one or two more 
refinements based on x(t). It can be observed that the transition 
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region where the signal makes initial rise or fall needs at least a 
couple of pieces for a good approximation of the exact circuit 
response. If t1 is set to be roughly in the middle of this region, then 
tk can be refined as tk=k⋅t1 and the parameters ak, bk, and ck can be 
calculated again based on the new values of tk. 

The theory presented above for selecting the time-points tk has 
been tested thoroughly on many different extracted RLCK and RC 
netlists. It works very well as will be shown in section 4. 
Moreover, the calculation of the parameters ak, bk, ck, etc. is not 
very sensitive on the values of tk. A rough estimate of tk is 
sufficient to get good values of the parameters. 

3.6 Extraction of Timing Parameters from Piece-
Wise Approximations 

Timing parameters such as delay and transition time can be 
extracted very easily from x(t) for PWL, PWQ, and HPW 
functions, where xk(t) have analytical inverse expressions. 

The time-point t where xk(t) crosses a pre-specified threshold 
value v is then given by: 
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The 50% interconnect delay can be calculated by setting 
v=0.5VDD and the transition time can be calculated by computing 
t10% when v=0.1VDD and t90% when v=0.9VDD. These solutions are 
much simpler than the Newton-Raphson iterative methods that are 
used for the SOE representation. 

4. RESULTS 
In this section, simulation results will be presented to show 

that the piece-wise functions perform much better than the SOE 
formulation for many different circuits. 

Figure 1 in the introduction shows the signal at a receiver 
node of an industrial RLCK netlist driven by a step input.  The 
response is very complex and the SOE form cannot capture it 
accurately using four moments as they are unable to produce 
complex poles. However, the PWL approximation of this signal 
produced sufficiently accurate results with only four moments. The 
delay and the transition time are captured accurately and the PWL 
function mimics the overall shape of the complex RLCK response. 

Using the PWQ and HPW functions produce even better 
results than the PWL function. It was shown in the background 
section that the SOE function requires as many as 40 moments to 
capture the response of an industrial RLCK netlist. Figure 5 shows 
that the same response is captured well by the PWQ and HPW 
functions using only four moments. 

The piece-wise functions also perform very well on small but 
hard to model circuits such as a transmission line. Figure 6 shows 
the response of an RLC transmission line with five ladder sections. 
The line was driven by a step input and the results show that the 
HPW function performs very well as compared to the SOE 
function with only four moments. The 50% delay was predicted 

accurately by the HPW with only 3.5% error whereas the delay 
error for the SOE function was an unacceptable 65%. Moreover, 
the HPW function predicted overshoot with only 6.6% error 
whereas the SOE function does not even capture the overshoot 
with four moments. 

The piece-wise functions not only perform well for RLCK 
circuits but they also produce good results for RC circuits. Figure 7 
shows the response of a uniform 10x10 RC mesh circuit. Both 
PWQ and HPW return good results for this circuit. The error in 
delay was 3.0% and 1.5% for PWQ and HPW, respectively, and 
the error in transition time was 3.8% and 5.1% for PWQ and HPW, 
respectively. 

The method presented in this paper was also tested on a large 
industrial clock distribution network (RLCK). The error in delay at 
receiver nodes is summarized in Table 1. The results clearly show 
that the HPW function is performing well consistently as compared 
to the SOE functions with only 3.14% maximum error in delay 
using only four moments as compared to unacceptable 68% and 
30% minimum errors in delay for the SOE function using four and 
eight moments, respectively.  

Figure 7. Piece-wise functions capture RC responses well. 
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Figure 5. The PWQ and HPW functions capture RLCK 
response shown in Figure 2 very well with only 4 moments. 
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Figure 6. Comparison of HPW function with SOE for an 
RLC transmission line signal. HPW captures delay and 

transition time very accurately. 
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Table 1. Delay errors at receivers of an industrial RLCK netlist. 
The table gives a comparison between HPW and SOE. 

50% delay (% error) at receiver nodes (time is scaled) 
 

Node 
 

SPICE 
HPW 

4 moments 
SOE (PVL) 
4 moments 

SOE (PVL) 
8 moments 

1 2.15 2.19 (1.86) 0.67 (-68) 1.48 (-31) 
2 2.38 2.34 (-1.68) 0.74 (-69) 1.67 (-30) 
3 2.11 2.08 (-1.42) 0.61 (-71) 1.43 (-32) 
4 1.91 1.97 (3.14) 0.55 (-71) 1.17 (-39) 
5 2.12 2.15 (1.41) 0.64 (-70) 1.37 (-35) 

The HPW function performed very well compared to SOE for 
many different signals and circuits. The results for a sample of the 
signals are shown in Figure 9 and Figure 10. All the complex 
responses are captured very accurately using only four to six 
moments by the HPW function. The SOE function does not 
perform well with as many as eight moments. 

All the results clearly indicate that the HPW function 
performs much better than the SOE function. Although all the 
details about the signal are not obtained by the HPW function, 
there is enough information in the approximate signal for accurate 
static timing analysis. Very complex RLCK responses are captured 
well by the HPW function with only four or five moments. To the 
authors’ knowledge, there is no existing method that can extract as 
much information about RLCK circuits with only four or five 
moments. 

5. CONCLUSIONS 
A new family of piece-wise model order reduction techniques 

is presented in this paper to approximate RC and RLCK circuit 
responses accurately using moment matching. The proposed piece-
wise functions PWL, PWQ, and HPW perform very well as 
compared to the sum of exponential representation using only four 
moments. Results show that delay and transition time errors are 
very small for many different circuits and signals. The test on the 
industrial netlist shows that delay can be captured accurately using 
the proposed technique with less than 5% error. The method is 
general enough to be extended for a variety of other piece-wise 

functions. For PWL, PWQ, and HPW, timing parameters such as 
50% delay and transition time can be found in closed form using 
the resulting reduced order function. The method presented here 
fills the gap between direct metrics for RC circuit analysis and the 
expensive model order reduction techniques by introducing a stable 
and fast technique to perform RLCK circuit analysis with only a 
few moments. To the authors’ knowledge, there is no existing 
method that can extract as much information about RLCK circuits 
with only four or five moments. 
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Figure 8. HPW vs. SOE, only 4 moments. 
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Figure 9. Another signal from an industrial RLCK circuit. 
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