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ABSTRACT 
In this paper we propose a test compaction method for path delay 
faults in a logic circuit. The method generates a compact set of 
two-pattern tests for faults on long paths selected with a criterion. 
While the proposed method generates each two-pattern test for 
more than one fault in the target fault list as well as ordinary test 
compaction methods, secondary target faults are selected from the 
fault list such that many  other faults, which may not be included 
in the fault list, are detected by the test pattern. Even if faults on 
long paths in a manufactured circuit are not included in the fault 
list due to a process variation or noise, the compact test set would 
detect the longer untargeted faults, i.e., the test set has a noise or 
variation tolerant nature. Experimental results show that the 
proposed method can generate a compact test set and it detects 
longer untargeted path delay faults efficiently.  

Categories and Subject Descriptors 
M.1.6 [Testing, test generation and debugging]  

Keywords 
delay testing, test compaction, path delay fault, process variation 

1. Introduction 
For recent DSM circuits, defects affecting timing behavior are 
becoming dominant, and thus testing for delay faults is becoming 
more and more important. Among delay fault models for test 
generation and fault diagnosis [1-3], the path delay fault model 
[2] has many advantages since it models localized as well as 
distributed excessive delays. Test patterns generated for a path 
delay fault can detect most of other types of delay fault such as 
gate delay faults [3] on the path. 

On the other hand, the number of paths in a circuit is 
sometimes too large to allow efficient test pattern generation for 
all path delay faults. For example, the ISCAS-85 benchmark 
circuit of c6288, which is a 16-bit multiplier, has more than 1019 
paths. Hence in test generation for path delay faults, we need to 

select a subset of paths to be targeted directly. Since it is 
necessary to select paths that are likely to be faulty, longer paths 
are usually selected according to a certain criterion. A simple 
approach of path selection is to select N longest paths in order of 
the path length. The length of any selected path is longer than the 
length of any unselected path. However, the selected paths may 
not be distributed all over the circuit and may be locally 
concentrated in a part of the circuit. In the approach of [4-8], a set 
of paths is selected that contains at least one of the longest paths 
through each line. These approaches are based on structural 
information of the circuit. However, in the DSM era, structurally 
longest paths may not be actual longest paths in a manufactured 
circuit due to process variation and/or noise [9-10]. Statistical or 
dynamic analysis based approaches for path selection have been 
proposed [11-12] too. However, it is difficult to know exact delay 
distribution of manufactured circuits. In addition, the longest 
paths may be different for each manufactured circuit. Hence, 
statistical approaches are still insufficient. 

In order to make up for the incompleteness of path selection, 
[14,15] proposed a test generation method that selects two subsets 
of paths. For paths in the primary set consisting of longest paths, 
test patterns are guaranteed to be generated. For paths in the 
secondary set consisting of next-longest paths, fault detection is 
not guaranteed, but it is considered so as to maximize accidental 
detection by the test patterns for paths in the primary set. 

After a subset of paths is obtained for test generation, test 
patterns for the selected paths are generated. Since a two-pattern 
test is required to detect a delay fault and the constraints of test 
patterns for path delay faults are more than those for stuck-at 
faults, the number of test patterns for delay faults is usually large. 
In order to reduce test application time, test compaction is 
required to achieve maximum fault coverage with a smallest 
possible number of test patterns [16,17]. 

In this paper we propose a method of test compaction for a 
given set of path delay faults. The proposed method is an effective 
solution for two major problems in test generation for path delay 
faults, namely reducing the number of test patterns and achieving 
high fault coverage against process variation and noise. In test 
compaction, each two-pattern test is generated for more than one 
fault in the targeted fault list as well as ordinary test compaction 
methods. The proposed method selects secondary target faults 
from the target fault list such that many faults on other long paths, 
which may not be included in the target fault list, can be 
accidentally detected. Even if longer paths in a manufactured 
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circuit are not included in the target fault list, the compact test set 
generated by the proposed method would detect the longer 
untargeted faults. Hence the proposed method potentially 
improves the quality of test patterns while reducing the number of 
test patterns. Experimental results show that the proposed method 
can generate a compact two-pattern test set and it detects longer 
untargeted path delay faults efficiently. 

This paper is organized as follows. In Section 2, we explain 
path selection approaches and test compaction techniques. In 
Section 3, we describe the proposed test compaction method. In 
Section 4, an example of the procedure that realizes the proposed 
test compaction method is given and experimental results are 
given. Finally, we conclude this paper in Section 5. 

2. Related works 
2.1 Path selection 
When path delay testing is considered, a subset of paths in a 
circuit needs to be selected because it is generally impractical to 
test all paths in the circuit. Selection of paths which are targeted 
in test generation is an important step for testing path delay faults. 
If a faulty path of a manufactured circuit is not included in the 
target fault list, generated test patterns will not be able to detect 
the existence of the fault. Therefore long paths that are likely to be 
faulty are usually selected.  

Some path selection criteria have been developed [4-8,11-
13]. A simple approach is to select N longest paths in order of the 
path length. The length of any selected path is longer than that of 
any unselected path. In the approach of [4-8], a set of paths is 
selected that contains at least one of the longest paths through 
each line in the circuit. In the DSM era, structurally longest paths 
may not be actual longest paths in a manufactured circuit due to 
process variation and/or noise. In order to make up for the 
variation or noise problems, statistical approaches for path 
selection have been proposed [12].  

In this work we assume that a list of target path delay faults 
which are selected using a criterion is given. Depending on the 
criterion used for path selection, different paths might be selected. 
However the proposed test compaction method in this paper does 
not depend on the path selection criterion. 

During path selection, we need to be aware of the existence 
of untestable paths because it is known that there are many 
untestable paths in a circuit [18-20]. If untestable faults are 
included in the target faults, the fault coverage would be so low 
that additional paths need to be selected until a sufficient number 
of selected paths are testable. This is a time-consuming process 
because of the time wasted on test generation efforts for 
untestable paths. Therefore it is desirable that untestable paths are 
excluded from a fault list as much as possible. 

2.2 Test compaction 
As classic test compaction procedures, static compaction and 
dynamic compaction are well-known [21]. Static compaction 
reduces the number of test patterns by merging multiple 
individually generated test patterns into one. Since a test pattern 
generated for a fault contains unspecified values in general, 
compatible test patterns can be merged. For example, suppose that 
test vectors 0x10 and x1x0 are generated for two faults, 

respectively. In this case, these two can be merged into one test 
vector 0110.  

Dynamic compaction [21] is a method of generating a test 
pattern that detects undetected faults as many as possible. By 
using unspecified values in a test pattern generated for a fault, test 
generation tries detecting another undetected fault. Dynamic 
compaction has a higher ability of test compaction than static 
compaction, but test generation time of dynamic compaction may 
be larger. The test compaction method proposed in this paper 
focuses on combination of faults detected by same test pattern. It 
is independent of compaction techniques used for test generation, 
i.e., the proposed method can be introduced into either static 
compaction or dynamic compaction. 

Although a delay fault need two patterns to be detected, test 
compaction techniques such as static and dynamic compaction are 
still applicable. Note that, in the rest of the paper, a test pattern 
means a test-pattern-pair since we treat test patterns for delay 
faults. A test compaction method for transition faults in [22] is 
based on techniques developed test generation for stuck-at faults 
[23,24]. For path delay faults, dynamic compaction methods have 
been reported in [16,17]. These works aimed at minimizing the 
number of test patterns without losing fault coverage.  
 

3. Proposed test compaction 
3.1 Basic concept 
The proposed method aims at not only minimizing the number of 
generated test patterns but also enhancing the test quality of 
generated test patterns, as shown in Fig. 1. Test quality 
enhancement is achieved by detecting more faults not included in 
the fault list. In general, a test pattern generated for a fault detects 
faults other than the target fault accidentally. If the accidentally 
detected faults are included in the target fault list, the number of 
test patterns would be reduced. Even if the accidentally detected 
faults are not included in the target fault list, it would contribute 
to the enhancement of test quality. In our method, while test 
generation targets path delay faults in a given fault list, test 
compaction is performed such that untargeted path delay faults are 
detected utilizing parts of the paths targeted in test generation. 
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Fig. 1:  Enhancement of test quality through  

test compaction  

We use an example to explain the idea of test compaction 
used in the proposed method. Suppose that four paths p1, p2, p3 
and p4 are tested. Through test compaction, some paths are tested 
by a test pattern simultaneously. As shown in Fig 2(a), if p1 and p2 
are tested by a test pattern, and if p3 and p4 are tested by another 
test pattern, no other paths would be tested necessarily. On the 
other hand, if p1 and p3 are tested simultaneously as shown in Fig. 
2(b) where p1 and p3 cross at a gate, paths other than p1 and p3 can 
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be tested. Fig. 3 illustrates that there are two paths p5 and p6 
consisting of partial paths of p1 and p3. Since paths p1 and p3 have 
a common gate, a test pattern for p1 and p3 can test paths p5 and p6 
in addition to p1 and p3. Note that p1 and p3 are included in the 
target fault list, but p5 and p6 are not included necessarily. 

  
p1

p2

p3

p4

p1

p2

p3 p4

(a) Test compaction without crossing paths

(b) Test compaction with crossing paths
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p2

p3

p4

p1

p2

p3 p4

(a) Test compaction without crossing paths

(b) Test compaction with crossing paths  
Fig. 2:  Combinations of tested paths by same test 
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Fig. 3:  Tested paths by accidental detection 

 

3.2 Conditions of crossing paths 
In general, when crossing paths on which there is a common gate 
are tested simultaneously, non-target paths consisting of partial 
paths of the target paths can be tested simultaneously too. We 
generate a test pattern such that two path delay faults with a 
common gate in the fault list are detected. Two path delay faults 
with a common gate can be tested when the following conditions 
are satisfied: 
1) Two paths have same transition at the common gate each 

other. 
2) The transition at the common gate is from the controlling 

value [25] of the gate to the non-controlling value. 

Fig. 4(a) shows an example of a test pattern that can test two paths 
through a common gate. At the OR gate in the circuit, two paths 
p1 and p2 meet each other with a transition from the controlling 
value to the non-controlling value. If the arrival of one of input 
transitions is delayed as shown in Fig. 5(a), then the output 
transition is also delayed. Therefore if either path is delayed, it 
would be detected. However, when two inputs of a gate have 
transitions from the non-controlling value to the controlling value 
as shown in Fig. 5(b), the transition arrived at the input earlier 
determines the output transition. Hence a delay fault through the 
path would be masked. Thus a common gate must have a 
transition from the controlling value to the non-controlling value. 
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Fig. 4:  Test pattern with accidental detection 

 

(a) transition from CV to NCV (b) transition from NCV to CV(a) transition from CV to NCV (b) transition from NCV to CV  
Fig. 5:  Transition at a common gate 

 
In order to detect faults additionally, two paths have to branch off 
on the way to outputs from the common gate. If two paths have 
same routes from the common gate to the output, there is no other 
path tested simultaneously. Such a case is illustrated in Fig. 6(a). 
On the other hand, in case two paths have two common gates with 
fan-outs on the way to the outputs as shown in Fig. 6(b), 6 paths 
can be tested in addition to paths p1 and p2 because 8 paths can be 
constructed using p1 and p2. Thus the number of paths tested 
simultaneously increases exponentially to the number of common 
gates with branches. 

 

p1p1

p2
p2

(a) No additional detection (b) 6 additional detections   
Fig. 6:  Tested paths by accidental detection 

 

3.3 Variation-tolerant nature of test patterns 
In this section we state advantages of test patterns generated by 
using the proposed compaction method. Since paths that are likely 
to be faulty should be tested, longer paths are selected according 
to a criterion. Test patterns generated would detect path delay 
faults on the selected paths certainly if they are testable. However, 
it is difficult to predict the delay size of a path in manufactured 
circuits because of process variation or noise. As a result, there 
remain paths that are more likely to be faulty than the selected 
ones and the generated test patterns might miss a fault on the 
paths.  

Test patterns generated by our method, however, would 
detect not only faults on the selected paths but also some faults on 
unselected paths. If the unselected paths whose faults are 
accidentally detected consist of parts of the selected paths, the 
length of the unselected paths is relatively long because the 
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selected paths are long. Therefore the test patterns potentially 
compensate the detection of untargeted faults.  

Another advantage is that the test patterns potentially cover 
alternative faults to untestable target faults. Although most of 
untestable paths can be identified in path selection, it is difficult 
to exclude all untestable paths from the fault list because ATPG is 
required to check if a path is testable or not. If a selected path is 
untestable, another path which is the next-longest should be 
selected and a test pattern for testing the path should be generated. 
But, since test patterns generated by our method potentially detect 
faults on unselected long paths, we would keep high fault 
coverage without retrying path selection and test generation. 

4. Experimental results 
4.1 Procedure 
We implemented the proposed test compaction method in a 
simple static compaction procedure, which is shown below. This 
procedure generates test patterns for given faults with heuristics to 
increase common gates on paths tested by each test pattern. 

Step 1: Set Tfin = φ, and generate an initial test pattern set Tinit for 
each path delay fault in a given fault list one by one. Note that 
Tfin is a final test pattern set. 

Step 2: Remove all overlapped test patterns in Tinit. 
Step 3: Pick up one test pattern, tsel, from Tinit which sensitizes 

longer path than others, and remove tsel from Tinit. 
Step 4: If there are any test patterns in Tinit which are compatible 

with tsel, go to Step 5. Otherwise, go to Step8. 
Step 5: Pick up a test pattern, tmerge, from Tinit such that the 

following conditions are satisfied: 
1. tsel and tmerge are compatible. 
2. Paths sensitized by tsel and tmerge have the largest number of 
common gates. 

Step 6: Remove tmerge form Tinit, and merge tmerge into tsel. 
Step 7: If there is any compatible test pattern with tsel in Tinit, 

return to Step 5. Otherwise, go to Step 8. 
Step 8: Add tsel to Tfin. 
Step 9: If Tinit is not empty, return to Step 3. Otherwise, this 

algorithm finishes. 

 When an initial test pattern set, Tinit, is generated for each path 
delay fault, we do not assign any logic value to unspecified inputs 
of each test pattern, i.e., unspecified bits remain for static 
compaction. Next, redundant test patterns in Tinit are removed if 
exist, and a test pattern, tsel, is selected from Tinit, which sensitizes 
longer path than others. Next, compatible test patterns, tmerge, are 
searched for in order to be merged with tsel. Note that the current 
procedure does not take branches to outputs into consideration. 
Hence no additional path may be sensitized even if two paths 
sensitized by the compatible test patterns have a common gate. In 
Step5, if there is more than one test pattern that has the same 
number of common gates, the test pattern is selected that 
sensitizes longer paths than others. In Step6, after tmerge is 
removed from Tinit, a new test pattern is generated by merging tsel 
and tmerge, and the resulting test pattern is denoted by tsel. If there 
is at least one compatible test pattern with the new tsel in Tinit, the 
process returns to Step5. Otherwise, after logic values are filled 
randomly to all unspecified bits of tsel, tsel is added to the final test 
set Tfin. In Step9, if there remains any test pattern in Tinit, the 
process returns to Step3. Otherwise, the process finishes. 

4.2 Results for benchmark circuits 
We implemented the procedure of static compaction using C 
programming language on a PC (Pentium III Xeon 2GHz, 4GB 
memory) and applied it to full scan version of ISCAS’89 
benchmark circuits. We constructed a given fault list such that all 
the longest potentially testable paths through each line of the 
circuit are included. Note that the length of a path is determined 
by the number of logic gates on the path.  

Table 1 shows statistics of each circuit in terms of testable 
paths and selected paths. The columns of Table 1 give the circuit 
name, the total number of logical paths i.e. path delay faults, the 
number of testable paths which can be calculated by ATPG for all 
paths, and the number of selected paths and the number of testable 
paths out of the selected paths. In the selected paths some 
untestable paths existed except for s35932 because of the 
incompleteness of untestable path analysis in path selection.  

circuit #total paths #testable 
paths 

#selected 
paths 

#testable 
paths in 
selected 

paths 

s5378 27,084 21,928  9,644 9,524 

s9234 489,708 59,854  15,458 15,377 

s13207 2,690,738 476,145  27,111 26,054 

s15850 329,476,092 10,782,994  89,298 85,938 

s35932 394,282 58,657  39,124 39,124 

s38417 2,783,158 1,138,194  224,101 209,161 

s38584 2,161,446 334,927  59,519 58,221 
 

Table 2 gives test generation results. The four columns 
followed by circuit name show results of test generation without 
test compaction where each test pattern is generated for an 
undetected fault in the fault list and fault simulation is performed 
for the generated test pattern after random-filling for unspecified 
bits. The last four columns show results of test compaction 
according to the procedure described above. The columns “#tests” 
gives the number of two-pattern tests. Fault efficiency is defined 
as the percentage of paths tested by generated test patterns for all 
the testable paths. The columns “#tested paths per test” gives the 
average number of newly tested paths for each two-pattern test. 
The sizes of generated test patterns were compacted 
approximately to 25 % of the uncompacted test sets by test 
compaction while the uncompacted test sets have higher fault 
efficiency than the compacted test sets, i.e., the uncompacted test 
sets could detect more faults which are not included in the given 
fault list. However, the difference of fault efficiency is not large 
compared with the difference of test set sizes. The number of 
newly tested paths by each test pattern in the compacted test sets 
was four times of the uncompacted test sets on average.  

Table 1:  Selected paths and testable paths 
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When we watch only 10,000 longest testable paths in each 
circuit, we can observe that the compacted test sets could test 
longer paths efficiently. For circuits s15850 and s38584, the 
compacted tests could test more paths than the uncompacted test 
sets in spite of much less number of test patterns. These results 
imply that the proposed method is useful for testing longer paths 
which are not targeted in test generation. 

Table 3 gives data on crossing paths which the test 
compaction procedure results in. Path delay faults on the crossing 
paths can be detected by the generated test patterns certainly. The 
column “#crossing paths” of Table 3 gives the number of crossing 
paths created through the compaction process. The columns 
“%crossing paths” gives the percentages of crossing paths for the 
tested paths. The columns “#crossing paths per test” gives the 
average number of crossing paths for each test pattern. The 
number of crossing paths for each test pattern was not so large. 
This means that the implemented procedure, which is simple static 
compaction, does not have high compaction ability. There is still 
enough room for optimization of the compaction algorithm. For 
example, applying dynamic compaction would improve the results. 
And better heuristics to find more crossing paths would be able to 
be developed. 

5. Conclusion 
In this paper we showed a solution for problems of test generation 
for path delay faults that are reduction of test patterns and 
achieving high fault coverage against process variation and noise. 
In test compaction, we proposed to test paths with cross points 
simultaneously so as to accidentally detect many faults which may 
not be included in the target fault list. Experimental results 
showed that the proposed method could generate a compact two-
pattern test set and it could detect longer untargeted path delay 
faults efficiently. However, the compaction algorithm 
implemented in this work is still insufficient for test quality 
enhancement. As a future work, we will develop more efficient 
compaction algorithm to derive the effects of the proposed idea. 

 

 

 

 

circuit #crossing 
paths 

%crossing 
paths 

#crossing 
paths per 

test 
s5378 1,556 8.37% 1.95 

s9234 2,548 7.31% 1.99 

s13207 2,721 1.40% 1.86 

s15850 142,942 7.30% 44.25 

s35932 1,349 2.78% 20.44 

s38417 14,284 2.24% 2.04 

s38584 7,306 3.34% 3.12 
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