
How Accurately Can We Model Timing In A Placement
Engine?

ABSTRACT
This paper presents a novel placement algorithm for timing
optimization based on a new and powerful concept, which we
term differential timing analysis. Recognizing that accurate
optimization requires timing information from a signoff static
timing analyzer, we propose an incremental placement algorithm
that uses timing information from a signoff static timing engine.
We propose a set of differential timing analysis equations that
accurately capture the effect of placement perturbations on
changes in timing from the signoff timer. We have formulated an
incremental placement optimization problem based on differential
timing analysis as a single linear programming (LP) problem
which is solved to generate the new timing-optimized placement.

Our experiments show that the worst negative slack (WNS)
improves by an average of 30% and the total negative slack
(TNS) improves by 33% on average for a set of circuits from a
3.0 GHz microprocessor that were already synthesized and placed
by a leading industrial physical synthesis tool. We also show that
multiple iterations of our engine give further TNS improvements
– an average improvement of 51%, which implies that our placer
will significantly speed up timing convergence.

Categories and Subject Descriptors
B.7.2 [Integrated circuits]: Design aids – placement and routing.

General Terms
Algorithms, Design, Performance.

Keywords
Timing-driven placement, static timing analysis, linear
programming, differential timing analysis.

1. INTRODUCTION
Placement is an integral part of a timing convergence flow. It
determines the length of nets on timing-critical paths, which

directly affects the delay of cells and nets on these critical paths.
The problem of timing driven placement is extremely complicated
due to the fact that it is difficult to accurately model timing as a
function of the placement of cells. We briefly explain how timing
is modeled in existing placement algorithms.

o Existing global placement engines convert timing
information into net weights or net constraints which are then
used in the global placement formulation [3][4]. Few methods [6]
interleave timing analysis and global placement. Kahng et al. [6]
use a min-max timing optimization approach that moves cells in
order to minimize the maximum of all weighted edge delays,
where an edge is the combination of a net and its driver cell; edge
delay is modeled by Elmore model. The min-max timing
optimization step is interleaved with global placement based on
recursive bisection. The timing model in min-max optimization
calculates weights on edges using timing information of current
placement, but does not model the change in arrival times and
hence slacks, which are needed to accurately model timing similar
to a static timing analysis engine.

o Existing incremental placement engines [5][7] improve
timing by moving cells on a few timing-critical paths. Choi and
Bazargan [7] iteratively assign net constraints on nets of top few
critical paths and move cells to meet these constraints. Ajami and
Pedram [5] present an iterative technique that models nets with
movable Steiner points in a static timing analysis based
incremental placement framework. However, this formulation is
non-convex, which can only be solved for top few paths, even
after approximation.

Existing placers cannot accurately model timing for more than a
few paths. Also, their timing models do not capture the
complexities of static timing such as arrival time propagation,
slope (transition time) effects, transparent latches, etc. As a result,
these methods leave much room for further optimization. Recent
work has shown that there is significant scope for improvement in
the state of the art in placement technology [8].

We found that expert designers can easily improve timing of a
placement generated by state of the art timing-driven placement
engines. Designers do so by moving a few critical cells, because
they have a good knowledge of the impact of cell movement on
the overall timing of the design. During these timing improvement
steps, designers do not worry about removal of cell overlaps,
because moving a small number of cells results is a small amount
of overlaps that could be removed by a legalization step at the
end. Designers need to run a timing analysis engine after moving

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

Amit Chowdhary, Karthik Rajagopal, Satish Venkatesan, Tung Cao, Vladimir Tiourin,
Yegna Parasuram†, Bill Halpin‡

 Intel Corporation †Sierra Design Automation ‡Synplicity, Inc.
 Santa Clara, CA Santa Clara, CA Sunnyvale, CA

{amit.chowdhary, karthik.rajagopal, satish.venkatesan, tung.d.cao, vladimir.tiourin}@intel.com,
yegna@sierra-da.com, bhalpin@synplicity.com

48.2

801

a few cells to find the new timing. The main drawback of manual
incremental placement by designers is that they can focus on only
a few cells at a time. Therefore, multiple iterations are needed to
converge timing and every iteration requires timing analysis
making such a manual flow very time-consuming. It would be
very beneficial to accurately automate such a placement step.

2. MOTIVATION
This research is motivated by the realization that optimizations
need to be based on an accurate signoff timing engine to be
successful. We start with timing report from a state of the art
timing analysis engine which models all the complexities of
modern design. Reference timing from an accurate timer is the
basis for our placement optimization. Rather than fully modeling
static timing analysis, we use the accurate timing information and
a novel differential timing analysis model to direct placement
optimization. A timing model in the placer that calculates changes
in timing with respect to an accurate reference timing, which we
call differential timing, will be much more precise than timing
models used in current placers to estimate absolute timing
numbers. We bound the movement of cells to improve the
accuracy of our differential timing model.

Key contributions of our approach are:

• A differential timing analyzer that computes differences in
arrival and required times at all pins of a circuit, relative to a
reference static timing analysis, given changes in cell
placement. This differential analyzer is almost exact in the
neighborhood of the reference static timing, including
modeling of setup time and latch transparency.

• A linear programming formulation of the differential timing
model that optimizes timing of the input placement. To
maintain the validity of our differential timing model, we
limit the placement changes to a local neighborhood.

3. PROBLEM STATEMENT
The problem of incremental timing-driven placement can be
stated as follows: Given an initial placement, its timing
information from a static timing analysis engine and a critical
subcircuit, find a new placement of cells in the subcircuit such
that overall timing is improved. Timing of a circuit is measured in
terms of two metrics: worst negative slack (WNS) and total
negative slack (TNS). Slack at any pin of a standard cell or any
pad of the circuit is defined as the difference between the time
signal is required (required time) and the time signal arrives
(arrival time). A negative slack implies that signal is arriving later
than required. WNS is defined as the worst slack among all timing
endpoints of the circuit, where a timing endpoint is either the data
input pin of a latch or a flip-flop, or an output pad of the circuit.
TNS is the total sum of negative slacks at the timing endpoints
(positive slacks are ignored). We select a critical subcircuit of the
input circuit for incremental placement. Figure 1 illustrates a
small subcircuit that we use as an example of input to incremental
placement. Cells B, C, D, E, F and G are movable cells. We
consider combinational as well as sequential cells as movable
cells in our incremental placement approach. Fixed cells (or pads)
that drive movable cells are called start cells. Cells A and H, and
input pad I are start cells. Fixed cells (or pads) driven by movable
cells are called end cells. Output pad J and cell K are end cells.

4. Proposed Algorithm
We now describe differential timing analysis that models changes
in timing as a function of changes in cell locations. The
incremental placement problem can be naturally modeled as a
linear programming (LP) problem using differential timing
analysis, as we show next. Current LP solvers can optimally and
quickly solve very large LP problems [2]. We now describe the
differential timing analysis and the resulting LP problem
formulation of incremental placement. We first describe the
modeling of changes in net length and load capacitance, and then
use these changes to describe our differential timing model.

4.1 Model for net length and load capacitance
We define xi and yi variables for new x and y locations of cell i for
every movable cell. Length of a net is modeled as half-perimeter
of the bounding box of all cells connected to it. We define
variables leftxj, rightxj, loweryj and upperyj for the four
boundaries of the bounding box of net j. For every cell i
connected to net j,

)(max);(min

)(max);(min

iyijupperyiyijlowery
ixijrightxixijleftx

==

==

These min and max functions are converted to linear constraints
below.

ijij

ijij

yupperyylowery

xrightxxleftx

≥≤

≥≤

;

 ;

Even though these constraints allow leftxj to be much less than
mini(xi), the final LP solution that optimizes TNS will guarantee
that leftxj is set to mini (xi).
We model net by half-perimeter of its bounding box. The change
in the length of net j is given below.

jold_l)()(−−+−=∆ jjjjj loweryupperyleftxrightxl

Here, old_lj is the length of net j in the initial placement.
The load capacitance cloadi of cell i is the sum of the interconnect
capacitance and the total pin capacitance cpinj of all receiver pins
connected to the net j driven by cell i. Here, c is the interconnect
capacitance per unit length and lj is the total length of the net.

jcpinc +⋅= ji lcload

The change in load capacitance is then a linear function of change
in net length. We currently use a single value for c regardless of
the metal layer on which the net is routed.

Fig. 1. A small subcircuit used to explain our linear
programming formulation. Cells B, C, D, E, F, G are movable.

n8

G

J n1

n5

n6

n7
n9

 ck

n2 n3

n4

A

B C
D

E

F

H

I

K

d o

802

ji lcload ∆⋅=∆ c

The maximum load capacitance that can be driven by cell i is
bounded by Cmaxi. The Cmax constraint is linear as given below.
The only variable in this constraint is ∆lj.

ijj Cmaxcpincold_lc ≤+∆⋅+⋅ jl

We limit cell movement by M to reduce placement perturbation
and to improve accuracy of differential timing model. Here,
old_xi and old_yi are x and y locations of cell i in the initial
placement.

Mold_yMold_y
Mold_xMold_x

ii

ii

+≤≤−
+≤≤−

i

i

y
x

4.2 Model for differential timing analysis
4.2.1 Delay and slope (transition time) across cells
The delay from an input pin k to the output pin of a cell i can be
modeled as a linear function of the load capacitance at the output
pin and the slope (transition time) at the input pin, with a
reasonably high degree of accuracy. The slope at the output pin of
cell i can be defined by a linear function in a similar fashion.

kiiki

kiiki

inslopecloadslope
inslopecloaddelay

,210,

,210,

BBB
AAA

⋅+⋅+=

⋅+⋅+=

Here, inslopei,k is the slope at the input pin k of cell i and cloadi is
the load capacitance at the output pin of cell i. The constants A0,
A1, A2, B0, B1, B2 are determined by characterization of the
standard cell library. We define delay and output slope constraints
for every feasible signal transition for the cell. For example, an
inverter has only two transitions – (input rise, output fall) and
(input fall, output rise), while a two-input XOR has all four
possible transitions. To simplify our discussion in this paper, we
write constraints hereafter for only one transition for a cell, but
our LP formulation includes all possible transitions for every cell.
Change in delay and slope can be modeled by linear constraints.

kiiki

kiiki

inslopecloadslope
inslopecloaddelay

,21,

,21,

BB
AA

∆⋅+∆⋅=∆

∆⋅+∆⋅=∆

It is very important to note that linear modeling of ∆delay and
∆slope has a higher accuracy than linear modeling of absolute
delay and slope. Thus, the use of differential timing analysis with
respect to reference timing from an accurate static timer is more
precise than directly using static timing model. Prior work has
used a simple, but inaccurate, modeling of absolute timing.

4.2.2 Delay and slope across net segments
For a net with m receiver pins, we individually consider timing
for m net segments, where a net segment is the connection from
the driver pin to a receiver pin of the net. We use Elmore model
[1] for estimating delay across a net segment j of length lj.

)cpin
2

c
(rK jD +
⋅

⋅⋅⋅= j
jj

l
ldelay

Here, r is the interconnect resistance per unit length, KD is a
constant with a value of 0.69, and cpinj is the pin capacitance of
the receiver pin of the net segment j. For lack of simple modeling,
we do not consider the capacitance of side branches when

modeling delay from driver pin to a receiver pin. We need to
enhance our timing model to include capacitance of side
receivers, at least receivers close to the receiver in question.
Similarly, slope at the receiver pin k of a net segment with driver
cell i1 and receiver cell i2 is given below, where KS is a constant
with a value of 2.2 for transition from 10% to 90% of VDD.

1jS,2)cpin
2

c
(rK i

j
jki slope

l
linslope ++

⋅
⋅⋅⋅=

We model the change in length of a net segment, similar to the
modeling of change in length of a net. When the length of net
segment changes by ∆lj, we derive the change in delay and slope
as a function of ∆lj as given below.

() ()

() ()
1

2
jjS,2

2
jjD

2
crcpinold_lcrK

2
crcpinold_lcrK

i

jjki

jjj

slope

llinslope

lldelay

∆+







 ∆⋅

⋅
+∆⋅+⋅⋅⋅=∆







 ∆⋅

⋅
+∆⋅+⋅⋅⋅=∆

The above equations are linear, except for a quadratic term (∆lj)2.
Because (∆lj)2 is a convex function, we can linearize it using a set
of linear constraints as shown in Fig. 2. We bound the change in
wirelength by L in order to make the linear approximation sq_∆lj
close to the quadratic term (∆lj)2.

2
L

2
L3_

2
L_

2
−∆⋅±≥∆

∆⋅±≥∆

jj

jj

llsq

llsq

Even though these constraints allow sq_∆lj to be larger than the
smallest value from these constraints, the optimal LP solution will
ensure that sq_∆lj is set to the smallest value from these
constraints. Here, we have approximated (∆lj)2 by a set of four
linear constraints. We can improve accuracy of linear
approximation by using a larger set of linear constraints. In our
experiments, we have approximated this quadratic function by a
set of 20 linear constraints without any significant impact on
runtime of LP solver.

4.2.3 Arrival time propagation
Changes in delay and slope across cells and net segments affects
the arrival time at pins of these cells. We now define the change
in arrival time at input and output pins of all cells in the critical
subcircuit. The arrival time at an input pin k of a cell i2 is
calculated from the arrival time at the output pin of the driving

-L -L/2 L/2 L

L2/4

L2

sq_∆l, (∆l)2

Fig. 2. Linear approximation sq_∆l of the squared change in
wirelength (∆l)2, given a bound L on change in wirelength.

∆l

803

cell i1 and the delay across the net segment j connecting the two
cells. We define two different arrival times at every pin – one for
rising and another for falling transition. However, we state only
one arrival time constraint here for ease of discussion.

jiki

jiki

delayarrivalarrival

delayarrivalarrival

∆+∆=∆

+=

1,2

1,2

The arrival time at the output pin of a cell i2 depends on the last
arriving signal amongst all input pins of cell i2.

i2,2

ki2,,2ki2,2

,2,22

lold_arriva)
old_delaylold_arriva(max

)(max

−∆+

+∆+=∆

+=

ki

kiki

kikiki

delay
arrivalarrival

delayarrivalarrival

The above max constraint can be linearized as follows.

kdelay
arrivalarrival

ki

kii

∀−∆+

+∆+≥∆

 ,lold_arriva
old_delaylold_arriva

i2,2

ki2,,2ki2,2

The old_arrivali2,k, old_arrivali2 and old_delayi2,k are respectively
the arrival time at input pin k, arrival time at output pin and delay
from input pin k to output pin of cell i2 from the reference timing
determined by a state of the art static timing analysis engine.

4.2.4 Sequential cells
We allow sequential cells to move during incremental placement.
Movement of sequential cells can give large improvements in
timing, because it allows tradeoff of slack between paths ending
and starting at the sequential cells. We define variables for x and
y locations of sequential cells (latches and flip-flops), similar to
the combinational cells. However, we treat a sequential cell as a
start cell as well as an end cell.
We consider the data input pin of a flip-flop or a closed latch as a
timing endpoint in our formulation. The setup time of a given
sequential cell can be modeled as a linear function of the input
slope at the data and clock pins, and the load at the output pin. We
assume an ideal clock, which translates to the slope at the clock
pin to be unchanged, i.e. ∆inslopei,ck = 0. Change in setup time
results in an equal and opposite change in the required time at the
data input pin of the sequential cell.

ii

diii

ckidiii

setuprequired
inslopecloadsetup

inslopeinslopecloadsetup

∆−=∆

∆⋅+∆⋅=∆

⋅+⋅+⋅+=

,21

,3,210

SS
SSSS

We consider the clock input pin as the timing startpoint in our
formulation, thus modeling the change in clock-to-out delay due
to the movement of sequential cell.
We treat the special case of transparent latch different from a
closed latch. We consider a transparent latch as a combinational
cell with a timing arc going from data input pin to output pin.
Thus, we model the change in delay from data pin to output pin of
transparent latches. We assume that a transparent latch stays
transparent during a single iteration of our incremental placer.
The modeling of transparent latches allows our placer to optimize
paths that span one or more transparent latches.

4.2.5 Boundary constraints
For a start cell i, we set the change in input slope as well as arrival
time at all input pins to 0. Even though the start cells are fixed,

the delay from input to output pin can change due to the change in
its load capacitance. The change in delay for a start cell then
changes the arrival time at the output pin of the start cell. We set
the following boundary constraints for all input pins of start cells.

0
0

,

,

=∆

=∆

ki

ki

arrival
inslope

For an end cell i, the required time at every input pin is assumed
to be unchanged. Thus, the change in slack of an input pin of an
end cell or a pad k is simply given by the negative of the change
in its arrival time.

kk

kkk

arrivalslack
arrivalrequiredslack

∆−=∆

−=

In case of a sequential end cell i, required time changes with the
change in setup time. As a result, change in slack is given below.

kkk arrivalrequiredslack ∆−∆=∆

4.2.6 Timing metrics
We calculate the two timing metrics – WNS and ∆TNS from the
change in slack at the input pins of end cells or at the output pads.
WNS is defined as the worst new slack among all end cells (or
pads). Here, old_slackk is the slack of pin (or pad) k from static
timing analysis based on the initial placement.

k∆slackWNS
∆slack(WNS

k

k

∀+≤

+=

 ,old_slack
)old_slackmin

k

k

For a pin with a negative slack of old_slackk, the impact of this
pin on TNS is bounded by – old_slackk. Even though the slack at
pin k could improve by more than – old_slackk, the impact on
TNS is still bounded by – old_slackk. We call the contribution of
change in slack of pin k on ∆TNS as ∆negSlackk.

),old_slackmin(k kk slacknegSlack ∆−=∆

The min function can be modeled in LP problem as follows.

kk

k

slacknegSlack
negSlack

∆≤∆
−≤∆ kold_slack

The change in TNS can be simply evaluated as the sum total of
change in negative slack for input pins of end cells or output pads.

∑ ∆=∆
k knegSlackTNS

4.3 Linear programming formulation
We now state the incremental placement problem as an LP
problem: Maximize ∆TNS, subject to the linear constraints
stated above. Figure 3 presents the LP problem for the subcircuit
of Fig. 1. Alternate objective functions can be used, such as a
combination of WNS and ∆TNS. We use a fast, commercial LP
solver cplex from ILOG to solve the above LP problem [2].

4.4 Legalization
Output of our LP problem is a new placement with improved
timing, but can have overlaps. We use a legalization engine to
resolve cell overlaps in the final placement. We use two calls of
the legalization engine. First, we legalize only critical cells (cells
moved by our placer), while ignoring remaining cells. Next, we
fix critical cells that were legalized in the first step and then

804

legalize remaining cells. The motivation for two-step legalization
is to minimize the change in timing by limiting the movement of
timing-critical cells at the expense of less critical cells.

5. Accuracy of our differential timing model
Differential timing model in our engine is modeled strictly on the
concept of static timing analysis, which results in significant
timing improvements shown later by our experiments. We list
below several limitations of our timing model, and discuss
techniques we use to overcome these limitations.

• Final legalization will worsen timing to some extent.
However, we bound cell movement and work on a small
subcircuit, resulting in only a few cell overlaps. Also, we
first legalize critical cells followed by non-critical cells to
reduce impact on timing.

• The bounding box model of net length may not correlate
well with final routing of the net. We are working on using
net parameters, such as aspect ratio and fanout, to more
accurately model net length.

• The quadratic term in the change in Elmore delay of net can
not be precisely modeled in the LP problem. However, we
closely approximate the quadratic term by a large set of
linear constraints. We also bound the change in net length to
help in the linear approximation of the quadratic term.

• In case of long nets, actual load seen by a cell is smaller than
the total load capacitance due to resistive shielding. We
should use effective capacitance, instead of total load
capacitance, while evaluating cell delay. We are working on
a heuristic that models change of effective capacitance as a
linear function of change in net length.

6. Experimental Results
We have implemented the algorithm for formulating incremental
timing-driven placement as a linear programming problem in C++
on LINUX. We solve the LP problem using a leading industrial
LP solver cplex from ILOG [2]. The solution of LP problem gives
the new improved placement, which could have overlaps. We
then remove overlaps by a two-step legalization using an
internally-developed legalizer engine.
Instead of using MCNC benchmarks, we used circuits from a
recent microprocessor, since the effect of incremental timing-
driven placement on circuit timing is more accurately studied by
using data from a recent manufacturing process and standard cell
library, and by using state of the art RC estimation and timing
analysis engines. For our experiments, we used a set of six
circuits from a 3.0 GHz microprocessor designed on 0.13 micron
process. Circuits range from a few thousand cells to 40,000 cells,
as listed in Table 1. Initial placements of these circuits were
generated using a leading industrial physical synthesis tool. Our
results will show that placements generated from a leading
timing-driven placement tool leave a lot of room for timing
improvement, which could be recovered by an incremental placer
that models timing more accurately. We used an internally-
developed state of the art static timing analysis engine to generate
timing report for the initial placement of circuits. Timing report
contains slacks and slopes at the pins of all cells in the circuit.
Cells are selected as movable based on slack at their output pins.
We define a slack cutoff, such that all cells with slack worse than
the cutoff are selected. We also select cells in the transitive fanout
of critical cells (cells with slack worse than the cutoff), because
these cells directly affect the load on critical cells. We also have
an upper bound on the number of cells selected, because selecting
too many cells might lead to a lot of overlaps, resulting in a
timing degradation during legalization (we have mostly used an

Maximize ∆TNS subject to

Model for net length (j in {n1,…n9})

jold_l)()(

net toconnected cell
;

 ;

−−+−=∆

∀






≥≤

≥≤

jjjjj

ijij

ijij

loweryupperyleftxrightxl

ji
yupperyylowery

xrightxxleftx

Timing for cells (i in {A,…,I}, net j driven by cell i)

ijj

,21

,21,

Cmaxcpincold_lc
sconstraint in these usednot is C flipflop of dPin

 cell of pin
BB

AA

c

≤+∆⋅+⋅

∀






∆⋅+∆⋅=∆

∆⋅+∆⋅=∆

∆⋅=∆

j

kiii

kiiki

ji

l

ik
inslopecloadslope

inslopecloaddelay

lcload

Timing for nets (segment j from driver i1 to pin k of receiver i2)

()()
()

jj

ijij

i

jjki

jjj

llsq

illsq

slope

lsqlinslope

lsqldelay

∆⋅±≥∆

≤≤∀−∆⋅±≥∆

∆+







 ∆⋅

⋅
+∆⋅+⋅⋅⋅=∆

∆+∆⋅+⋅⋅⋅=∆

++

9

12

2

1

1

jjS,2

jjD

2
L_

80,
2
L

2
L3_

_
2
crcpinold_lcrK

_cpinold_lcrK

Arrival time propagation (cell i2 in {A,…,K}, i1 is driver of i2)

kdelay
arrivalarrival

ikdelayarrivalarrival

ki

kii

jiki

pin input ,lold_arriva
old_delaylold_arriva

2 cell of pin input

i2,2

ki2,,2ki2,2

1,2

∀−∆+

+∆+≥∆

∀∆+∆=∆

Sequential cell

CC

dCCC

setuprequired
inslopecloadsetup

∆−=∆

∆⋅+∆⋅=∆ ,21 SS

Boundary constraints (start cell i in {A,C,H,I},end cell j in {C,J,K})

jjj

ki

ki

arrivalrequiredslack
arrival
inslope

∆−∆=∆

=∆

=∆

0
0

,

,

Timing metrics (input pin k of end cells C,J,K)

∑ ∆=∆

∀








+≤
∆≤∆
−≤∆

k k

k

kk

k

negSlackTNS

k
∆slackWNS

slacknegSlack
negSlack

KJ,C, cells end of pin input
old_slack

old_slack

k

k

Fig. 3. LP problem for incremental placement of subcircuit of Fig. 1.

805

upper bound of 500 cells or 5% of total cells, whichever is
smaller). Runtime of our engine is within 2-3 minutes. Biggest LP
problem has 30,000 variables and 60,000 constraints [2].
Table 1 shows timing improvements by placing a small set of
cells using our incremental placer. The number of cells moved by
our placer is within 5%, yet we were able to improve WNS and
TNS on average by 30% and 33%, respectively. (Note that the
initial and final timing numbers were generated by the static
timing analysis engine.) These results show that our incremental
placer can substantially improve timing of the initial placement,
just by moving a small set of cells. The amount of timing
improvement depends on the timing quality of the initial
placement. In case of the largest circuit ckt6 with 40K cells, we
found that moving a small set of 50 cells gave huge improvement
in TNS, which was due to the optimization of a few timing critical
nets with high fanout that were not correctly optimized during
global placement. It should be noted that these timing
improvements are obtained only by our incremental placement,
without doing any buffer insertion or circuit sizing. Based on our
experience, further improvement could be obtained using
placement coupled with buffer insertion and circuit sizing.
We found that other placement characteristics like routability and
wirelength are largely unaffected by this optimization since these
are global parameters of the design and don’t get perturbed much
by moving a few cells. Total wirelength of the final placement
was within +/-1% of the wirelength of initial placement. We ran
global routing on these placements and found similar congestion
maps in the initial and final placements. We also found that the
changes in slacks and slopes reported by our placement engine
correlate well with these changes reported by static timing engine.

Initial Final
Circuit Total

cells
Cells

moved WNS
(ps)

TNS
(ns)

WNS
(ps)

TNS
(ns)

ckt1 2,544 50 -88 -2.139 -77 -1.877

ckt2 2,683 54 -22 -0.248 -9 -0.085

ckt3 3,995 199 -59 -3.79 -51 -2.39

ckt4 4,022 169 -53 -2.72 -50 -2.31

ckt5 15,361 253 -174 -26.84 -72 -18.96

ckt6 40,011 50 -74 -3.60 -68 -0.90

Table 1: Timing improvement from using our incremental placer.
We also ran multiple runs of incremental placement on the same
circuit to illustrate the full extent of optimization that can be done
using our incremental placer. Chart 1 shows the results of
multiple placer iterations. In every iteration, we select cells in
different slack ranges to allow placement optimization of different
subcircuits of the same circuit. The number of cells moved per
iteration of incremental placer is bounded by 5% of the total
number of cells. Chart 1 shows that TNS improved by 24-87% for
these four circuits – an average improvement of 51%. Each
iteration of incremental placer was able to further reduce TNS
significantly, because it worked on different subcircuits. The first
iteration for ckt6 improved TNS a lot, because the starting
placement had some very high fanout nets which were not
optimized for timing, resulting in a huge improvement in TNS by
moving just 50 cells. We found that results on these six
benchmark circuits are representative of results on other circuits.

7. Conclusions and Future Directions
We have developed a novel differential timing analysis model that
uses reference timing from a state of the art static timer and
models timing changes as a result of changes in placement with a
high degree of accuracy. We have designed a powerful algorithm
for incremental placement optimization based on our differential
timing model. We formulated placement optimization problem as
an LP problem which is then solved optimally and quickly by an
LP solver. The main strength of our algorithm is that the timing
model is based closely on a signoff timing analysis. We achieved
improvements in WNS and TNS on average of 30% and 33%,
respectively, for a set of six circuits by incrementally placing only
5% of total cells, even when the starting placement was generated
by a leading tool for timing-driven synthesis and placement. We
ran several iterations of our incremental placer on some circuits
and got huge improvements in TNS by selecting different
subcircuits in each iteration. Our incremental placer can be even
more beneficial when coupled with sizing and buffer insertion.

8. REFERENCES
[1] W. C. Elmore, “The transient response of Damped Linear

network with particular regard to wideband amplifier”,
Journal of Applied Physics, pp.55-63, 1948.

[2] ILOG, ILOG CPLEX 8.0 User’s Manual. ILOG, 2002.
[3] B. Halpin, C. Y. R. Chen, N. Sehgal, “Timing driven

placement using physical net constraints”, Proc. Design
Automation Conf., pp. 780-783, 2001.

[4] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A.
Chowdhary, B. Halpin, “Force directed timing driven
placement with physical net constraints”, Proc. Intl Symp. on
Physical Design, pp. 147-152, 2003.

[5] A.H. Ajami, M. Pedram, “Post-layout timing driven cell
placement using an accurate net length model”, Proc. Design
Automation Conf., pp. 595-600, 2001.

[6] A. B. Kahng, S. Mantik, I. L. Markov, “Min-max placement
for large-scale timing optimization'', Proc. Intl. Symp. of
Physical Design, pp. 143-148, 2002.

[7] W.Choi, K.Bazargan, “Incremental Placement for Timing
Optimization”, Proc. Intl Conf. on CAD, 2003.

[8] C.-C. Chang, J.Cong, M. Xie, “Optimality and scalability
study of existing placement algorithms”, Proc. of the ASP-
DAC, Jan. 2003.

TNS (ns)

Chart 1: Iterative run of our placer: Improvements in TNS.

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ckt3 ckt4 ckt5 ckt6

Initial placement 1st iteration 2nd iteration 3rd iteration 4th iteration

806

