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ABSTRACT 
This paper presents a novel placement algorithm for timing 
optimization based on a new and powerful concept, which we 
term differential timing analysis. Recognizing that accurate 
optimization requires timing information from a signoff static 
timing analyzer, we propose an incremental placement algorithm 
that uses timing information from a signoff static timing engine. 
We propose a set of differential timing analysis equations that 
accurately capture the effect of placement perturbations on 
changes in timing from the signoff timer. We have formulated an 
incremental placement optimization problem based on differential 
timing analysis as a single linear programming (LP) problem 
which is solved to generate the new timing-optimized placement. 

Our experiments show that the worst negative slack (WNS) 
improves by an average of 30% and the total negative slack 
(TNS) improves by 33% on average for a set of circuits from a 
3.0 GHz microprocessor that were already synthesized and placed 
by a leading industrial physical synthesis tool. We also show that 
multiple iterations of our engine give further TNS improvements 
– an average improvement of 51%, which implies that our placer 
will significantly speed up timing convergence. 

Categories and Subject Descriptors 
B.7.2 [Integrated circuits]: Design aids – placement and routing.  

General Terms 
Algorithms, Design, Performance.  

Keywords 
Timing-driven placement, static timing analysis, linear 
programming, differential timing analysis. 

1. INTRODUCTION 
Placement is an integral part of a timing convergence flow. It 
determines the length of nets on timing-critical paths, which 

directly affects the delay of cells and nets on these critical paths. 
The problem of timing driven placement is extremely complicated 
due to the fact that it is difficult to accurately model timing as a 
function of the placement of cells. We briefly explain how timing 
is modeled in existing placement algorithms. 

o Existing global placement engines convert timing 
information into net weights or net constraints which are then 
used in the global placement formulation [3][4]. Few methods [6] 
interleave timing analysis and global placement. Kahng et al. [6] 
use a min-max timing optimization approach that moves cells in 
order to minimize the maximum of all weighted edge delays, 
where an edge is the combination of a net and its driver cell; edge 
delay is modeled by Elmore model. The min-max timing 
optimization step is interleaved with global placement based on 
recursive bisection. The timing model in min-max optimization 
calculates weights on edges using timing information of current 
placement, but does not model the change in arrival times and 
hence slacks, which are needed to accurately model timing similar 
to a static timing analysis engine. 

o  Existing incremental placement engines [5][7] improve 
timing by moving cells on a few timing-critical paths. Choi and 
Bazargan [7] iteratively assign net constraints on nets of top few 
critical paths and move cells to meet these constraints. Ajami and 
Pedram [5] present an iterative technique that models nets with 
movable Steiner points in a static timing analysis based 
incremental placement framework. However, this formulation is 
non-convex, which can only be solved for top few paths, even 
after approximation.  

Existing placers cannot accurately model timing for more than a 
few paths. Also, their timing models do not capture the 
complexities of static timing such as arrival time propagation, 
slope (transition time) effects, transparent latches, etc. As a result, 
these methods leave much room for further optimization. Recent 
work has shown that there is significant scope for improvement in 
the state of the art in placement technology [8].   

We found that expert designers can easily improve timing of a 
placement generated by state of the art timing-driven placement 
engines. Designers do so by moving a few critical cells, because 
they have a good knowledge of the impact of cell movement on 
the overall timing of the design. During these timing improvement 
steps, designers do not worry about removal of cell overlaps, 
because moving a small number of cells results is a small amount 
of overlaps that could be removed by a legalization step at the 
end. Designers need to run a timing analysis engine after moving 
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a few cells to find the new timing. The main drawback of manual 
incremental placement by designers is that they can focus on only 
a few cells at a time. Therefore, multiple iterations are needed to 
converge timing and every iteration requires timing analysis 
making such a manual flow very time-consuming. It would be 
very beneficial to accurately automate such a placement step.  

2. MOTIVATION 
This research is motivated by the realization that optimizations 
need to be based on an accurate signoff timing engine to be 
successful. We start with timing report from a state of the art 
timing analysis engine which models all the complexities of 
modern design. Reference timing from an accurate timer is the 
basis for our placement optimization. Rather than fully modeling 
static timing analysis, we use the accurate timing information and 
a novel differential timing analysis model to direct placement 
optimization. A timing model in the placer that calculates changes 
in timing with respect to an accurate reference timing, which we 
call differential timing, will be much more precise than timing 
models used in current placers to estimate absolute timing 
numbers. We bound the movement of cells to improve the 
accuracy of our differential timing model. 

Key contributions of our approach are: 

• A differential timing analyzer that computes differences in 
arrival and required times at all pins of a circuit, relative to a 
reference static timing analysis, given changes in cell 
placement. This differential analyzer is almost exact in the 
neighborhood of the reference static timing, including 
modeling of setup time and latch transparency. 

• A linear programming formulation of the differential timing 
model that optimizes timing of the input placement. To 
maintain the validity of our differential timing model, we 
limit the placement changes to a local neighborhood. 

3. PROBLEM STATEMENT 
The problem of incremental timing-driven placement can be 
stated as follows: Given an initial placement, its timing 
information from a static timing analysis engine and a critical 
subcircuit, find a new placement of cells in the subcircuit such 
that overall timing is improved. Timing of a circuit is measured in 
terms of two metrics: worst negative slack (WNS) and total 
negative slack (TNS). Slack at any pin of a standard cell or any 
pad of the circuit is defined as the difference between the time 
signal is required (required time) and the time signal arrives 
(arrival time). A negative slack implies that signal is arriving later 
than required. WNS is defined as the worst slack among all timing 
endpoints of the circuit, where a timing endpoint is either the data 
input pin of a latch or a flip-flop, or an output pad of the circuit. 
TNS is the total sum of negative slacks at the timing endpoints 
(positive slacks are ignored). We select a critical subcircuit of the 
input circuit for incremental placement. Figure 1 illustrates a 
small subcircuit that we use as an example of input to incremental 
placement. Cells B, C, D, E, F and G are movable cells. We 
consider combinational as well as sequential cells as movable 
cells in our incremental placement approach. Fixed cells (or pads) 
that drive movable cells are called start cells. Cells A and H, and 
input pad I are start cells. Fixed cells (or pads) driven by movable 
cells are called end cells. Output pad J and cell K are end cells.  

4. Proposed Algorithm  
We now describe differential timing analysis that models changes 
in timing as a function of changes in cell locations. The 
incremental placement problem can be naturally modeled as a 
linear programming (LP) problem using differential timing 
analysis, as we show next. Current LP solvers can optimally and 
quickly solve very large LP problems [2]. We now describe the 
differential timing analysis and the resulting LP problem 
formulation of incremental placement. We first describe the 
modeling of changes in net length and load capacitance, and then 
use these changes to describe our differential timing model. 

4.1 Model for net length and load capacitance 
We define xi and yi variables for new x and y locations of cell i for 
every movable cell. Length of a net is modeled as half-perimeter 
of the bounding box of all cells connected to it. We define 
variables leftxj, rightxj, loweryj and upperyj for the four 
boundaries of the bounding box of net j. For every cell i 
connected to net j, 
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These min and max functions are converted to linear constraints 
below. 
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Even though these constraints allow leftxj to be much less than 
mini(xi), the final LP solution that optimizes TNS will guarantee 
that leftxj is set to mini (xi).  
We model net by half-perimeter of its bounding box. The change 
in the length of net j is given below. 

jold_l)()( −−+−=∆ jjjjj loweryupperyleftxrightxl  

Here, old_lj is the length of net j in the initial placement.  
The load capacitance cloadi of cell i is the sum of the interconnect 
capacitance and the total pin capacitance cpinj of all receiver pins 
connected to the net j driven by cell i. Here, c is the interconnect 
capacitance per unit length and lj is the total length of the net. 

jcpinc +⋅= ji lcload  

The change in load capacitance is then a linear function of change 
in net length. We currently use a single value for c regardless of 
the metal layer on which the net is routed.  

Fig. 1. A small subcircuit used to explain our linear 
programming formulation. Cells B, C, D, E, F, G are movable. 
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ji lcload ∆⋅=∆ c  

The maximum load capacitance that can be driven by cell i is 
bounded by Cmaxi. The Cmax constraint is linear as given below. 
The only variable in this constraint is ∆lj. 

ijj Cmaxcpincold_lc ≤+∆⋅+⋅ jl  

We limit cell movement by M to reduce placement perturbation 
and to improve accuracy of differential timing model. Here, 
old_xi and old_yi are x and y locations of cell i in the initial 
placement. 
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4.2 Model for differential timing analysis 
4.2.1 Delay and slope (transition time) across cells 
The delay from an input pin k to the output pin of a cell i can be 
modeled as a linear function of the load capacitance at the output 
pin and the slope (transition time) at the input pin, with a 
reasonably high degree of accuracy. The slope at the output pin of 
cell i can be defined by a linear function in a similar fashion. 
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Here, inslopei,k is the slope at the input pin k of cell i and cloadi is 
the load capacitance at the output pin of cell i. The constants A0, 
A1, A2, B0, B1, B2 are determined by characterization of the 
standard cell library. We define delay and output slope constraints 
for every feasible signal transition for the cell. For example, an 
inverter has only two transitions – (input rise, output fall) and 
(input fall, output rise), while a two-input XOR has all four 
possible transitions. To simplify our discussion in this paper, we 
write constraints hereafter for only one transition for a cell, but 
our LP formulation includes all possible transitions for every cell. 
Change in delay and slope can be modeled by linear constraints.  
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It is very important to note that linear modeling of ∆delay and 
∆slope has a higher accuracy than linear modeling of absolute 
delay and slope. Thus, the use of differential timing analysis with 
respect to reference timing from an accurate static timer is more 
precise than directly using static timing model. Prior work has 
used a simple, but inaccurate, modeling of absolute timing. 

4.2.2 Delay and slope across net segments 
For a net with m receiver pins, we individually consider timing 
for m net segments, where a net segment is the connection from 
the driver pin to a receiver pin of the net. We use Elmore model 
[1] for estimating delay across a net segment j of length lj. 
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Here, r is the interconnect resistance per unit length, KD is a 
constant with a value of 0.69, and cpinj is the pin capacitance of 
the receiver pin of the net segment j. For lack of simple modeling, 
we do not consider the capacitance of side branches when 

modeling delay from driver pin to a receiver pin. We need to 
enhance our timing model to include capacitance of side 
receivers, at least receivers close to the receiver in question. 
Similarly, slope at the receiver pin k of a net segment with driver 
cell i1 and receiver cell i2 is given below, where KS is a constant 
with a value of 2.2 for transition from 10% to 90% of VDD.  
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We model the change in length of a net segment, similar to the 
modeling of change in length of a net. When the length of net 
segment changes by ∆lj, we derive the change in delay and slope 
as a function of ∆lj as given below. 
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The above equations are linear, except for a quadratic term (∆lj )2. 
Because (∆lj )2 is a convex function, we can linearize it using a set 
of linear constraints as shown in Fig. 2. We bound the change in 
wirelength by L in order to make the linear approximation sq_∆lj 
close to the quadratic term (∆lj )2.  
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Even though these constraints allow sq_∆lj to be larger than the 
smallest value from these constraints, the optimal LP solution will 
ensure that sq_∆lj is set to the smallest value from these 
constraints. Here, we have approximated (∆lj)2 by a set of four 
linear constraints. We can improve accuracy of linear 
approximation by using a larger set of linear constraints. In our 
experiments, we have approximated this quadratic function by a 
set of 20 linear constraints without any significant impact on 
runtime of LP solver. 

4.2.3 Arrival time propagation 
Changes in delay and slope across cells and net segments affects 
the arrival time at pins of these cells. We now define the change 
in arrival time at input and output pins of all cells in the critical 
subcircuit. The arrival time at an input pin k of a cell i2 is 
calculated from the arrival time at the output pin of the driving 

-L -L/2 L/2 L 

L2/4 

L2 

sq_∆l, (∆l)2 

Fig. 2. Linear approximation sq_∆l of the squared change in 
wirelength (∆l)2, given a bound L on  change in wirelength. 
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cell i1 and the delay across the net segment j connecting the two 
cells. We define two different arrival times at every pin – one for 
rising and another for falling transition. However, we state only 
one arrival time constraint here for ease of discussion. 
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The arrival time at the output pin of a cell i2 depends on the last 
arriving signal amongst all input pins of cell i2. 
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The above max constraint can be linearized as follows. 
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The old_arrivali2,k, old_arrivali2 and old_delayi2,k are respectively 
the arrival time at input pin k, arrival time at output pin and delay 
from input pin k to output pin of cell i2 from the reference timing 
determined by a state of the art static timing analysis engine. 

4.2.4 Sequential cells 
We allow sequential cells to move during incremental placement. 
Movement of sequential cells can give large improvements in 
timing, because it allows tradeoff of slack between paths ending 
and starting at the sequential cells. We define variables for x and 
y locations of sequential cells (latches and flip-flops), similar to 
the combinational cells. However, we treat a sequential cell as a 
start cell as well as an end cell. 
We consider the data input pin of a flip-flop or a closed latch as a 
timing endpoint in our formulation. The setup time of a given 
sequential cell can be modeled as a linear function of the input 
slope at the data and clock pins, and the load at the output pin. We 
assume an ideal clock, which translates to the slope at the clock 
pin to be unchanged, i.e. ∆inslopei,ck = 0. Change in setup time 
results in an equal and opposite change in the required time at the 
data input pin of the sequential cell. 
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We consider the clock input pin as the timing startpoint in our 
formulation, thus modeling the change in clock-to-out delay due 
to the movement of sequential cell. 
We treat the special case of transparent latch different from a 
closed latch. We consider a transparent latch as a combinational 
cell with a timing arc going from data input pin to output pin. 
Thus, we model the change in delay from data pin to output pin of 
transparent latches. We assume that a transparent latch stays 
transparent during a single iteration of our incremental placer. 
The modeling of transparent latches allows our placer to optimize 
paths that span one or more transparent latches. 

4.2.5 Boundary constraints 
For a start cell i, we set the change in input slope as well as arrival 
time at all input pins to 0. Even though the start cells are fixed, 

the delay from input to output pin can change due to the change in 
its load capacitance. The change in delay for a start cell then 
changes the arrival time at the output pin of the start cell. We set 
the following boundary constraints for all input pins of start cells. 
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For an end cell i, the required time at every input pin is assumed 
to be unchanged. Thus, the change in slack of an input pin of an 
end cell or a pad k is simply given by the negative of the change 
in its arrival time. 
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In case of a sequential end cell i, required time changes with the 
change in setup time. As a result, change in slack is given below. 

kkk arrivalrequiredslack ∆−∆=∆  

4.2.6 Timing metrics 
We calculate the two timing metrics – WNS and ∆TNS from the 
change in slack at the input pins of end cells or at the output pads. 
WNS is defined as the worst new slack among all end cells (or 
pads). Here, old_slackk is the slack of pin (or pad) k from static 
timing analysis based on the initial placement. 
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For a pin with a negative slack of old_slackk, the impact of this 
pin on TNS is bounded by – old_slackk. Even though the slack at 
pin k could improve by more than – old_slackk, the impact on 
TNS is still bounded by – old_slackk. We call the contribution of 
change in slack of pin k on ∆TNS as ∆negSlackk. 

),old_slackmin( k kk slacknegSlack ∆−=∆  

The min function can be modeled in LP problem as follows. 
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The change in TNS can be simply evaluated as the sum total of 
change in negative slack for input pins of end cells or output pads. 

∑ ∆=∆
k knegSlackTNS  

4.3 Linear programming formulation 
We now state the incremental placement problem as an LP 
problem: Maximize ∆TNS, subject to the linear constraints 
stated above. Figure 3 presents the LP problem for the subcircuit 
of Fig. 1. Alternate objective functions can be used, such as a 
combination of WNS and ∆TNS. We use a fast, commercial LP 
solver cplex from ILOG to solve the above LP problem [2]. 

4.4 Legalization  
Output of our LP problem is a new placement with improved 
timing, but can have overlaps. We use a legalization engine to 
resolve cell overlaps in the final placement. We use two calls of 
the legalization engine. First, we legalize only critical cells (cells 
moved by our placer), while ignoring remaining cells. Next, we 
fix critical cells that were legalized in the first step and then 
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legalize remaining cells. The motivation for two-step legalization 
is to minimize the change in timing by limiting the movement of 
timing-critical cells at the expense of less critical cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Accuracy of our differential timing model 
Differential timing model in our engine is modeled strictly on the 
concept of static timing analysis, which results in significant 
timing improvements shown later by our experiments. We list 
below several limitations of our timing model, and discuss 
techniques we use to overcome these limitations. 

• Final legalization will worsen timing to some extent. 
However, we bound cell movement and work on a small 
subcircuit, resulting in only a few cell overlaps. Also, we 
first legalize critical cells followed by non-critical cells to 
reduce impact on timing. 

• The bounding box model of net length may not correlate 
well with final routing of the net. We are working on using 
net parameters, such as aspect ratio and fanout, to more 
accurately model net length. 

• The quadratic term in the change in Elmore delay of net can 
not be precisely modeled in the LP problem. However, we 
closely approximate the quadratic term by a large set of 
linear constraints. We also bound the change in net length to 
help in the linear approximation of the quadratic term. 

• In case of long nets, actual load seen by a cell is smaller than 
the total load capacitance due to resistive shielding. We 
should use effective capacitance, instead of total load 
capacitance, while evaluating cell delay. We are working on 
a heuristic that models change of effective capacitance as a 
linear function of change in net length. 

6. Experimental Results 
We have implemented the algorithm for formulating incremental 
timing-driven placement as a linear programming problem in C++ 
on LINUX. We solve the LP problem using a leading industrial 
LP solver cplex from ILOG [2]. The solution of LP problem gives 
the new improved placement, which could have overlaps. We 
then remove overlaps by a two-step legalization using an 
internally-developed legalizer engine.  
Instead of using MCNC benchmarks, we used circuits from a 
recent microprocessor, since the effect of incremental timing-
driven placement on circuit timing is more accurately studied by 
using data from a recent manufacturing process and standard cell 
library, and by using state of the art RC estimation and timing 
analysis engines. For our experiments, we used a set of six 
circuits from a 3.0 GHz microprocessor designed on 0.13 micron 
process. Circuits range from a few thousand cells to 40,000 cells, 
as listed in Table 1. Initial placements of these circuits were 
generated using a leading industrial physical synthesis tool. Our 
results will show that placements generated from a leading 
timing-driven placement tool leave a lot of room for timing 
improvement, which could be recovered by an incremental placer 
that models timing more accurately. We used an internally-
developed state of the art static timing analysis engine to generate 
timing report for the initial placement of circuits. Timing report 
contains slacks and slopes at the pins of all cells in the circuit.  
Cells are selected as movable based on slack at their output pins. 
We define a slack cutoff, such that all cells with slack worse than 
the cutoff are selected. We also select cells in the transitive fanout 
of critical cells (cells with slack worse than the cutoff), because 
these cells directly affect the load on critical cells. We also have 
an upper bound on the number of cells selected, because selecting 
too many cells might lead to a lot of overlaps, resulting in a 
timing degradation during legalization (we have mostly used an 
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Fig. 3. LP problem for incremental placement of subcircuit of Fig. 1. 
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upper bound of 500 cells or 5% of total cells, whichever is 
smaller). Runtime of our engine is within 2-3 minutes. Biggest LP 
problem has 30,000 variables and 60,000 constraints [2]. 
Table 1 shows timing improvements by placing a small set of 
cells using our incremental placer. The number of cells moved by 
our placer is within 5%, yet we were able to improve WNS and 
TNS on average by 30% and 33%, respectively. (Note that the 
initial and final timing numbers were generated by the  static 
timing analysis engine.) These results show that our incremental 
placer can substantially improve timing of the initial placement, 
just by moving a small set of cells. The amount of timing 
improvement depends on the timing quality of the initial 
placement. In case of the largest circuit ckt6 with 40K cells, we 
found that moving a small set of 50 cells gave huge improvement 
in TNS, which was due to the optimization of a few timing critical 
nets with high fanout that were not correctly optimized during 
global placement. It should be noted that these timing 
improvements are obtained only by our incremental placement, 
without doing any buffer insertion or circuit sizing. Based on our 
experience, further improvement could be obtained using 
placement coupled with buffer insertion and circuit sizing. 
We found that other placement characteristics like routability and 
wirelength are largely unaffected by this optimization since these 
are global parameters of the design and don’t get perturbed much 
by moving a few cells. Total wirelength of the final placement 
was within +/-1% of the wirelength of initial placement. We ran 
global routing on these placements and found similar congestion 
maps in the initial and final placements. We also found that the 
changes in slacks and slopes reported by our placement engine 
correlate well with these changes reported by static timing engine. 

Initial Final 
Circuit Total 

cells 
Cells 

moved WNS 
(ps) 

TNS 
(ns) 

WNS 
(ps) 

TNS 
(ns) 

ckt1 2,544 50 -88 -2.139 -77 -1.877 

ckt2 2,683 54 -22 -0.248 -9 -0.085 

ckt3 3,995 199 -59 -3.79 -51 -2.39 

ckt4 4,022 169 -53 -2.72 -50 -2.31 

ckt5 15,361 253 -174 -26.84 -72 -18.96 

ckt6 40,011 50 -74 -3.60 -68 -0.90 

Table 1: Timing improvement from using our incremental placer. 
We also ran multiple runs of incremental placement on the same 
circuit to illustrate the full extent of optimization that can be done 
using our incremental placer. Chart 1 shows the results of 
multiple placer iterations. In every iteration, we select cells in 
different slack ranges to allow placement optimization of different 
subcircuits of the same circuit. The number of cells moved per 
iteration of incremental placer is bounded by 5% of the total 
number of cells. Chart 1 shows that TNS improved by 24-87% for 
these four circuits – an average improvement of 51%. Each 
iteration of incremental placer was able to further reduce TNS 
significantly, because it worked on different subcircuits. The first 
iteration for ckt6 improved TNS a lot, because the starting 
placement had some very high fanout nets which were not 
optimized for timing, resulting in a huge improvement in TNS by 
moving just 50 cells. We found that results on these six 
benchmark circuits are representative of results on other circuits. 

7. Conclusions and Future Directions 
We have developed a novel differential timing analysis model that 
uses reference timing from a state of the art static timer and 
models timing changes as a result of changes in placement with a 
high degree of accuracy. We have designed a powerful algorithm 
for incremental placement optimization based on our differential 
timing model. We formulated placement optimization problem as 
an LP problem which is then solved optimally and quickly by an 
LP solver. The main strength of our algorithm is that the timing 
model is based closely on a signoff timing analysis. We achieved 
improvements in WNS and TNS on average of 30% and 33%, 
respectively, for a set of six circuits by incrementally placing only 
5% of total cells, even when the starting placement was generated 
by a leading tool for timing-driven synthesis and placement. We 
ran several iterations of our incremental placer on some circuits 
and got huge improvements in TNS by selecting different 
subcircuits in each iteration. Our incremental placer can be even 
more beneficial when coupled with sizing and buffer insertion.   
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Chart 1: Iterative run of our placer: Improvements in TNS.
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