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ABSTRACT1 
This paper presents a transient faults sensitivity evaluation for 
Quasi Delay Insensitive (QDI) asynchronous circuits. Because of 
their specific architecture, asynchronous circuits have a very 
different behavior than synchronous circuits in the presence of 
faults. We address the effects of transient faults in QDI circuits 
and describe the causes that lead the faults to be memorized into 
one or more soft errors. Therefore, a refined fault sensitivity 
criterion is defined for this class of circuits. This methodology 
enables us to point out the weak parts of a circuit. An analysis tool 
is implemented to support this evaluation. This tool provides a 
quantitative study of the fault sensitivity, and enables us to 
compare the robustness of different architectures of a circuit along 
the steps of its design flow. The objective of this work is to 
evaluate the circuits robustness against natural faults (single fault 
model) and intentional fault injection (multiple faults model).  

Categories and Subject Descriptors 
B.8.1 [Performance and reliability] Reliability, Testing, and 
Fault-Tolerance 

General Terms: Design, Reliability, Security 

Keywords: Asynchronous circuits, Quasi Delay Insensitive, 
transient fault, fault model, simulation. 

1. INTRODUCTION 
A transient fault is a current transient, for instance induced by the 
hit of a particle or a crosstalk, which can propagate in 
combinational logic. When the fault is propagated up to a memory 
point, the transient pulse can be memorized into a soft error. This 
may leads to an incorrect behavior of the circuit. When a wire 
forks to multiple gates, a single current transient on this wire may 
cause multiple transient faults, and potentially multiple soft errors. 

Most of the integrated circuits today are synchronous. Their 
activities are controlled by a global clock which triggers at the 
same time the memorization of the complete state of the circuit. 
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The behavior and the sensitivity of synchronous circuits exposed 
to fault injections have widely been studied [1, 2, 3, 4]. 

Asynchronous circuits represent a class of circuits which are not 
controlled by a global clock but by the data themselves. QDI 
circuits are asynchronous circuits that operate correctly regardless 
of gates delays in the system. Their delay-insensitive property 
makes them naturally robust against some categories of faults 
such as delay faults. Thus, QDI circuits can be attractive to design 
fault tolerant systems [11, 12, 13]. In [5], a general definition of 
asynchronous circuit’s sensitivity to fault injection was proposed.  

In this paper, we describe a refined fault sensitivity criterion 
which takes into consideration the fault effects at the behavioral 
level. An analysis tool is implemented to evaluate the fault 
sensitivity in a simulation environment. A metric gives the 
possibility to compare the transient fault sensitivity of different 
architectures.  

This paper is organized as follows. Section 2 introduces the QDI 
asynchronous technology. In the context of QDI circuit’s analysis, 
the fault models used in this work are given in Section 3. Section 
4 introduces the fault sensitivity criterion as defined in [5] and 
refines it. We examine the faults effects at the behavioral level. 
The analysis tool is presented in Section 5 as well as the design 
flow that includes this tool. Section 6 presents a case study. We 
compare different architectures of an asynchronous DES crypto 
processor module to validate the evaluation and to show the 
impact of the architecture on the fault sensitivity. Section 7 
concludes the paper. 

2. ASYNCHRONOUS LOGIC: QUASI 
DELAY INSENSITIVE 
2.1 Overview 
An asynchronous circuit is composed of individual modules 
which communicate to each other by means of point-to-point 
communication channels [6]. Therefore, a given module becomes 
active when it senses the presence of incoming data. It then 
computes and sends the result to the output channels. 
Communications through channels are governed by a protocol 
which requires a bi-directional signalling between senders and 
receivers (request and acknowledgment). They are called 
Handshaking protocols (Figure 1). 
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Figure 1. Handshake based communication between modules 

 
The communication protocol is the basis of the sequencing rules 
in asynchronous circuits. There are two main classes of 
handshaking protocols: two-phase and four-phase. Only the four-
phase protocol is considered in this work. Figure 2 describes the 
four-phase protocol, which requires a return to zero phase for both 
data requests and acknowledgments. In phase 1, a valid data is 
detected. This data is acknowledged in phase 2. Then the data is 
re-initialized in phase 3 (return to zero phase) and the 
acknowledgment signal is reset in phase 4. 
 

 
Figure 2. Four-phase handshaking protocol 

 

2.2 Memory elements 
The memory cells used in asynchronous QDI circuits are Muller 
gates. The Muller gate (or C-Element) generates a rising transition 
when rising transitions occur at all the inputs and generates a 
falling transition when falling transitions occur at all the inputs 
[6].  

2.3 Computational blocks and memory blocks 
Figure 3 shows a general structure of an asynchronous stage. 
Similarly as in synchronous circuits, it is composed of a 
computational logic block and a memory block (registers). The 
computational block computes data inputs. The memory block not 
only stands for registers but also implements the four-phase 
communication protocol.  

 
Figure 3. Basic structure of an asynchronous stage 

 

Both logic and registers implementation contain standard 
combinational gates (AND, OR, NAND …) as well as Muller 
gates. 

- In the memory block, Muller gates are used to 
implement the communication protocol between the 
next and the previous asynchronous stages. Concretely, 

some of the inputs of the Muller gates are connected to 
the output of the computational logic, while other inputs 
are connected to the acknowledge signal of the next 
stage (synchronization function). 

- In the computational logic block, all inputs of Muller 
gates implemented in this block are directly or indirectly 
connected to data inputs. Here, Muller gates are mainly 
used as a logical “AND” operator to compute incoming 
data. However, their state-holding nature is necessary to 
ensure the QDI properties of the circuits, while this 
property would be lost by the use of standard “AND” 
gates. 

The distinction between computational blocks and memory blocks 
is necessary to focus on the sensitivity evaluation. A fault that 
propagates to a Muller gate implemented in the computational 
block doesn’t have the same consequences as a fault that 
propagates to a Muller gate implemented in the memory block. 
The next section explains in detail this difference. 

Finally, the global circuit state is defined as the state of all its 
Muller gates implemented in memory blocks. Muller gates in 
computational blocks are excluded. Indeed, they do not hold data 
information at the behavioral level. 

3. FAULT MODELS 
Many fault models based on different abstraction levels 
(transistor-level, gate-level, macro-cells ...) have been proposed in 
the test domain. In the present paper, the fault effect is considered 
as a logical perturbation in the circuit. Therefore, whatever the 
physical effects causing faults are, we assume that the fault 
eventually becomes one or more logical errors. Transient fault 
models generally used in test are considered in the global scope of 
this work. However, it is important to clearly define these models 
when applied to asynchronous circuits. We use the following 
terminology: 

- Transient fault: a transient fault is a current transient, 
for instance induced by the hit of a particle, which can 
propagate in the circuit, thereby corresponding to a 
signal toggle at a logical level with a short duration.  

In the context of asynchronous blocks defined in Section 2.3, any 
node of the computational block can be affected, including nodes 
connected to Muller gates. If a transient fault is propagated to a 
Muller gate input, it can be captured. With a rigorous point of 
view, this captured fault no longer represents a transient fault, 
since it is memorized. However, this error doesn’t affect the 
global state of the circuit as defined in the previous section. Figure 
4 (a) represents a transient fault that occurs on a computational 
node. It causes a pulse which duration is t1. (b) is the same 
transient pulse that has been propagated and captured by a Muller 
cell in the computational block. Because all inputs of this gate are 
connected to data inputs, this gate finally resets during phase 3 of 
the communication protocol. Therefore, the fault can be 
interpreted as a transient fault which duration is t2. Like a 
transient, this fault may propagate to the output of the 
computational block and may be memorized in the memory block. 
As a conclusion, any fault that propagates through a 
computational logic block is considered as a transient fault in the 
scope of this work. 
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Figure 4. A transient fault captured in a computational logic 

block 
 
A transient fault can occur in a memory block as well, because it 
is also composed of combinational gates in order to implement the 
communication protocol. However, only combinational gates of 
these blocks are included. The case of Muller gates implemented 
in a memory block is considered in the following definition:  

- Soft error: A soft error is an abnormal modification of 
the global state of the circuit. It can be either the 
memorization of a transient fault which has propagated 
to a Muller gate in a memory block, or a fault injected 
straight upon this Muller gate. The latter can be 
compared to a Single Event Upset (SEU) in 
synchronous circuits. In any case, a soft error results in 
one or more memory bit-flips. 

Although this paper is focused on transient fault effects, delay 
faults have to be defined because they can be a consequence of 
transient faults: 

- Delay fault: A gate delay fault modifies the time needed 
for a transition to occur at the gate’s output. This fault 
can be considered as a temporary “stuck-at” fault 
throughout the fault’s activity. 

Figure 5 shows the relationship between a transient fault and its 
possible consequences on the circuit’s behaviour. From now, 
when a Muller cell is mentioned, it is implicitly a Muller cell 
implemented in a memory block. 
Case 1: The transient fault is filtered. The pulse can be either 
logic-blocked, or naturally attenuated until it disappears. 
Case 2: The transient fault is propagated up to an input of a 
Muller cell, but it is not memorized. 
Case 3: The transient fault is propagated up to an input of a 
Muller cell, and it is memorized. However, this cell was selected 
to flip in the normal execution process. This case is called 
premature firing: the cell was supposed to flip, but due to the fault 
it flipped sooner than it should have. This case can be assimilated 
to a delay fault on the output of the Muller cell. Delay faults don’t 
affect the circuit logical function, except if they occur on an 
isochronic branch, since it is the only timing assumption in QDI 
circuits. In the present case, the delay fault has no consequences 
on the circuit function. If a Muller gate output is connected to a 
fork, both branches are affected by the delay fault. Similarly, the 
transient fault can cause a delayed firing if the output of the 
Muller gate fires later as it should have. 
Case 4: The transient fault is propagated up to a Muller cell, and it 
is memorized. This gate wouldn’t have flipped in the normal 

execution process. Therefore, the transient fault is memorized into 
a soft error which can lead the circuit to fail.  
The next section discusses the sensitivity criterion and examines 
the cases presented in Figure 5.   

 
Figure 5. Transient faults possible effects on QDI circuits 

4. REFINED SENSITIVITY DEFINITION 
This section defines a criterion for the asynchronous circuits 
transient fault sensitivity. The Muller gate sensitivity defined in 
[5] is first introduced and refined. A set of states is associated 
with each Muller gate instance implemented in a memory block. 
Then a Muller gate fault-sensitivity is specified according to the 
fault models previously mentioned. Finally, we define a fault 
sensitivity criterion for QDI asynchronous circuits. 

4.1 Muller gate sensitivity 
Definition: An N-input Muller gate is said to be M-sensitive to 0 
(respectively 1) if, and only if, exactly M of its inputs as well as 
its output are equal to 0 (respectively 1). In this case, if M faults 
are injected (or propagated) to these M inputs, the gate generates a 
rising (respectively falling) transition.  

Figure 6-(a) shows a 2-input Muller gate which state is 1-
sensitive to 1. If a faulty transition occurs on the first input (a 
transition which is a consequence of a propagated transient fault), 
the output is reset and this transition is memorized. Note that the 
gate is not in a 1-sensitive to 0 state because its output is already 
set to one. A fault occurring on its second input has no effect on 
the output, it is filtered. 

Obviously, 2-input gates are highly sensitive to a single fault. 
Figure 6 (b) shows a 5-input Muller gate which state is 3-sensitive 
to 0. A single fault occurring on any of its input is filtered. 
However, three simultaneous faults occurring on the three first 
inputs generate a flip to 1. 

 
Figure 6. A “1-sensitive to 1” Muller gate (a) and a “3-

sensitive to 0” Muller gate (b) 
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The set of states of an N-input Muller gate is then defined 
according to four cases: 

1 – M-sensitive to 0 (M є [1 ... N-1]) 
2 – M-sensitive to 1 (M є [1 ... N-1]) 
3 – Set 
4 – Reset 

Cases 1 and 2 are sensitive ones. Each case includes N-1 states, 
from 0-sensitive to (N-1)-sensitive. Case 3 is the gate set state; all 
inputs are equal to 1. Case 4 is the gate reset state; all inputs are 
equal to 0. As a result, an N-input Muller gate is characterised by 
2N disjoined stable states. Set and Reset are not considered as 
sensitive because transient faults cannot be memorized in these 
states. 

4.2 Sensitivity Validation/Invalidation 
Figure 7 shows the states evolution for a Muller gate in a normal 
execution process. The initial state of the gate is “reset”. Then, the 
gate holds a succession of sensitive states until it comes back to 
the “reset” state (a) or changes to the “set” state (b). Similarly, a 
symmetric case could be presented with the “set” state as initial 
state.   

4.2.1 State sensitivity validation 
In Figure 7 (a), the Muller gate output never changes. From the 
circuit’s behavior point of view, it means that this gate was finally 
not selected to hold a data. However, the gates held a collection of 
“sensitive to 0” states before to come back at the “reset” state. 
Therefore, these states have to be validated as fault-sensitive 
states. N faults that would occur in an “N-sensitive to 0” state 
would provoke a rising transition on the output, thus generating a 
soft error.  

4.2.2 State sensitivity invalidation 
In Figure 7 (b), the Muller gate finally changes its state to a “set” 
state, which means that this gate was selected to memorize a data. 
N fault occurring in an “N-sensitive to 0” state would generate a 
premature firing. They would force the gate to join the “set” state 
prematurely. As previously explained, this transition doesn’t 
affect the circuit logical function. As a consequence, the sensitive 
states held by the gate have to be invalidated, because they were 
finally not fault-sensitive. 

4.2.3 Example 
Figure 8 presents a simple circuit called a Half-Buffer. When the 
next stage is ready to receive a data, the Ack signal is set to 1. 
Muller gates M00 and M01 are able to memorise the data (I0, I1). 
A Dual rail code is used, which means that only one rail I0 or I1 is 
set to encode a data bit (0 or 1).   

Let’s assume that the next stage is ready to receive a data. Ack is 
set to 1. The sensitive time for M00 and M01 is the time needed 
for the data (I0, I1) to arrive. Assuming that I0 is selected to hold a 
data, then M00 switches to 1. The sensitive time of M00 is 
invalidated because this gate was selected to memorise a data. 
However, M01 didn’t switch; this gate finally comes back to its 
reset state: its sensitive time is validated.  

 
Figure 7. State evolution scenarios for a Muller gate in a 

normal execution process 

 
Figure 8. Half-Buffer 

 

4.3 Asynchronous circuits sensitivity 
evaluation 
The global circuit state was previously defined as the state of all 
its Muller gates implemented in the memory blocks. In a 
simulation environment, we are able to monitor and 
validate/invalidate each sensitive state for all the Muller gates. 
Thus, a metric is given to evaluate the sensitivity of each Muller 
gate. This metric is defined as the total time spent in the sensitive 
states by this gate with respect to the total time this gate was 
monitored. Finally, the N-sensitivity metric of a circuit is defined 
as the meantime spent in the N-sensitive states by all the 
monitored gates.  

We can afford to dynamically draw up a circuit sensitivity map, 
identifying fault-sensitive blocks or gates. The most sensitive 
memory points are those which are frequently in a 1-sensitive 
state, because a single fault is able to be memorized when the gate 
holds this state.  

If a gate is at minimum 2-sensitive (or more), it is single fault 
resistant. A single fault occurring on any of its inputs is never 
memorized. 

4.4 Fault propagation  
Once it was injected, the transient fault propagates through the 
circuit. The fault propagation is not studied in the scope of this 
work. This problem has been already largely studied [1, 7]. An 
evaluation of activated paths, reconvergent fan-out, and logic-
blocking of faults is not relevant for the contribution of the 
present work. 
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5. TOOL IMPLEMENTATION 
5.1 Design flow 
Figure 9 shows the global flow for designing asynchronous VLSI 
circuits. It involves a high-level description language, the 
Communicating Hardware Processes (CHP) language. The CHP 
program is compiled with the synthesis environment tool TAST. 

The synthesized circuit is described as a gate-level netlist in 
Verilog format. The sensitivity analysis tool can be used with 
behavioural libraries to perform a first succinct analysis. For a 
more accurate result, the analysis has to be performed with a 
back-annoted Verilog netlist after the place and route step. Timing 
information is provided by a SDF file. 

The fault-sensitivity analysis tool directly interacts with the 
simulator as explained in the next subsection. 

 
Figure 9. QDI circuits design flow 

5.2 Implementation  
The algorithm was implemented using the C language. The 
algorithm is able to control the simulator using PLI (Programming 
Language Interface) which allows directly interacting with the 
simulation. The implementation consists of only a few hundreds 
of C code lines. The used PLI routines are standard, and the same 
implementation of the tool runs on several commercial event-
driven simulators. The tool is able to analyse complex circuits 
without penalizing the simulation time.  
User can decide to analyse all or part of the Muller gates 
implemented in the circuit. A particular module may for example 
be deeply analysed because of its critical nature, while other 
modules are not considered. A set of commands added in the 
Verilog netlist allows the user to define which modules to analyse. 
User can decide which gates to monitor by specifying the library 
cell names in a specific file. The ports that are to analyse/ignore 
can also be specified because it is necessary to ignore some port 
names that are not relevant for the analysis (RESET port for 
instance). Analysis start time and end time can be specified as 
well. 

At the end of the simulation, a report gives the global N-
sensitivity of the circuit under test. Each monitored gate is shown 
in detail and the tool points out the most N-sensitive gates.      

6. CASE STUDY 
The security of systems such as smart cards relies on the ability of 
the smart card to perform cryptographic operations while keeping 
the key secret. A particular threat is the use of fault injections to 
attack such devices [8, 9]. 

To validate the methodology, several analyses are applied to the 
design of an asynchronous DES crypto-processor. The DES 
algorithm is described in [10]. The analysis is focused on the 
ciphering Data-path module. Indeed, this module is known as 
critical for the system security. We present in Section 6.1 an 
analysis of the ciphering block and its basic architecture. Then, 
Section 6.2 proposes a hardened architecture of this module and 
shows that the fault sensitivity can be highly reduced by design.   

6.1 Basic architecture analysis 
Figure 10 presents the module that is analyzed. The computational 
block is composed of 8 SBoxes which role is to switch data, and a 
32 bit XOR operator. The result of the XOR operation (between 
Li-1 and the SBoxes output) is stored in the memory block.  

 
Figure 10. Architecture of the basic monitored module 

The memory block is composed of 64 two-inputs Muller gates. 64 
gates are needed to memorize a 32 bit data because the dual-Rail 
logic is used. All the Muller gates are monitored. 
A Benchmark is applied to analyse the circuit in a behavioural 
environment. The chosen benchmark is a single DES encryption. 
We start to monitor gates sensitivity as soon as the DES starts the 
encryption, and stop the analysis at the encryption end. Table 1 
shows the analysis results. 

Table 1. Sensitivity analysis results for the basic module 

Simulation time : 53 300 ps 

Average 1-sensitive time : 14 400 ps 

Sensitive ports : Input A 
 
The gates were monitored during 53.3 ns. On average, each gate 
spent 14.4 ns in a 1-sensitive state, which means they were 
sensitive to a single transient fault more than 27% of the time. 
Moreover, the sensitive port is the input A of the gate. This port is 
connected to the output of the computational block. During the 
computing time of data, some of the Muller gates are in a 
sensitive state. 
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6.2 Hardened architecture analysis 
We propose a hardened architecture to demonstrate the influence 
of the architecture on the circuit sensitivity. The hardening 
strategy is out of the scope of this work. We chose a well-known 
duplication method scheme to harden the cipher module. More 
efficient hardening techniques were studied in [11, 12, 13]. Both 
SBoxes and XOR operation were duplicated.  

 
Figure 11. Architecture of the hardened monitored module 

 
Registers were not duplicated but their architecture changed from 
two-input Muller gates to four-input Muller gates. The same 
bench was applied as for the basic circuit. Table 2 presents the 
results. 
Table 2. Sensitivity analysis results for the hardened module 

Simulation time : 53 300 ps 

Average 1-sensitive time : 0 ps 

Average 2-sensitive time : 14 550 ps 

Sensitive ports : Inputs A,B 
 
Although four-inputs Muller gates are slower than two-input 
Muller gates, the encryption time is constant because this part of 
the circuit is not the critical path. The Duplication technique 
makes the 1-sensitivity to shift to a 2-sensitivity. Sensitive inputs 
A and B are the duplicated computational block output. As 
expected, this hardening strategy makes the module single 
transient fault tolerant.  

7. CONCLUSION 
We presented a detailed transient fault sensitivity criterion for 
QDI asynchronous circuits. Fault models were defined in the 
context of asynchronous circuits. Consequences of the 
propagation of a transient fault were identified and examined at 
the behavioral level. For the memory gates used in circuits, we 
defined states that were identified as fault-sensitive states. Finally, 
a tool was implemented to evaluate the sensitivity of the circuits. 
This tool is included in the design flow of the circuits and gives a 
metric to compare asynchronous circuits architectures. Finally, we 
showed that the architecture of the circuit significantly influences 
its transient fault sensitivity. Based on this analysis, future work 
will be focused on hardening techniques and their efficiency. 
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