
50.1

 845

Path Delay Test Compaction with Process Variation
Tolerance

Seiji Kajihara Masayasu Fukunaga

Xiaoqing Wen
Kyushu Institute of Technology

 680-4 Kawazu, Iizuka, 820-8502 Japan
e-mail:{kajihara, fukunaga, wen}

@aries30.cse.kyutech.ac.jp

Toshiyuki Maeda Shuji Hamada
Yasuo Sato

Semiconductor Technology Academic Research Center
3-17-2 Shinyokohama, Kita-ku,

Yokohama, 222-0033 Japan
e-mail:{maeda, hamada.shuji, satoh.y}@starc.or.jp

ABSTRACT
In this paper we propose a test compaction method for path delay
faults in a logic circuit. The method generates a compact set of
two-pattern tests for faults on long paths selected with a criterion.
While the proposed method generates each two-pattern test for
more than one fault in the target fault list as well as ordinary test
compaction methods, secondary target faults are selected from the
fault list such that many other faults, which may not be included
in the fault list, are detected by the test pattern. Even if faults on
long paths in a manufactured circuit are not included in the fault
list due to a process variation or noise, the compact test set would
detect the longer untargeted faults, i.e., the test set has a noise or
variation tolerant nature. Experimental results show that the
proposed method can generate a compact test set and it detects
longer untargeted path delay faults efficiently.

Categories and Subject Descriptors
M.1.6 [Testing, test generation and debugging]

Keywords
delay testing, test compaction, path delay fault, process variation

1. Introduction
For recent DSM circuits, defects affecting timing behavior are
becoming dominant, and thus testing for delay faults is becoming
more and more important. Among delay fault models for test
generation and fault diagnosis [1-3], the path delay fault model
[2] has many advantages since it models localized as well as
distributed excessive delays. Test patterns generated for a path
delay fault can detect most of other types of delay fault such as
gate delay faults [3] on the path.

On the other hand, the number of paths in a circuit is
sometimes too large to allow efficient test pattern generation for
all path delay faults. For example, the ISCAS-85 benchmark
circuit of c6288, which is a 16-bit multiplier, has more than 1019
paths. Hence in test generation for path delay faults, we need to

select a subset of paths to be targeted directly. Since it is
necessary to select paths that are likely to be faulty, longer paths
are usually selected according to a certain criterion. A simple
approach of path selection is to select N longest paths in order of
the path length. The length of any selected path is longer than the
length of any unselected path. However, the selected paths may
not be distributed all over the circuit and may be locally
concentrated in a part of the circuit. In the approach of [4-8], a set
of paths is selected that contains at least one of the longest paths
through each line. These approaches are based on structural
information of the circuit. However, in the DSM era, structurally
longest paths may not be actual longest paths in a manufactured
circuit due to process variation and/or noise [9-10]. Statistical or
dynamic analysis based approaches for path selection have been
proposed [11-12] too. However, it is difficult to know exact delay
distribution of manufactured circuits. In addition, the longest
paths may be different for each manufactured circuit. Hence,
statistical approaches are still insufficient.

In order to make up for the incompleteness of path selection,
[14,15] proposed a test generation method that selects two subsets
of paths. For paths in the primary set consisting of longest paths,
test patterns are guaranteed to be generated. For paths in the
secondary set consisting of next-longest paths, fault detection is
not guaranteed, but it is considered so as to maximize accidental
detection by the test patterns for paths in the primary set.

After a subset of paths is obtained for test generation, test
patterns for the selected paths are generated. Since a two-pattern
test is required to detect a delay fault and the constraints of test
patterns for path delay faults are more than those for stuck-at
faults, the number of test patterns for delay faults is usually large.
In order to reduce test application time, test compaction is
required to achieve maximum fault coverage with a smallest
possible number of test patterns [16,17].

In this paper we propose a method of test compaction for a
given set of path delay faults. The proposed method is an effective
solution for two major problems in test generation for path delay
faults, namely reducing the number of test patterns and achieving
high fault coverage against process variation and noise. In test
compaction, each two-pattern test is generated for more than one
fault in the targeted fault list as well as ordinary test compaction
methods. The proposed method selects secondary target faults
from the target fault list such that many faults on other long paths,
which may not be included in the target fault list, can be
accidentally detected. Even if longer paths in a manufactured

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

 846

circuit are not included in the target fault list, the compact test set
generated by the proposed method would detect the longer
untargeted faults. Hence the proposed method potentially
improves the quality of test patterns while reducing the number of
test patterns. Experimental results show that the proposed method
can generate a compact two-pattern test set and it detects longer
untargeted path delay faults efficiently.

This paper is organized as follows. In Section 2, we explain
path selection approaches and test compaction techniques. In
Section 3, we describe the proposed test compaction method. In
Section 4, an example of the procedure that realizes the proposed
test compaction method is given and experimental results are
given. Finally, we conclude this paper in Section 5.

2. Related works
2.1 Path selection
When path delay testing is considered, a subset of paths in a
circuit needs to be selected because it is generally impractical to
test all paths in the circuit. Selection of paths which are targeted
in test generation is an important step for testing path delay faults.
If a faulty path of a manufactured circuit is not included in the
target fault list, generated test patterns will not be able to detect
the existence of the fault. Therefore long paths that are likely to be
faulty are usually selected.

Some path selection criteria have been developed [4-8,11-
13]. A simple approach is to select N longest paths in order of the
path length. The length of any selected path is longer than that of
any unselected path. In the approach of [4-8], a set of paths is
selected that contains at least one of the longest paths through
each line in the circuit. In the DSM era, structurally longest paths
may not be actual longest paths in a manufactured circuit due to
process variation and/or noise. In order to make up for the
variation or noise problems, statistical approaches for path
selection have been proposed [12].

In this work we assume that a list of target path delay faults
which are selected using a criterion is given. Depending on the
criterion used for path selection, different paths might be selected.
However the proposed test compaction method in this paper does
not depend on the path selection criterion.

During path selection, we need to be aware of the existence
of untestable paths because it is known that there are many
untestable paths in a circuit [18-20]. If untestable faults are
included in the target faults, the fault coverage would be so low
that additional paths need to be selected until a sufficient number
of selected paths are testable. This is a time-consuming process
because of the time wasted on test generation efforts for
untestable paths. Therefore it is desirable that untestable paths are
excluded from a fault list as much as possible.

2.2 Test compaction
As classic test compaction procedures, static compaction and
dynamic compaction are well-known [21]. Static compaction
reduces the number of test patterns by merging multiple
individually generated test patterns into one. Since a test pattern
generated for a fault contains unspecified values in general,
compatible test patterns can be merged. For example, suppose that
test vectors 0x10 and x1x0 are generated for two faults,

respectively. In this case, these two can be merged into one test
vector 0110.

Dynamic compaction [21] is a method of generating a test
pattern that detects undetected faults as many as possible. By
using unspecified values in a test pattern generated for a fault, test
generation tries detecting another undetected fault. Dynamic
compaction has a higher ability of test compaction than static
compaction, but test generation time of dynamic compaction may
be larger. The test compaction method proposed in this paper
focuses on combination of faults detected by same test pattern. It
is independent of compaction techniques used for test generation,
i.e., the proposed method can be introduced into either static
compaction or dynamic compaction.

Although a delay fault need two patterns to be detected, test
compaction techniques such as static and dynamic compaction are
still applicable. Note that, in the rest of the paper, a test pattern
means a test-pattern-pair since we treat test patterns for delay
faults. A test compaction method for transition faults in [22] is
based on techniques developed test generation for stuck-at faults
[23,24]. For path delay faults, dynamic compaction methods have
been reported in [16,17]. These works aimed at minimizing the
number of test patterns without losing fault coverage.

3. Proposed test compaction
3.1 Basic concept
The proposed method aims at not only minimizing the number of
generated test patterns but also enhancing the test quality of
generated test patterns, as shown in Fig. 1. Test quality
enhancement is achieved by detecting more faults not included in
the fault list. In general, a test pattern generated for a fault detects
faults other than the target fault accidentally. If the accidentally
detected faults are included in the target fault list, the number of
test patterns would be reduced. Even if the accidentally detected
faults are not included in the target fault list, it would contribute
to the enhancement of test quality. In our method, while test
generation targets path delay faults in a given fault list, test
compaction is performed such that untargeted path delay faults are
detected utilizing parts of the paths targeted in test generation.

small patterns many

high

coverage
(quality)

low

No compaction
conventional
compaction

our compaction

small patterns many

high

coverage
(quality)

low

No compaction
conventional
compaction

our compactionour compaction

Fig. 1: Enhancement of test quality through

test compaction

We use an example to explain the idea of test compaction
used in the proposed method. Suppose that four paths p1, p2, p3
and p4 are tested. Through test compaction, some paths are tested
by a test pattern simultaneously. As shown in Fig 2(a), if p1 and p2
are tested by a test pattern, and if p3 and p4 are tested by another
test pattern, no other paths would be tested necessarily. On the
other hand, if p1 and p3 are tested simultaneously as shown in Fig.
2(b) where p1 and p3 cross at a gate, paths other than p1 and p3 can

 847

be tested. Fig. 3 illustrates that there are two paths p5 and p6
consisting of partial paths of p1 and p3. Since paths p1 and p3 have
a common gate, a test pattern for p1 and p3 can test paths p5 and p6
in addition to p1 and p3. Note that p1 and p3 are included in the
target fault list, but p5 and p6 are not included necessarily.

p1

p2

p3

p4

p1

p2

p3 p4

(a) Test compaction without crossing paths

(b) Test compaction with crossing paths

p1

p2

p3

p4

p1

p2

p3 p4

(a) Test compaction without crossing paths

(b) Test compaction with crossing paths
Fig. 2: Combinations of tested paths by same test

p1

p3 p6

p5

p1

p3

p1

p3 p6

p5

p1

p3

Fig. 3: Tested paths by accidental detection

3.2 Conditions of crossing paths
In general, when crossing paths on which there is a common gate
are tested simultaneously, non-target paths consisting of partial
paths of the target paths can be tested simultaneously too. We
generate a test pattern such that two path delay faults with a
common gate in the fault list are detected. Two path delay faults
with a common gate can be tested when the following conditions
are satisfied:
1) Two paths have same transition at the common gate each

other.
2) The transition at the common gate is from the controlling

value [25] of the gate to the non-controlling value.

Fig. 4(a) shows an example of a test pattern that can test two paths
through a common gate. At the OR gate in the circuit, two paths
p1 and p2 meet each other with a transition from the controlling
value to the non-controlling value. If the arrival of one of input
transitions is delayed as shown in Fig. 5(a), then the output
transition is also delayed. Therefore if either path is delayed, it
would be detected. However, when two inputs of a gate have
transitions from the non-controlling value to the controlling value
as shown in Fig. 5(b), the transition arrived at the input earlier
determines the output transition. Hence a delay fault through the
path would be masked. Thus a common gate must have a
transition from the controlling value to the non-controlling value.

common gate

11

11

p1: 10

10
10

10

11

11
10 10

10p2: 10

common gatecommon gate

11

11

p1: 10

10
10

10

11

11
10 10

10p2: 10

Fig. 4: Test pattern with accidental detection

(a) transition from CV to NCV (b) transition from NCV to CV(a) transition from CV to NCV (b) transition from NCV to CV
Fig. 5: Transition at a common gate

In order to detect faults additionally, two paths have to branch off
on the way to outputs from the common gate. If two paths have
same routes from the common gate to the output, there is no other
path tested simultaneously. Such a case is illustrated in Fig. 6(a).
On the other hand, in case two paths have two common gates with
fan-outs on the way to the outputs as shown in Fig. 6(b), 6 paths
can be tested in addition to paths p1 and p2 because 8 paths can be
constructed using p1 and p2. Thus the number of paths tested
simultaneously increases exponentially to the number of common
gates with branches.

p1p1

p2
p2

(a) No additional detection (b) 6 additional detections
Fig. 6: Tested paths by accidental detection

3.3 Variation-tolerant nature of test patterns
In this section we state advantages of test patterns generated by
using the proposed compaction method. Since paths that are likely
to be faulty should be tested, longer paths are selected according
to a criterion. Test patterns generated would detect path delay
faults on the selected paths certainly if they are testable. However,
it is difficult to predict the delay size of a path in manufactured
circuits because of process variation or noise. As a result, there
remain paths that are more likely to be faulty than the selected
ones and the generated test patterns might miss a fault on the
paths.

Test patterns generated by our method, however, would
detect not only faults on the selected paths but also some faults on
unselected paths. If the unselected paths whose faults are
accidentally detected consist of parts of the selected paths, the
length of the unselected paths is relatively long because the

 848

selected paths are long. Therefore the test patterns potentially
compensate the detection of untargeted faults.

Another advantage is that the test patterns potentially cover
alternative faults to untestable target faults. Although most of
untestable paths can be identified in path selection, it is difficult
to exclude all untestable paths from the fault list because ATPG is
required to check if a path is testable or not. If a selected path is
untestable, another path which is the next-longest should be
selected and a test pattern for testing the path should be generated.
But, since test patterns generated by our method potentially detect
faults on unselected long paths, we would keep high fault
coverage without retrying path selection and test generation.

4. Experimental results
4.1 Procedure
We implemented the proposed test compaction method in a
simple static compaction procedure, which is shown below. This
procedure generates test patterns for given faults with heuristics to
increase common gates on paths tested by each test pattern.

Step 1: Set Tfin = φ, and generate an initial test pattern set Tinit for
each path delay fault in a given fault list one by one. Note that
Tfin is a final test pattern set.

Step 2: Remove all overlapped test patterns in Tinit.
Step 3: Pick up one test pattern, tsel, from Tinit which sensitizes

longer path than others, and remove tsel from Tinit.
Step 4: If there are any test patterns in Tinit which are compatible

with tsel, go to Step 5. Otherwise, go to Step8.
Step 5: Pick up a test pattern, tmerge, from Tinit such that the

following conditions are satisfied:
1. tsel and tmerge are compatible.
2. Paths sensitized by tsel and tmerge have the largest number of
common gates.

Step 6: Remove tmerge form Tinit, and merge tmerge into tsel.
Step 7: If there is any compatible test pattern with tsel in Tinit,

return to Step 5. Otherwise, go to Step 8.
Step 8: Add tsel to Tfin.
Step 9: If Tinit is not empty, return to Step 3. Otherwise, this

algorithm finishes.

 When an initial test pattern set, Tinit, is generated for each path
delay fault, we do not assign any logic value to unspecified inputs
of each test pattern, i.e., unspecified bits remain for static
compaction. Next, redundant test patterns in Tinit are removed if
exist, and a test pattern, tsel, is selected from Tinit, which sensitizes
longer path than others. Next, compatible test patterns, tmerge, are
searched for in order to be merged with tsel. Note that the current
procedure does not take branches to outputs into consideration.
Hence no additional path may be sensitized even if two paths
sensitized by the compatible test patterns have a common gate. In
Step5, if there is more than one test pattern that has the same
number of common gates, the test pattern is selected that
sensitizes longer paths than others. In Step6, after tmerge is
removed from Tinit, a new test pattern is generated by merging tsel
and tmerge, and the resulting test pattern is denoted by tsel. If there
is at least one compatible test pattern with the new tsel in Tinit, the
process returns to Step5. Otherwise, after logic values are filled
randomly to all unspecified bits of tsel, tsel is added to the final test
set Tfin. In Step9, if there remains any test pattern in Tinit, the
process returns to Step3. Otherwise, the process finishes.

4.2 Results for benchmark circuits
We implemented the procedure of static compaction using C
programming language on a PC (Pentium III Xeon 2GHz, 4GB
memory) and applied it to full scan version of ISCAS’89
benchmark circuits. We constructed a given fault list such that all
the longest potentially testable paths through each line of the
circuit are included. Note that the length of a path is determined
by the number of logic gates on the path.

Table 1 shows statistics of each circuit in terms of testable
paths and selected paths. The columns of Table 1 give the circuit
name, the total number of logical paths i.e. path delay faults, the
number of testable paths which can be calculated by ATPG for all
paths, and the number of selected paths and the number of testable
paths out of the selected paths. In the selected paths some
untestable paths existed except for s35932 because of the
incompleteness of untestable path analysis in path selection.

circuit #total paths #testable
paths

#selected
paths

#testable
paths in
selected

paths

s5378 27,084 21,928 9,644 9,524

s9234 489,708 59,854 15,458 15,377

s13207 2,690,738 476,145 27,111 26,054

s15850 329,476,092 10,782,994 89,298 85,938

s35932 394,282 58,657 39,124 39,124

s38417 2,783,158 1,138,194 224,101 209,161

s38584 2,161,446 334,927 59,519 58,221

Table 2 gives test generation results. The four columns
followed by circuit name show results of test generation without
test compaction where each test pattern is generated for an
undetected fault in the fault list and fault simulation is performed
for the generated test pattern after random-filling for unspecified
bits. The last four columns show results of test compaction
according to the procedure described above. The columns “#tests”
gives the number of two-pattern tests. Fault efficiency is defined
as the percentage of paths tested by generated test patterns for all
the testable paths. The columns “#tested paths per test” gives the
average number of newly tested paths for each two-pattern test.
The sizes of generated test patterns were compacted
approximately to 25 % of the uncompacted test sets by test
compaction while the uncompacted test sets have higher fault
efficiency than the compacted test sets, i.e., the uncompacted test
sets could detect more faults which are not included in the given
fault list. However, the difference of fault efficiency is not large
compared with the difference of test set sizes. The number of
newly tested paths by each test pattern in the compacted test sets
was four times of the uncompacted test sets on average.

Table 1: Selected paths and testable paths

 849

When we watch only 10,000 longest testable paths in each
circuit, we can observe that the compacted test sets could test
longer paths efficiently. For circuits s15850 and s38584, the
compacted tests could test more paths than the uncompacted test
sets in spite of much less number of test patterns. These results
imply that the proposed method is useful for testing longer paths
which are not targeted in test generation.

Table 3 gives data on crossing paths which the test
compaction procedure results in. Path delay faults on the crossing
paths can be detected by the generated test patterns certainly. The
column “#crossing paths” of Table 3 gives the number of crossing
paths created through the compaction process. The columns
“%crossing paths” gives the percentages of crossing paths for the
tested paths. The columns “#crossing paths per test” gives the
average number of crossing paths for each test pattern. The
number of crossing paths for each test pattern was not so large.
This means that the implemented procedure, which is simple static
compaction, does not have high compaction ability. There is still
enough room for optimization of the compaction algorithm. For
example, applying dynamic compaction would improve the results.
And better heuristics to find more crossing paths would be able to
be developed.

5. Conclusion
In this paper we showed a solution for problems of test generation
for path delay faults that are reduction of test patterns and
achieving high fault coverage against process variation and noise.
In test compaction, we proposed to test paths with cross points
simultaneously so as to accidentally detect many faults which may
not be included in the target fault list. Experimental results
showed that the proposed method could generate a compact two-
pattern test set and it could detect longer untargeted path delay
faults efficiently. However, the compaction algorithm
implemented in this work is still insufficient for test quality
enhancement. As a future work, we will develop more efficient
compaction algorithm to derive the effects of the proposed idea.

circuit #crossing
paths

%crossing
paths

#crossing
paths per

test
s5378 1,556 8.37% 1.95

s9234 2,548 7.31% 1.99

s13207 2,721 1.40% 1.86

s15850 142,942 7.30% 44.25

s35932 1,349 2.78% 20.44

s38417 14,284 2.24% 2.04

s38584 7,306 3.34% 3.12

ACKNOWLEDGMENTS
This work was supported by the New Energy and Industrial
Technology Development Organization (NEDO).

REFERENCES
[1] M. L. Bushnell, and V. D. Agrawal, Essentials of Electronic

Testing for Digital, Memory & Mixed-Signal VLSI Circuits,
Kluwer Academic Publishers, 2000.

[2] G. L. Smith, “Model for delay faults based upon paths,” Int’l
Test Conf., pp.342-349, 1985.

[3] Z.Barzilai and B.K.Rosen, “Comparison of AC Self-testing
Procedures," Int’l Test Conf., pp.89-01, 1983.

[4] W.-N.Li, S.M.Reddy, S.K.Sahni, “On Path Selection in
Combinational Logic Circuits,” IEEE Trans. on CAD., vol.8,
pp.56-63, 1989

[5] A. Murakami, S. Kajihara, T. Sasao, I. Pomeranz, and S. M.
Reddy, “Selection of Potentially Testable Path Delay Faults
for Test Generation,” Int’l Test Conf., pp. 376-384, 2000.

[6] M. Sharma and J. H. Patel, “Finding a Small Set of Longest
Testable Paths that Cover Every Gate,” Int’l Test Conf., pp.
974-982, Oct. 2002.

uncompacted tests compacted tests

circuit
#tests fault

efficiency
#tested paths

per test
coverage for
10,000 paths #tests fault

efficiency
#tested paths

per test
coverage for
10,000 paths

s5378 1,681 88.52% 5.77 92.26% 400 84.81% 23.25 87.85%

s9234 2,106 62.66% 8.90 62.39% 640 58.25% 27.24 61.66%

s13207 1,861 43.28% 55.37 78.91% 733 40.72% 132.26 77.98%

s15850 3,118 18.66% 322.72 96.00% 1,615 18.16% 606.18 97.84%

s35932 275 98.79% 105.36 99.66% 33 82.83% 736.18 90.43%

s38417 29,714 63.17% 12.10 99.97% 3,497 55.91% 90.99 99.88%

s38584 4,581 65.84% 24.07 81.80% 1,172 65.28% 93.27 82.86%

Table2: Test generation results

Table3: Created crossing paths

 850

[7] Y. Shao, S. M. Reddy, I. Pomeranz, S. Kajihara, “On
Selecting Paths to Test in Scan Designs,” Journal of
Electronic Testing Theory and Applications, volume 19, pp.
447-456, August 2003.

[8] W. Qiu and D. M. H. Walker, “An Efficient Algorithm for
Finding the K Longest Testable Paths Through Each Gate in
a Combinational Circuit,” Int’l Test Conf., pp. 592-601,
Sept. 2003.

[9] L.-C. Chen, S. K. Gupta and M. A. Breuer, “High Quality
Robust Tests for Path Delay Faults,” VLSI Test Symp., pp.
88-93, April 1997.

[10] K-T Cheng, S. Dey, M. Rodgers, K. Roy. “Test Challenges
for Deep Sub-Micron Technologies,” Design Automation
Conf., pp.142-149, June 2000.

[11] J.-J. Liou, A. Krstic, Y.-M. Jiang and K.-T. Cheng, “Path
Selection and Pattern Generation for Dynamic Timing
Analysis Considering Power Supply Noise Effects,” Intl.
Conf. on Computer-Aided Design, pp. 493-496, Nov. 2000.

[12] J.-J. Liou, A. Krstic, L.-C. Wang, K.-T. Cheng. “False-Path-
Aware Statistical Timing Analysis and Efficient Path
Selection for Delay Testing and Timing Validation,” Design
Automation Conf., pp.566-569, 2002.

[13] S. Tragoudas, S. Padmanaban, “A Critical Path Selection
Method for Delay Testing,” Int’l Test Conf., pp. 232-241,
Oct. 2004.

[14] I. Pomeranz and S. M. Reddy, “Test Enrichment for Path
Delay Faults Using Multiple Sets of Target Faults,” Conf. on
Design Automation and Test in Europe, pp. 722-729, March
2002.

[15] I. Pomeranz and S. M. Reddy, “A Postprocessing Procedure
of Test Enrichment for Path Delay Faults,” Asian Test
Symposium, pp. 448-453, Nov. 2004.

[16] S. Bose, P. Agrawal, V. Agrawal, “Generation of compact
delay tests by multiple path activation,” Int’l Test Conf., pp.
714-723, Oct. 1993.

[17] J. Saxena; D.K.Pradhan, “A method to derive compact test
sets for path delay faults in combinational circuits,” Int’l Test
Conf., pp. 724-733, Oct. 1993.

[18] S.Kajihara, K.Kinoshita, I.Pomeranz, S.M.Reddy, “A
Method for Identifying Robust Dependent and Functionally
Unsensitizable Paths,” Int’l Conf. on VLSI Design, pp.82-87,
1997.

[19] Z.Li, Y.Min, R.K.Brayton, “Efficient Identification of Non-
Robustly Untestable Path Delay Faults,” Int’l Test Conf.,
pp.992-997, 1997.

[20] K.Heragu, J.H.Patel, V.D.Agrawal, “Fast Identification of
Untestable Delay Faults Using Implications,” Intl. Conf. on
Computer-Aided Design, pp.642-647, 1997.

[21] P. Goel and B. C. Rosales, “Test Generation & Dynamic
Compaction of Tests,” in Digest of Papers 1979 Test Conf. ,
pp. 189-192, Oct. 1979.

[22] I. Hamzaoglu, J.H. Patel, “Compact two-pattern test set
generation for combinational and full scan circuits,” Int’l
Test Conf., pp. 944-953, Oct. 1998.

[23] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy,
“Cost-Effective Generation of Minimal Test Sets for Stuck-at
Faults in Combinational Logic Circuits,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 14, No. 12, pp.1496-1504, Dec. 1995.

[24] I. Hamzaoglu and J. H. Patel, “Test Set Compaction
Algorithms for Combinational Circuits,” Intl. Conf. on
Computer-Aided Design, pp. 283-289, Oct. 1998.

[25] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital
Systems Testing and Testable Design, Piscataway, New
Jersey: IEEE Press, 1990.

