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ABSTRACT 
This paper describes a novel technique called Embedded Test-bench 
Control (ETC), extensively used in the verification of Tensilica’s 
latest configurable processor.  Conventional simulation-based 
verification methodologies that employ assembly programs for 
testing cannot easily link the diagnostic program to the test-bench 
for interactive control, consequently resulting in weaker coverage.  
ETC links the diagnostic program execution and the test-bench 
functions, thereby increasing the flexibility and power of the 
diagnostics to create more complex corner cases in fewer simulation 
cycles and with smaller code size.  This method also enables 
dynamic self-checking and dynamic coverage analysis by either 
passing or failing the diagnostic based on the coverage goal, or 
terminating runaway random diagnostics much earlier.  The 
presented simulation results show that ETC augments verification in 
two major areas: the creation of more maintainable, efficient, and 
smart diagnostics, and the reduction of the regression time. Some of 
the techniques presented in this paper can apply to non-processor 
verification methodologies as well. 

Categories and Subject Descriptors 
B.5.2 [Design-aids]: Verification 

General Terms: Design, Verification. 

Keywords: Functional Verification, Configurable Processors, 
Embedded Test-bench Control, Diagnostics, Coverage. 

1. INTRODUCTION 
Recent studies show that, due to the complexity of current 
embedded SOC designs, 70% of the design cycle is spent in 
verification [1].  Several approaches exist to tackle the verification 
bottleneck, including reducing chip complexity, increasing 
resources, or increasing verification productivity.  The first option is 
unreasonable as it is well known that design complexity increases 
exponentially to take advantage of the advances in semiconductor 
technology driven by the functionality requirements of emerging 
embedded applications.  Increasing resources is not the competitive 
approach and often times not scalable.  Therefore, building an 
efficient, maintainable, and re-usable verification strategy is 
essential for quick time to market with a working product.  

Formal verification techniques have recently emerged in the realm 
of pipelined processor verification [3]. However, it is not possible to 
do complete chip or system level formal verification with the 
limitations of today’s tools. A simulation-based approach still 
remains the most popular method.  In general, this type of 
verification is accomplished using directed, pseudo-random, or 
directed random diagnostic programs.  To enhance the verification 
quality of complex processor designs, several large processor 
companies have successfully employed internally developed or 
commercially available random instruction sequence generators 
[7][13].  Automatic test generation for pipelined processors is also a 
popular research subject [11] [14]. 

The biggest challenge in simulation-based methodologies is to 
guarantee the quality and completeness of verification.  Therefore, 
coverage becomes crucial in such methodologies, so much so that 
some approaches employ purely coverage-directed or coverage-
oriented test generation [2].  Choosing a limited set of diagnostics 
for optimizing coverage versus regression time is a very difficult 
problem to solve [10].  

In summary, simulation-based processor verification techniques 
require the development of a robust suite of diagnostic programs, 
combining random and directed tests and a good coverage 
methodology.  In this paper, we describe a methodology that 
incorporates and augments the ideas mentioned above, to develop 
high quality and high performance directed and directed-random 
diagnostics for the verification of the Xtensa LX processor.  

2. THE XTENSA LX PROCESSOR 
The Xtensa LX processor is Tensilica’s newest configurable and 
extensible processor with many desirable features such as high 
compute performance using long instruction words, high I/O 
bandwidth using a new type of wide processor I/O ports, and low-
power implementation with fine-grained clock gating [4].  The 
extensions to the processor are described using the Tensilica 
Instruction Extension (TIE) language, which enables the designers 
to create their own instructions, register files, and other specific 
functionality, tuning the processor for a specific target application 
[5] [8].  New in Xtensa LX is the Flexible Length Instruction 
Extensions (FLIX) technology that allows multiple instruction 
lengths, which can be freely intermixed.  FLIX instruction 
extensions can define multiple operation slots, each independently 
decoded and executed, enabling high data parallelism. 

Also new in the Xtensa LX processor, TIE ports and queues are 
designer-defined I/O interfaces, which allow an instruction to 
directly read from and write to the primary I/O ports of the 
processor.  This capability provides a flexible way for execution 
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units to directly access external devices, and enables low latency, 
high bandwidth communication.  

The combination of variable length instructions, multiple operation 
slots, customized description of an unpredictable quantity of new 
processor ports and queue interfaces, added to the numerous 
contortions of configurations create a verification nightmare for 
configurable and extensible processor architectures. We address 
these challenges using a configurable verification infrastructure and 
configurable diagnostic suites. 

3. CONFIGURABLE VERIFICATION 
INFRASTRUCTURE 

Developing a test-bench for functional verification of a configurable 
processor is challenging in many ways.  Not only must the RTL 
design be configurable, but also so must everything that surrounds 
it, including the instruction set simulator (ISS), memory models, 
event generators, assertion checkers, monitors, and test programs.  
Modularity is also important to be able to deal with the complexity 
of the whole infrastructure, which needs to be easily maintainable 
and portable across generations of processor implementations.  We 
have chosen Vera as the primary verification and test-bench 
language because it allows modularity, is flexible and portable, and 
has many desirable features such as object oriented programming, 
temporal assertions, and functional coverage [12]. 

Our test-bench, shown in Figure 1, is composed of a large number 
of Vera components including local memory controllers (IRAM, 
DRAM, IROM, DROM, ICache, DCache, XLMI), system memory 
controller, co-simulation module, external event generators, JTAG 
module, TIE port module, coverage module, checkers, and monitors.  
A separate module outside the test-bench, called the ETC module, 
enables the assembly-generated Vera code to control the rest of the 
test-bench modules.  This concept will be described in more detail 
in the following sections. 

Our directed diagnostic suites are composed of approximately 300 
architecture verification programs (AVPs) to test the execution of 
each instruction in the ISA, and 400 micro-architecture verification 
programs (MVPs) to test the specific implementations of the Xtensa 
LX processor.  Like all test-bench components, diagnostic programs 
are also configurable.  They are Perl scripts that utilize the 
configuration database in order to generate high quality tests tailored 
to a specific processor instance [6].  Each diagnostic is accompanied 
by a database entry file, called the ‘info’ file, that indicates which 
conditions satisfy the diagnostic coverage goals: a) for what 
configurations it is valid, b) which runtime options are required, c) 
which runtime options prohibit its use, d) what should be the 
probability distribution of random external events, such as bus 
waits, bus errors, or interrupts.  

Several parameters are used to adjust or tune different components 
of the test-bench to achieve various behaviors; for example, one can 
change the frequency of the random or periodic toggling of the busy 
signals in the local memories, or the frequency and type of bus 
errors injected by the system memory controller.  There are a few 
different ways of setting these parameters, each of which contributes 
to a complementary aspect of the verification.  They can be passed 
as runtime simulation flags, they can be placed in ‘info’ files as 
described above, or they can be controlled from the assembly 
programs using the ETC technique that will be described in the 
following section.  

4. EMBEDDED TEST-BENCH CONTROL 
As our processor design evolves, generating complex test programs 
gets more and more complicated.  When the test-bench modules that 
generate random events and the assembly programs are decoupled, it 
is harder to create many of the corner cases that must be exercised.  
Furthermore, there are many parts of the test-bench that the 
diagnostic could use to steer its execution, do self-checking, or 
terminate the simulation.  The method that we have developed and 
used in our verification infrastructure is called Embedded Test-
bench Control (ETC) in assembly programs.  This approach enables 
the assembly code to interact closely with several major components 
of the test-bench, thus giving the diagnostic writer much more 
flexibility and power in creating complex scenarios, or getting 
information dynamically about the current status of the processor to 
be used in self-checking. 

Using ETC, individual diagnostics can easily synchronize execution 
of a certain code sequence with simultaneously occurring external 
events.  Without ETC, a diagnostic would have to rely on random 
external events to occur at the desired instant, resulting in wasted 
simulation cycles and/or loss of coverage. 

For example, a diagnostic trying to test contention and arbitration 
for a local memory port may wish to have a load or store instruction 
accessing the target memory at the same time that an external master 
is performing an inbound request (via the PIF) to the same memory.  
Without ETC, the diagnostic would have to rely on random inbound 
requests occurring at the right point in time, possibly using a 
coverage monitor to detect this condition and stop the simulation.  
By using ETC, the diagnostic can control the external master 
directly and synchronize that action with its instruction sequence, 
guaranteeing that the event will occur.  This both decreases 
simulation cycles and improves coverage.  

To implement this mechanism, we developed a preprocessor to 
parse the smart diagnostic’s source code, as shown in Figure 2, and 
find special syntax (#@), which indicates the Vera code that is 
expected to run concurrently with the specified instruction at the 
commit (W) stage of the pipeline.  It is also possible to delay 
execution of the Vera code for n cycles after the instruction is 

ETC

Assembly
Test

Xtensa LX
Processor

XLMI
(Data Port)

Data
Cache

System Memory

TIE Port

Coverage

External Event
Generator

JTAG

ISS

Data
ROM

Data
RAM

Inst.
Cache

Inst.
RAM

Inst
ROM

Co-simulation

Checkers
Monitors

D
ia

gn
os

tic
 S

ui
te

s

DUT

TEST-BENCH

Figure 1.  Configurable Xtensa LX Processor Test-Bench 



 

 791

committed using (#@+n) syntax.  Another syntax, (#:), is used to 
embed test-bench code that is not tied to the execution of an 
instruction.  The parser builds test-bench code that monitors 
instruction execution at runtime and matches the W stage program 
counter (PC_W) values to the addresses of these instructions.  When 
a match occurs, the appropriate Vera code is executed. 

This mechanism is complicated by the lack of address information at 
the time the parser is run: as the assembly and linking process has 
not yet occurred, the addresses of these instructions have not been 
determined.  To find the appropriate PC values, the parser inserts 
labels into the assembly source at all such points (see the assembly 
code shown in Figure 2), so that it may find them again once the 
diagnostic has been finally linked into an executable.  This 
executable is then analyzed and the addresses of all such instructions 
are recorded in a text file for use during simulation.  The ETC 
mechanism gives diagnostic writers a new level of control over the 
verification infrastructure by enabling tight coupling between 
pipelined instruction execution and external stimuli. 

5. USING SMART DIAGNOSTICS 
Using ETC in AVPs and MVPs has three major advantages.  It 
provides a mechanism to easily create hard-to-reach scenarios by 
calling test-bench functions that can generate external stimuli.  It 
gives more flexibility in data checking inside the assembly program 
by providing the ability to use test-bench functions that can be 
linked to program execution.  Finally, it increases the lifespan of 
diagnostics across different projects by decreasing the test code size 
and by providing success status based on the coverage goal, thereby 
easily identifying broken or obsolete diagnostics that fail to cover 

their targeted scenario.  The following sections give a few detailed 
examples of verification areas where we obtained the most benefit 
from this technique.  

5.1 Multi-Processor Synchronization 
Verification 

The Xtensa LX processor provides a multiprocessor synchronization 
option for systems that use shared-memory communication 
protocols.  The synchronization instructions ensure that no load or 
store access is allowed before all previous load-acquire accesses are 
performed; similarly, before a store-release access is performed, all 
previous load, store, acquire, and release accesses must be 
performed.  To test synchronization instructions in a single 
processor test-bench is a challenging task.  The verification of 
configurations with dual load-store units becomes more interesting 
because the order of memory accesses across different slots of a 
FLIX packet with concurrent operations must be checked as well.  
Checking the memory access order of all load or store instructions 
separated by acquire and release instructions is achieved using ETC. 
Figure 3 shows a program code snippet of a smart diagnostic that 
verifies synchronization instructions using FLIX packets to generate 
multiple memory accesses with wide instructions.  This particular 
processor configuration has two slots in its FLIX instructions, each 
of which may contain a 32-bit load (L32I), store (S32I), or a no-op 
(NOP) instruction.  Many load-acquire (L32AI) and store-release 
(S32RI) instructions are dispersed among these random FLIX 
instructions.  In the test, after every FLIX packet that contains a 
memory access instruction in one or both of its slots, the 
corresponding add_address call(s) are added as well, to store the 
address of the memory access in the current address bucket.  When a 
synchronization instruction is encountered, the bucket number is 
incremented, so that addresses of all memory access instructions 
after it are collected in a separate bucket.  During simulation, part of 
the ETC code (not shown) will monitor the memory interface and 
compare all addresses with the ones collected in different buckets to 
make sure that the protocol is not violated.  This example 
demonstrates the use of ETC in writing efficient self-checking 
diagnostics. 

Aligned_test:
 NOP # @ set_buswaits(1,30);
L32I a2, a3, 0 # @ set_buswaits(1, 0);

#: task set_buswaits(integer rdy_dly,
#:                             integer rdy_not_dly) {
#:  vps.control_rdy(1, rdy_dly, rdy_dly);
#: vps.control_not_rdy(not_rdy, not_rdy);
#: }

 Smart Diagnostic

Aligned_test:
VERA_LABEL0:

NOP
VERA_LABEL1:
  L32I a2, a3, 0

Assembly Code

task set_buswaits(integer rdy_dly,
                             integer rdy_not_dly) {
vps.control_rdy(rdy_dly,rdy_dly);
vps.control_not_rdy(not_rdy,not_rdy);
 }
….

@(posedge CLK);
if(valid_W) {
  case(PC_W) {
  label[0]:  set_buswaits(1,30);
  label[1]:  set_buswaits(1, 0);

}

    Test-bench Code

}

while(1) {

}

Figure 1.  Test Code Generation using ETC

// Target Addresses
// a4: 0x60000000
// a5: 0x60000040
// a6: 0x60000080
// a7: 0x60010000
  . . .
  MEMW  #@ collect_addresses();
#: task collect_addresses() {
  {S32I a2, a5, 0; NOP;}
#: add_address(basket_id, 32'h60000040);
  L32AI a6, a7, 0  # Load Acquire
#: basket_id++;
  {L32I a2, a4, 4;  L32I a2, a5, 8;}
#: add_address(basket_id, 32'h60000010);
#: add_address(basket_id, 32'h60000060);
  {L32I a3, a5, 8;  S32I a2, a4, 0;}
#: add_address(basket_id, 32'h60000060);
#: add_address(basket_id, 32'h60000000);
  . . .
#: } // end task collect_addresses()

Figure 3.  MP Synchronization Test
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5.2 TIE Ports and TIE Queues Verification 
TIE ports and queues are new I/O interfaces in the Xtensa LX 
processor.  There are two types of TIE ports.  State exports are 
designer-defined states that can be made visible at the top-level pins.  
Import wires enable designer-defined TIE instructions to read inputs 
from designer-defined primary pins of the processor.  TIE queues 
are push or pop type interfaces with full or empty flow control 
signals.  An input queue definition includes a data signal (IQ), an 
input control signal (IQ_Empty) and an output control signal 
(IQ_PopReq).  Empty indicates that the external queue has no data 
to read, and PopReq indicates that the data is being read and popped 
from the queue.  Similarly, an output queue has data (OQ), an input 
(OQ_Full), and an output (OQ_PushReq) control signals.  Full 
indicates that the external queue cannot be written any more, and 
PushReq indicates that data is being written to the queue by the 
processor.  With TIE instructions, it is possible to push data to an 
output queue if it is not full, or pop data from an input queue if it is 
not empty. 

Assertion of empty or full causes instructions that use these queues 
to stall.  A stalled queue instruction should not hold the previous 
queue instruction from executing; otherwise a deadlock can happen.  
The test code snippet shown in Figure 4 is an example of a 
diagnostic which verifies that no deadlock occurs in this scenario.  
In this test, the write instruction OQWRITE pushes to the output 
queue OQ, followed by a read instruction IQCAT that pops from the 
input queue IQ.  The test uses ETC cleverly to control stalling of the 
instructions.  While the OQ_Full signal is asserted for only 100 
cycles to temporarily stall the write queue instruction, IQ_Empty is 
asserted indefinitely, and will stall the read queue instruction until it 
is de-asserted.  The ETC code monitors the push request count that 
increments when the write queue instruction is un-stalled, making 
sure that the read queue instruction that is stalled forever does not 
block the previous write queue instruction, therefore creating a 
deadlock.  When the pop request is observed, the IQ_Empty signal 
is released, resulting in the unblocking of the read queue instruction 
and the graceful termination of the test.  If deadlock does occur, 
execution will stall indefinitely and some other monitor (not shown) 
will fire, causing the test to fail.  This example shows that ETC can 
be used both for generating external stimuli and for monitoring the 
processor states to steer program execution.  

6. DIAGNOSTIC-BASED COVERAGE 
Functional coverage is an integral part of our test-bench.  Its 
hierarchical nature encompasses the complete design.  We used 
Vera’s functional coverage feature in conjunction with Open Vera 
Assertions (OVA) used as a temporal language when complex event 
sequences were needed.  Among many desirable features, dynamic 
coverage feedback capability was essential to our goal-oriented 
diagnostics.  
Unit level coverage monitors were utilized in regressions to point to 
weakly verified areas in general. Diagnostic-based coverage was a 
new approach that integrated the coverage goal as a metric to decide 
the pass or fail status of the tests.  This approach had two 
advantages: to easily identify broken or obsolete diagnostics that did 
not achieve their intended purposes, and increase the performance of 
directed-randoms by terminating the program as soon as the 
coverage goal is reached.  

Each goal-oriented diagnostic has a corresponding coverage rule 
and a query function that can be called periodically during or near 
the end of the simulation using ETC, which dynamically links the 
assembly test to the coverage monitors residing in the test-bench.  
Before our coverage methodology was in place, the diagnostic was 
run for a length determined by the diagnostic’s author to be 
sufficient to guarantee coverage of the targeted scenario.  When 
diagnostic-based coverage was added, the program is terminated as 
soon as the coverage goal is reached, thereby decreasing the average 
simulation time by more than 60%.  Figure 5 shows 10 different 
random simulation results of the same test program on the same 
processor configuration.  This approach was used to do a coverage 
and simulation performance comparison that is presented in the next 
section. 

7. RESULTS AND CONCLUSIONS 
To investigate the usefulness of ETC, we have compared the results 
of directed or directed-random diagnostics using ETC to the ones 
that are generated using our random test program generator (RTPG) 
on two different processor configurations.  The first processor (A) is 
a full-featured configuration of Xtensa LX including all local 
memories, a wide processor interface, a 7-stage pipeline, and two 
load-store units.  The second processor (B) has one instruction 
RAM, one data RAM, and a 5-stage pipeline.  Both processors use 
designer-defined TIE instruction extensions accessing TIE ports and 
queues.  
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#Write opcode: IQCAT
NOP #@ deadlock();
NOP.N

IQCAT
OQWRITE $a14,$a12

EXTW
#:task deadlock() {
#:  integer count;
#:  tiewire.drive_OQ_Full(1'b1, 100);
#:  tiewire.drive_IQ_Empty(1'b1, -1);
#:  while(1) {
#:   count = tiewire.OQ_PushReq_count();
#:   if( count == 1 ) {
#:    tiewire.release_IQ_Empty();
#:    break;
#:   }
#:   @(posedge Xtensa_if.CLK);
#:  }
#:}

# Write Queue
# Read Queue

Figure 4.  TIE Queue Deadlock Test 
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7.1 Coverage and Performance Improvements 
We have simulated on both processors 22 ETC diagnostics that took 
231,046 simulation cycles to run, and 100 RTPG diagnostics with 
random external events (interrupts, bus errors, bus waits, random 
toggling of queue control signals, random inbound PIF requests, 
etc.) that took 3,820,219 simulation cycles.  Coverage results of 
selected goals are presented in Table 1.  Because ETC diagnostics 
are coverage oriented, most were able to attain 100% coverage in 
much less simulation cycles, whereas random diagnostics had long 
simulation times and poor coverage results. 

To demonstrate the performance improvements more clearly with 
the proposed technique, we have simulated a few selected 
diagnostics with ETC and with fine-tuned random external events 
on both processor configurations.  The simulation results of three 
selected diagnostics with and without ETC are presented in Figure 
6.  The first diagnostic is intended to verify the instruction fetch and 
external interface units.  The diagnostic sends a load to instruction 
RAM that causes the current instruction fetch request to be 
canceled.  Bus contention is generated during the next fetch and an 
interrupt causes this second fetch to be canceled as well, thereby 
forcing the external interface unit to use different IDs for two back-
to-back fetch requests.  The described scenario is difficult to achieve 
with random bus waits and interrupts, therefore, ETC is used to slow 
down instruction fetch responses, allowing plenty of time for the 
interrupt to cancel the next request. 
The TIE queue deadlock test described in Section 5.2 is also used to 
compare simulation performance with or without ETC.  With 
random toggling of queue control signals IQ_Empty and OQ_Full, 
it takes many simulation cycles, and fine adjustment of the random 
weights, to create the deadlock scenario.  With ETC, however, it is 
possible to monitor and assert input signals precisely at the right 
moment, thus creating the circumstances that might cause a 
deadlock.  
The final test program that we selected is responsible for covering a 
long inbound processor interface (PIF) request to each configured 
local memory interrupted by a load or store instruction that accesses 
the same memory.  Although creating many random inbound 
requests in conjunction with load and store instructions is trivial, 
making sure that this event happens to all configured memories 
takes a long time.  With ETC, and with help from our configuration 
database, we created this case very quickly.  It was possible to 
control the type, size, destination address, and exact timing of the 
inbound PIF requests injected by the system memory controller.  

As seen in Figure 6, the simulation performance of the diagnostics 
with ETC on the same configuration is about the same, and minor 
variation across configurations can be explained by the difference in 
the reset code sequence of different processors.  On the other hand, 
when random external events are used instead, the simulation times 
vary considerably, and in some cases full coverage is not 
guaranteed.  On the average, the simulation performance is reduced 
by 80% when ETC is used. 
Another metric that somewhat represents the difficulty of the test 
cases better is the coincidence number.  The coincidence number is 
the number of simultaneous or sequential events that need to happen 
to achieve a corner case.  For example for three individual events, A, 
B, and C, the coincidence number of event (A&B) -> C, A and B 
followed by C, is three.  We have seen that ETC makes it easier to 
create events with high coincidence numbers in directed or directed-
random diagnostics. 
An alternative to using ETC is to program the test-bench using 
magic stores, which have an unpredictable delay between the store 
and the magic action.  ETC is more maintainable because the bus 
latency does not affect the diagnostic anymore; every new design 
that has slightly different bus latency does not cause all the old 
diagnostics to break because the timing is now different.  This saves 
considerable engineering effort in creating new diagnostics or 
maintaining the old ones. 
Although the results presented here seem to point otherwise, we 
don’t intend to favor directed diagnostics using ETC over randoms, 
and undermine the importance of random testing.  One of the most 
important advantages of random testing is that it can cover scenarios 
overlooked by the verification engineer.  Therefore, the ETC 
technique cannot be a replacement for random testing, but can be 
used as a powerful enhancement to the overall verification 
methodology. 

7.2 Conclusions 
Verification of configurable processors requires an infrastructure 
and a methodology that is robust and flexible to address the 
increased complexity introduced by configurability.  Our 
methodology employs a modular test-bench and diagnostic suites 
that are tailored to the configured processor under verification. To 
enhance the performance and coverage of assembly tests in our 
diagnostic suites, we developed a methodology to seamlessly 
integrate diagnostics and test-bench modules, thus creating a unified 
verification environment. This approach gave diagnostic writers a 
lot of flexibility and power to create complex corner cases in less 
code size and fewer simulation cycles, lessening the need to utilize 

Table 1.  Coverage Results Comparison 

 

Processor A Processor B  

Coverage Targets ETC RTPG ETC RTPG 

Exceptions 100 34 100 28 

TIE Queue Contention 100 50 100 50 

Load/Store/Ifetch Arbitration 96 65 100 100 

DMA Interleaved 100 78 100 100 

Time spent for ETC simulations is 6% of the time spent for RTPG. 
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random external events to achieve scenarios that are impossible to 
generate by assembly programs alone. This methodology not only 
improved overall coverage and simulation performance of our 
diagnostic suites, but also increased longevity of diagnostics across 
generations of processor implementations by enabling a diagnostic-
based coverage approach as a metric to decide the final result of the 
simulation.  

7.3 Future Work 
This technique currently limits the synchronization of the test-bench 
code at or after the commit (W) stage of the processor pipeline.  It 
may be possible, but certainly much harder to execute ETC code at 
earlier stages such as instruction fetch (I), register read (R), or 
memory read (M) stages, due to the speculative nature of these 
stages after which the instruction may be replayed or even killed.  
ETC also has limitations on dynamically scheduled superscalar 
processors, because multiple instructions may be committed at the 
same cycle, making synchronization of assembly and test-bench 
code more difficult.  Furthermore, the technique currently supports 
only one way communication between the test and the test-bench 
code. It is possible to extend this capability, for instance by enabling 
backdoor writes to the system memory as a possible communication 
path back to the diagnostic.  Finally, because it mostly relies on 
hand-written directed diagnostics, there is a potential risk of missing 
unintentional bug coverage if random diagnostics are omitted 
entirely from the verification methodology. 
We are currently in the process of employing two new random 
assembly test generators.  The first one is a commercial tool 
developed by a third party vendor, and the second one is an in-house 
development effort.  We believe that it is possible to extend the 
capabilities of these generators using ETC.  We also use several 
small-scale, task-specific directed-random test generators; examples 
include random loop generators, data cache stress testing, and 
random TIE code generators.  We are working on a dynamic 
coverage feedback mechanism using ETC to change weights that 
control these directed-random generators. 
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