
Asynchronous Circuits Transient Faults Sensitivity
Evaluation1

Y. Monnet, M. Renaudin, R. Leveugle
TIMA Laboratory

46, avenue Felix Viallet
38031 GRENOBLE cedex-FRANCE

{yannick.monnet, marc.renaudin, regis.leveugle}@imag.fr

ABSTRACT1
This paper presents a transient faults sensitivity evaluation for
Quasi Delay Insensitive (QDI) asynchronous circuits. Because of
their specific architecture, asynchronous circuits have a very
different behavior than synchronous circuits in the presence of
faults. We address the effects of transient faults in QDI circuits
and describe the causes that lead the faults to be memorized into
one or more soft errors. Therefore, a refined fault sensitivity
criterion is defined for this class of circuits. This methodology
enables us to point out the weak parts of a circuit. An analysis tool
is implemented to support this evaluation. This tool provides a
quantitative study of the fault sensitivity, and enables us to
compare the robustness of different architectures of a circuit along
the steps of its design flow. The objective of this work is to
evaluate the circuits robustness against natural faults (single fault
model) and intentional fault injection (multiple faults model).

Categories and Subject Descriptors
B.8.1 [Performance and reliability] Reliability, Testing, and
Fault-Tolerance

General Terms: Design, Reliability, Security

Keywords: Asynchronous circuits, Quasi Delay Insensitive,
transient fault, fault model, simulation.

1. INTRODUCTION
A transient fault is a current transient, for instance induced by the
hit of a particle or a crosstalk, which can propagate in
combinational logic. When the fault is propagated up to a memory
point, the transient pulse can be memorized into a soft error. This
may leads to an incorrect behavior of the circuit. When a wire
forks to multiple gates, a single current transient on this wire may
cause multiple transient faults, and potentially multiple soft errors.

Most of the integrated circuits today are synchronous. Their
activities are controlled by a global clock which triggers at the
same time the memorization of the complete state of the circuit.

1 This work is partially supported by the RNRT Duracell project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

The behavior and the sensitivity of synchronous circuits exposed
to fault injections have widely been studied [1, 2, 3, 4].

Asynchronous circuits represent a class of circuits which are not
controlled by a global clock but by the data themselves. QDI
circuits are asynchronous circuits that operate correctly regardless
of gates delays in the system. Their delay-insensitive property
makes them naturally robust against some categories of faults
such as delay faults. Thus, QDI circuits can be attractive to design
fault tolerant systems [11, 12, 13]. In [5], a general definition of
asynchronous circuit’s sensitivity to fault injection was proposed.

In this paper, we describe a refined fault sensitivity criterion
which takes into consideration the fault effects at the behavioral
level. An analysis tool is implemented to evaluate the fault
sensitivity in a simulation environment. A metric gives the
possibility to compare the transient fault sensitivity of different
architectures.

This paper is organized as follows. Section 2 introduces the QDI
asynchronous technology. In the context of QDI circuit’s analysis,
the fault models used in this work are given in Section 3. Section
4 introduces the fault sensitivity criterion as defined in [5] and
refines it. We examine the faults effects at the behavioral level.
The analysis tool is presented in Section 5 as well as the design
flow that includes this tool. Section 6 presents a case study. We
compare different architectures of an asynchronous DES crypto
processor module to validate the evaluation and to show the
impact of the architecture on the fault sensitivity. Section 7
concludes the paper.

2. ASYNCHRONOUS LOGIC: QUASI
DELAY INSENSITIVE
2.1 Overview
An asynchronous circuit is composed of individual modules
which communicate to each other by means of point-to-point
communication channels [6]. Therefore, a given module becomes
active when it senses the presence of incoming data. It then
computes and sends the result to the output channels.
Communications through channels are governed by a protocol
which requires a bi-directional signalling between senders and
receivers (request and acknowledgment). They are called
Handshaking protocols (Figure 1).

50.4

863

Figure 1. Handshake based communication between modules

The communication protocol is the basis of the sequencing rules
in asynchronous circuits. There are two main classes of
handshaking protocols: two-phase and four-phase. Only the four-
phase protocol is considered in this work. Figure 2 describes the
four-phase protocol, which requires a return to zero phase for both
data requests and acknowledgments. In phase 1, a valid data is
detected. This data is acknowledged in phase 2. Then the data is
re-initialized in phase 3 (return to zero phase) and the
acknowledgment signal is reset in phase 4.

Figure 2. Four-phase handshaking protocol

2.2 Memory elements
The memory cells used in asynchronous QDI circuits are Muller
gates. The Muller gate (or C-Element) generates a rising transition
when rising transitions occur at all the inputs and generates a
falling transition when falling transitions occur at all the inputs
[6].

2.3 Computational blocks and memory blocks
Figure 3 shows a general structure of an asynchronous stage.
Similarly as in synchronous circuits, it is composed of a
computational logic block and a memory block (registers). The
computational block computes data inputs. The memory block not
only stands for registers but also implements the four-phase
communication protocol.

Figure 3. Basic structure of an asynchronous stage

Both logic and registers implementation contain standard
combinational gates (AND, OR, NAND …) as well as Muller
gates.

- In the memory block, Muller gates are used to
implement the communication protocol between the
next and the previous asynchronous stages. Concretely,

some of the inputs of the Muller gates are connected to
the output of the computational logic, while other inputs
are connected to the acknowledge signal of the next
stage (synchronization function).

- In the computational logic block, all inputs of Muller
gates implemented in this block are directly or indirectly
connected to data inputs. Here, Muller gates are mainly
used as a logical “AND” operator to compute incoming
data. However, their state-holding nature is necessary to
ensure the QDI properties of the circuits, while this
property would be lost by the use of standard “AND”
gates.

The distinction between computational blocks and memory blocks
is necessary to focus on the sensitivity evaluation. A fault that
propagates to a Muller gate implemented in the computational
block doesn’t have the same consequences as a fault that
propagates to a Muller gate implemented in the memory block.
The next section explains in detail this difference.

Finally, the global circuit state is defined as the state of all its
Muller gates implemented in memory blocks. Muller gates in
computational blocks are excluded. Indeed, they do not hold data
information at the behavioral level.

3. FAULT MODELS
Many fault models based on different abstraction levels
(transistor-level, gate-level, macro-cells ...) have been proposed in
the test domain. In the present paper, the fault effect is considered
as a logical perturbation in the circuit. Therefore, whatever the
physical effects causing faults are, we assume that the fault
eventually becomes one or more logical errors. Transient fault
models generally used in test are considered in the global scope of
this work. However, it is important to clearly define these models
when applied to asynchronous circuits. We use the following
terminology:

- Transient fault: a transient fault is a current transient,
for instance induced by the hit of a particle, which can
propagate in the circuit, thereby corresponding to a
signal toggle at a logical level with a short duration.

In the context of asynchronous blocks defined in Section 2.3, any
node of the computational block can be affected, including nodes
connected to Muller gates. If a transient fault is propagated to a
Muller gate input, it can be captured. With a rigorous point of
view, this captured fault no longer represents a transient fault,
since it is memorized. However, this error doesn’t affect the
global state of the circuit as defined in the previous section. Figure
4 (a) represents a transient fault that occurs on a computational
node. It causes a pulse which duration is t1. (b) is the same
transient pulse that has been propagated and captured by a Muller
cell in the computational block. Because all inputs of this gate are
connected to data inputs, this gate finally resets during phase 3 of
the communication protocol. Therefore, the fault can be
interpreted as a transient fault which duration is t2. Like a
transient, this fault may propagate to the output of the
computational block and may be memorized in the memory block.
As a conclusion, any fault that propagates through a
computational logic block is considered as a transient fault in the
scope of this work.

Asynchronous
module

Request

Asynchronous
module

Request Request

Data

Ack

Computational
logic block

Memory
block

Data

Ack

Computational
logic block

Memory
block

Data

Ack

stage

Acknowledgment Acknowledgment Acknowledgment

864

Figure 4. A transient fault captured in a computational logic

block

A transient fault can occur in a memory block as well, because it
is also composed of combinational gates in order to implement the
communication protocol. However, only combinational gates of
these blocks are included. The case of Muller gates implemented
in a memory block is considered in the following definition:

- Soft error: A soft error is an abnormal modification of
the global state of the circuit. It can be either the
memorization of a transient fault which has propagated
to a Muller gate in a memory block, or a fault injected
straight upon this Muller gate. The latter can be
compared to a Single Event Upset (SEU) in
synchronous circuits. In any case, a soft error results in
one or more memory bit-flips.

Although this paper is focused on transient fault effects, delay
faults have to be defined because they can be a consequence of
transient faults:

- Delay fault: A gate delay fault modifies the time needed
for a transition to occur at the gate’s output. This fault
can be considered as a temporary “stuck-at” fault
throughout the fault’s activity.

Figure 5 shows the relationship between a transient fault and its
possible consequences on the circuit’s behaviour. From now,
when a Muller cell is mentioned, it is implicitly a Muller cell
implemented in a memory block.
Case 1: The transient fault is filtered. The pulse can be either
logic-blocked, or naturally attenuated until it disappears.
Case 2: The transient fault is propagated up to an input of a
Muller cell, but it is not memorized.
Case 3: The transient fault is propagated up to an input of a
Muller cell, and it is memorized. However, this cell was selected
to flip in the normal execution process. This case is called
premature firing: the cell was supposed to flip, but due to the fault
it flipped sooner than it should have. This case can be assimilated
to a delay fault on the output of the Muller cell. Delay faults don’t
affect the circuit logical function, except if they occur on an
isochronic branch, since it is the only timing assumption in QDI
circuits. In the present case, the delay fault has no consequences
on the circuit function. If a Muller gate output is connected to a
fork, both branches are affected by the delay fault. Similarly, the
transient fault can cause a delayed firing if the output of the
Muller gate fires later as it should have.
Case 4: The transient fault is propagated up to a Muller cell, and it
is memorized. This gate wouldn’t have flipped in the normal

execution process. Therefore, the transient fault is memorized into
a soft error which can lead the circuit to fail.
The next section discusses the sensitivity criterion and examines
the cases presented in Figure 5.

Figure 5. Transient faults possible effects on QDI circuits

4. REFINED SENSITIVITY DEFINITION
This section defines a criterion for the asynchronous circuits
transient fault sensitivity. The Muller gate sensitivity defined in
[5] is first introduced and refined. A set of states is associated
with each Muller gate instance implemented in a memory block.
Then a Muller gate fault-sensitivity is specified according to the
fault models previously mentioned. Finally, we define a fault
sensitivity criterion for QDI asynchronous circuits.

4.1 Muller gate sensitivity
Definition: An N-input Muller gate is said to be M-sensitive to 0
(respectively 1) if, and only if, exactly M of its inputs as well as
its output are equal to 0 (respectively 1). In this case, if M faults
are injected (or propagated) to these M inputs, the gate generates a
rising (respectively falling) transition.

Figure 6-(a) shows a 2-input Muller gate which state is 1-
sensitive to 1. If a faulty transition occurs on the first input (a
transition which is a consequence of a propagated transient fault),
the output is reset and this transition is memorized. Note that the
gate is not in a 1-sensitive to 0 state because its output is already
set to one. A fault occurring on its second input has no effect on
the output, it is filtered.

Obviously, 2-input gates are highly sensitive to a single fault.
Figure 6 (b) shows a 5-input Muller gate which state is 3-sensitive
to 0. A single fault occurring on any of its input is filtered.
However, three simultaneous faults occurring on the three first
inputs generate a flip to 1.

Figure 6. A “1-sensitive to 1” Muller gate (a) and a “3-

sensitive to 0” Muller gate (b)

C 1 C
0
0
0
1
1

0

(a) (b)

Transient fault

(2)
Filtered by a
Muller gate

(3)
Delay Fault

(4)
Soft Error

Immediate Consequences

Behavioral Consequences

No consequences

(1)
Blocked by

logic

Possible Failure

t1

t2

Valid data Invalid data

Memorization Return to zero

(a)

(b)

0

1

865

The set of states of an N-input Muller gate is then defined
according to four cases:

1 – M-sensitive to 0 (M є [1 ... N-1])
2 – M-sensitive to 1 (M є [1 ... N-1])
3 – Set
4 – Reset

Cases 1 and 2 are sensitive ones. Each case includes N-1 states,
from 0-sensitive to (N-1)-sensitive. Case 3 is the gate set state; all
inputs are equal to 1. Case 4 is the gate reset state; all inputs are
equal to 0. As a result, an N-input Muller gate is characterised by
2N disjoined stable states. Set and Reset are not considered as
sensitive because transient faults cannot be memorized in these
states.

4.2 Sensitivity Validation/Invalidation
Figure 7 shows the states evolution for a Muller gate in a normal
execution process. The initial state of the gate is “reset”. Then, the
gate holds a succession of sensitive states until it comes back to
the “reset” state (a) or changes to the “set” state (b). Similarly, a
symmetric case could be presented with the “set” state as initial
state.

4.2.1 State sensitivity validation
In Figure 7 (a), the Muller gate output never changes. From the
circuit’s behavior point of view, it means that this gate was finally
not selected to hold a data. However, the gates held a collection of
“sensitive to 0” states before to come back at the “reset” state.
Therefore, these states have to be validated as fault-sensitive
states. N faults that would occur in an “N-sensitive to 0” state
would provoke a rising transition on the output, thus generating a
soft error.

4.2.2 State sensitivity invalidation
In Figure 7 (b), the Muller gate finally changes its state to a “set”
state, which means that this gate was selected to memorize a data.
N fault occurring in an “N-sensitive to 0” state would generate a
premature firing. They would force the gate to join the “set” state
prematurely. As previously explained, this transition doesn’t
affect the circuit logical function. As a consequence, the sensitive
states held by the gate have to be invalidated, because they were
finally not fault-sensitive.

4.2.3 Example
Figure 8 presents a simple circuit called a Half-Buffer. When the
next stage is ready to receive a data, the Ack signal is set to 1.
Muller gates M00 and M01 are able to memorise the data (I0, I1).
A Dual rail code is used, which means that only one rail I0 or I1 is
set to encode a data bit (0 or 1).

Let’s assume that the next stage is ready to receive a data. Ack is
set to 1. The sensitive time for M00 and M01 is the time needed
for the data (I0, I1) to arrive. Assuming that I0 is selected to hold a
data, then M00 switches to 1. The sensitive time of M00 is
invalidated because this gate was selected to memorise a data.
However, M01 didn’t switch; this gate finally comes back to its
reset state: its sensitive time is validated.

Figure 7. State evolution scenarios for a Muller gate in a

normal execution process

Figure 8. Half-Buffer

4.3 Asynchronous circuits sensitivity
evaluation
The global circuit state was previously defined as the state of all
its Muller gates implemented in the memory blocks. In a
simulation environment, we are able to monitor and
validate/invalidate each sensitive state for all the Muller gates.
Thus, a metric is given to evaluate the sensitivity of each Muller
gate. This metric is defined as the total time spent in the sensitive
states by this gate with respect to the total time this gate was
monitored. Finally, the N-sensitivity metric of a circuit is defined
as the meantime spent in the N-sensitive states by all the
monitored gates.

We can afford to dynamically draw up a circuit sensitivity map,
identifying fault-sensitive blocks or gates. The most sensitive
memory points are those which are frequently in a 1-sensitive
state, because a single fault is able to be memorized when the gate
holds this state.

If a gate is at minimum 2-sensitive (or more), it is single fault
resistant. A single fault occurring on any of its inputs is never
memorized.

4.4 Fault propagation
Once it was injected, the transient fault propagates through the
circuit. The fault propagation is not studied in the scope of this
work. This problem has been already largely studied [1, 7]. An
evaluation of activated paths, reconvergent fan-out, and logic-
blocking of faults is not relevant for the contribution of the
present work.

C

C

M00

M01

Ack

I0

I1

O0

O1

Reset
state Sensitive

state

Reset
state Sensitive

state

Sensitive states validation

Reset
state Sensitive

state

Set
stateSensitive

state

Sensitive states invalidation

(a)

(b)

866

5. TOOL IMPLEMENTATION
5.1 Design flow
Figure 9 shows the global flow for designing asynchronous VLSI
circuits. It involves a high-level description language, the
Communicating Hardware Processes (CHP) language. The CHP
program is compiled with the synthesis environment tool TAST.

The synthesized circuit is described as a gate-level netlist in
Verilog format. The sensitivity analysis tool can be used with
behavioural libraries to perform a first succinct analysis. For a
more accurate result, the analysis has to be performed with a
back-annoted Verilog netlist after the place and route step. Timing
information is provided by a SDF file.

The fault-sensitivity analysis tool directly interacts with the
simulator as explained in the next subsection.

Figure 9. QDI circuits design flow

5.2 Implementation
The algorithm was implemented using the C language. The
algorithm is able to control the simulator using PLI (Programming
Language Interface) which allows directly interacting with the
simulation. The implementation consists of only a few hundreds
of C code lines. The used PLI routines are standard, and the same
implementation of the tool runs on several commercial event-
driven simulators. The tool is able to analyse complex circuits
without penalizing the simulation time.
User can decide to analyse all or part of the Muller gates
implemented in the circuit. A particular module may for example
be deeply analysed because of its critical nature, while other
modules are not considered. A set of commands added in the
Verilog netlist allows the user to define which modules to analyse.
User can decide which gates to monitor by specifying the library
cell names in a specific file. The ports that are to analyse/ignore
can also be specified because it is necessary to ignore some port
names that are not relevant for the analysis (RESET port for
instance). Analysis start time and end time can be specified as
well.

At the end of the simulation, a report gives the global N-
sensitivity of the circuit under test. Each monitored gate is shown
in detail and the tool points out the most N-sensitive gates.

6. CASE STUDY
The security of systems such as smart cards relies on the ability of
the smart card to perform cryptographic operations while keeping
the key secret. A particular threat is the use of fault injections to
attack such devices [8, 9].

To validate the methodology, several analyses are applied to the
design of an asynchronous DES crypto-processor. The DES
algorithm is described in [10]. The analysis is focused on the
ciphering Data-path module. Indeed, this module is known as
critical for the system security. We present in Section 6.1 an
analysis of the ciphering block and its basic architecture. Then,
Section 6.2 proposes a hardened architecture of this module and
shows that the fault sensitivity can be highly reduced by design.

6.1 Basic architecture analysis
Figure 10 presents the module that is analyzed. The computational
block is composed of 8 SBoxes which role is to switch data, and a
32 bit XOR operator. The result of the XOR operation (between
Li-1 and the SBoxes output) is stored in the memory block.

Figure 10. Architecture of the basic monitored module

The memory block is composed of 64 two-inputs Muller gates. 64
gates are needed to memorize a 32 bit data because the dual-Rail
logic is used. All the Muller gates are monitored.
A Benchmark is applied to analyse the circuit in a behavioural
environment. The chosen benchmark is a single DES encryption.
We start to monitor gates sensitivity as soon as the DES starts the
encryption, and stop the analysis at the encryption end. Table 1
shows the analysis results.

Table 1. Sensitivity analysis results for the basic module

Simulation time : 53 300 ps

Average 1-sensitive time : 14 400 ps

Sensitive ports : Input A

The gates were monitored during 53.3 ns. On average, each gate
spent 14.4 ns in a 1-sensitive state, which means they were
sensitive to a single transient fault more than 27% of the time.
Moreover, the sensitive port is the input A of the gate. This port is
connected to the output of the computational block. During the
computing time of data, some of the Muller gates are in a
sensitive state.

TAST environment
Synthesis of QDI circuits

Description language

Place & route

Gate-Level netlist
(Verilog format)

Gate-Level netlist
(Verilog format)

+ Timing

Verilog Simulator
(NCSim/Verilog-XL/ModelSim)

Asynchronous Circuits Sensitivity
Analyzer

User Defined parameters

SBoxes

XOR

Memory block

Ri

Li-1

Output

Computational blocks

Monitored block

867

6.2 Hardened architecture analysis
We propose a hardened architecture to demonstrate the influence
of the architecture on the circuit sensitivity. The hardening
strategy is out of the scope of this work. We chose a well-known
duplication method scheme to harden the cipher module. More
efficient hardening techniques were studied in [11, 12, 13]. Both
SBoxes and XOR operation were duplicated.

Figure 11. Architecture of the hardened monitored module

Registers were not duplicated but their architecture changed from
two-input Muller gates to four-input Muller gates. The same
bench was applied as for the basic circuit. Table 2 presents the
results.
Table 2. Sensitivity analysis results for the hardened module

Simulation time : 53 300 ps

Average 1-sensitive time : 0 ps

Average 2-sensitive time : 14 550 ps

Sensitive ports : Inputs A,B

Although four-inputs Muller gates are slower than two-input
Muller gates, the encryption time is constant because this part of
the circuit is not the critical path. The Duplication technique
makes the 1-sensitivity to shift to a 2-sensitivity. Sensitive inputs
A and B are the duplicated computational block output. As
expected, this hardening strategy makes the module single
transient fault tolerant.

7. CONCLUSION
We presented a detailed transient fault sensitivity criterion for
QDI asynchronous circuits. Fault models were defined in the
context of asynchronous circuits. Consequences of the
propagation of a transient fault were identified and examined at
the behavioral level. For the memory gates used in circuits, we
defined states that were identified as fault-sensitive states. Finally,
a tool was implemented to evaluate the sensitivity of the circuits.
This tool is included in the design flow of the circuits and gives a
metric to compare asynchronous circuits architectures. Finally, we
showed that the architecture of the circuit significantly influences
its transient fault sensitivity. Based on this analysis, future work
will be focused on hardening techniques and their efficiency.

8. REFERENCES
[1] R. Leveugle, K. Hadjiat, “Multi-level fault injections in

VHDL descriptions: alternative approaches and
experiments”, Journal of Electronic Testing: Theory and
Applications (JETTA), Kluwer, vol. 19, no. 5, October 2003,
pp. 559-575.

[2] D. Alexandrescu, L. Anghel, M. Nicolaidis, “New methods
for evaluating the impact of single event transients in VDSM
ICs”, The IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, Vancouver, Canada,
November 6-8, 2002, IEEE Computer Society Press, Los
Alamitos, California, 2002, pp. 99-107.

[3] M. Bellato, P. Bernardi, D. Bortolato, A. Candelori, M.
Ceschia, A. Paccagnella, M. Rebaudengo, M. Sonza Reorda,
M. Violante, P. Zambolin , “Evaluating the effects of SEUs
affecting the configuration memory of an SRAM-based
FPGA”, Design Automation and Test in Europe Conference
(DATE), February 16-20, 2004, pp. 584-589.

[4] M. Sonza-Reorda, M. Violante, “Accurate and efficient
analysis of single event transients in VLSI circuits”, 9th
IEEE International On-Line Testing symposium, Kos,
Greece, July 7-9, 2003, pp. 101-105.

[5] Y. Monnet, M. Renaudin, R. Leveugle, “Asynchronous
circuits sensitivity to fault injection”, 10th IEEE International
On-Line Testing Symposium, Madeira Island, Portugal, July
12-14, 2004.

[6] M. Renaudin, “Asynchronous Circuits and Systems: a
promising design alternative”, Microelectronics-Engineering
Journal, Elsevier Science, Guest Editors: P.Senn, M.
Renaudin, J. Boussey, Vol54, N°1-2, 2000, pp.133-149.

[7] D. Alexandrescu, L. Anghel, M. Nicolaidis, “Simulating
single event transients in DVSM ICs for ground level
radiation”, 3rd IEEE Latin American Test Workshop
(LATW'02), Montevideo, Uruguay, February 10-13, 2002.

[8] E. Biham, A. Shamir, “Differential Fault Analysis of Secret
Key Cryptosystems”, Advances in Cryptology CRYPTO
1997, LNCS 1294, pp. 513-525, 1997.

[9] M. Renaudin, G. F. Bouesse, P. Proust, J-P Tual, L. Sourgen,
F. Germain, “High-Security Smartcards”, Design Automation
and Test in Europe Conference (DATE), Feb 16-20, 2004.

[10] NIST, Data Encryption Standard (DES), FIPS PUB 46-2,
National Institute of Standards and Technology.
http://csrc.nist.gov/csrc/fedstandards.html

[11] C. LaFrieda, R.Manohar, “Fault Detection and Isolation
Techniques for Quasi Delay-Insensitive Circuits”,
International Conference on Dependable Systems and
Networks (DSN'04), Italy, June 28 - July 01, 2004, p.41

[12] Wonjin Jang, Alain J. Martin, “SEU-Tolerant QDI
Circuits”,11th IEEE International Symposium on
Asynchronous Circuits and Systems, New York City, USA,
March 13-16, 2005, pp. 156-165.

[13] Y. Monnet, M. Renaudin, R. Leveugle, “Hardening
Techniques against Transient Faults for Asynchronous
Circuits”, 11th IEEE International On-Line Testing
Symposium, Saint Raphael, France, July 6-8, 2005.

XOR

Memory block

Output

XOR

SBoxes

Li-1

Ri Ri

Li-1

SBoxes

868

