
47.5

 789

Smart Diagnostics for Configurable Processor Verification
Sadik Ezer
Tensilica Inc.

3255-6 Scott Boulevard
Santa Clara, CA 95054-3013

1-408-566-1743
sadik@tensilica.com

Scott Johnson
Tensilica Inc.

3255-6 Scott Boulevard
Santa Clara, CA 95054-3013

1-408-327-7358
scottj@tensilica.com

ABSTRACT
This paper describes a novel technique called Embedded Test-bench
Control (ETC), extensively used in the verification of Tensilica’s
latest configurable processor. Conventional simulation-based
verification methodologies that employ assembly programs for
testing cannot easily link the diagnostic program to the test-bench
for interactive control, consequently resulting in weaker coverage.
ETC links the diagnostic program execution and the test-bench
functions, thereby increasing the flexibility and power of the
diagnostics to create more complex corner cases in fewer simulation
cycles and with smaller code size. This method also enables
dynamic self-checking and dynamic coverage analysis by either
passing or failing the diagnostic based on the coverage goal, or
terminating runaway random diagnostics much earlier. The
presented simulation results show that ETC augments verification in
two major areas: the creation of more maintainable, efficient, and
smart diagnostics, and the reduction of the regression time. Some of
the techniques presented in this paper can apply to non-processor
verification methodologies as well.

Categories and Subject Descriptors
B.5.2 [Design-aids]: Verification

General Terms: Design, Verification.

Keywords: Functional Verification, Configurable Processors,
Embedded Test-bench Control, Diagnostics, Coverage.

1. INTRODUCTION
Recent studies show that, due to the complexity of current
embedded SOC designs, 70% of the design cycle is spent in
verification [1]. Several approaches exist to tackle the verification
bottleneck, including reducing chip complexity, increasing
resources, or increasing verification productivity. The first option is
unreasonable as it is well known that design complexity increases
exponentially to take advantage of the advances in semiconductor
technology driven by the functionality requirements of emerging
embedded applications. Increasing resources is not the competitive
approach and often times not scalable. Therefore, building an
efficient, maintainable, and re-usable verification strategy is
essential for quick time to market with a working product.

Formal verification techniques have recently emerged in the realm
of pipelined processor verification [3]. However, it is not possible to
do complete chip or system level formal verification with the
limitations of today’s tools. A simulation-based approach still
remains the most popular method. In general, this type of
verification is accomplished using directed, pseudo-random, or
directed random diagnostic programs. To enhance the verification
quality of complex processor designs, several large processor
companies have successfully employed internally developed or
commercially available random instruction sequence generators
[7][13]. Automatic test generation for pipelined processors is also a
popular research subject [11] [14].

The biggest challenge in simulation-based methodologies is to
guarantee the quality and completeness of verification. Therefore,
coverage becomes crucial in such methodologies, so much so that
some approaches employ purely coverage-directed or coverage-
oriented test generation [2]. Choosing a limited set of diagnostics
for optimizing coverage versus regression time is a very difficult
problem to solve [10].

In summary, simulation-based processor verification techniques
require the development of a robust suite of diagnostic programs,
combining random and directed tests and a good coverage
methodology. In this paper, we describe a methodology that
incorporates and augments the ideas mentioned above, to develop
high quality and high performance directed and directed-random
diagnostics for the verification of the Xtensa LX processor.

2. THE XTENSA LX PROCESSOR
The Xtensa LX processor is Tensilica’s newest configurable and
extensible processor with many desirable features such as high
compute performance using long instruction words, high I/O
bandwidth using a new type of wide processor I/O ports, and low-
power implementation with fine-grained clock gating [4]. The
extensions to the processor are described using the Tensilica
Instruction Extension (TIE) language, which enables the designers
to create their own instructions, register files, and other specific
functionality, tuning the processor for a specific target application
[5] [8]. New in Xtensa LX is the Flexible Length Instruction
Extensions (FLIX) technology that allows multiple instruction
lengths, which can be freely intermixed. FLIX instruction
extensions can define multiple operation slots, each independently
decoded and executed, enabling high data parallelism.

Also new in the Xtensa LX processor, TIE ports and queues are
designer-defined I/O interfaces, which allow an instruction to
directly read from and write to the primary I/O ports of the
processor. This capability provides a flexible way for execution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’05, June 13–17, 2005, Anaheim, California, U.S.A.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

 790

units to directly access external devices, and enables low latency,
high bandwidth communication.

The combination of variable length instructions, multiple operation
slots, customized description of an unpredictable quantity of new
processor ports and queue interfaces, added to the numerous
contortions of configurations create a verification nightmare for
configurable and extensible processor architectures. We address
these challenges using a configurable verification infrastructure and
configurable diagnostic suites.

3. CONFIGURABLE VERIFICATION
INFRASTRUCTURE

Developing a test-bench for functional verification of a configurable
processor is challenging in many ways. Not only must the RTL
design be configurable, but also so must everything that surrounds
it, including the instruction set simulator (ISS), memory models,
event generators, assertion checkers, monitors, and test programs.
Modularity is also important to be able to deal with the complexity
of the whole infrastructure, which needs to be easily maintainable
and portable across generations of processor implementations. We
have chosen Vera as the primary verification and test-bench
language because it allows modularity, is flexible and portable, and
has many desirable features such as object oriented programming,
temporal assertions, and functional coverage [12].

Our test-bench, shown in Figure 1, is composed of a large number
of Vera components including local memory controllers (IRAM,
DRAM, IROM, DROM, ICache, DCache, XLMI), system memory
controller, co-simulation module, external event generators, JTAG
module, TIE port module, coverage module, checkers, and monitors.
A separate module outside the test-bench, called the ETC module,
enables the assembly-generated Vera code to control the rest of the
test-bench modules. This concept will be described in more detail
in the following sections.

Our directed diagnostic suites are composed of approximately 300
architecture verification programs (AVPs) to test the execution of
each instruction in the ISA, and 400 micro-architecture verification
programs (MVPs) to test the specific implementations of the Xtensa
LX processor. Like all test-bench components, diagnostic programs
are also configurable. They are Perl scripts that utilize the
configuration database in order to generate high quality tests tailored
to a specific processor instance [6]. Each diagnostic is accompanied
by a database entry file, called the ‘info’ file, that indicates which
conditions satisfy the diagnostic coverage goals: a) for what
configurations it is valid, b) which runtime options are required, c)
which runtime options prohibit its use, d) what should be the
probability distribution of random external events, such as bus
waits, bus errors, or interrupts.

Several parameters are used to adjust or tune different components
of the test-bench to achieve various behaviors; for example, one can
change the frequency of the random or periodic toggling of the busy
signals in the local memories, or the frequency and type of bus
errors injected by the system memory controller. There are a few
different ways of setting these parameters, each of which contributes
to a complementary aspect of the verification. They can be passed
as runtime simulation flags, they can be placed in ‘info’ files as
described above, or they can be controlled from the assembly
programs using the ETC technique that will be described in the
following section.

4. EMBEDDED TEST-BENCH CONTROL
As our processor design evolves, generating complex test programs
gets more and more complicated. When the test-bench modules that
generate random events and the assembly programs are decoupled, it
is harder to create many of the corner cases that must be exercised.
Furthermore, there are many parts of the test-bench that the
diagnostic could use to steer its execution, do self-checking, or
terminate the simulation. The method that we have developed and
used in our verification infrastructure is called Embedded Test-
bench Control (ETC) in assembly programs. This approach enables
the assembly code to interact closely with several major components
of the test-bench, thus giving the diagnostic writer much more
flexibility and power in creating complex scenarios, or getting
information dynamically about the current status of the processor to
be used in self-checking.

Using ETC, individual diagnostics can easily synchronize execution
of a certain code sequence with simultaneously occurring external
events. Without ETC, a diagnostic would have to rely on random
external events to occur at the desired instant, resulting in wasted
simulation cycles and/or loss of coverage.

For example, a diagnostic trying to test contention and arbitration
for a local memory port may wish to have a load or store instruction
accessing the target memory at the same time that an external master
is performing an inbound request (via the PIF) to the same memory.
Without ETC, the diagnostic would have to rely on random inbound
requests occurring at the right point in time, possibly using a
coverage monitor to detect this condition and stop the simulation.
By using ETC, the diagnostic can control the external master
directly and synchronize that action with its instruction sequence,
guaranteeing that the event will occur. This both decreases
simulation cycles and improves coverage.

To implement this mechanism, we developed a preprocessor to
parse the smart diagnostic’s source code, as shown in Figure 2, and
find special syntax (#@), which indicates the Vera code that is
expected to run concurrently with the specified instruction at the
commit (W) stage of the pipeline. It is also possible to delay
execution of the Vera code for n cycles after the instruction is

ETC

Assembly
Test

Xtensa LX
Processor

XLMI
(Data Port)

Data
Cache

System Memory

TIE Port

Coverage

External Event
Generator

JTAG

ISS

Data
ROM

Data
RAM

Inst.
Cache

Inst.
RAM

Inst
ROM

Co-simulation

Checkers
Monitors

D
ia

gn
os

tic
 S

ui
te

s

DUT

TEST-BENCH

Figure 1. Configurable Xtensa LX Processor Test-Bench

 791

committed using (#@+n) syntax. Another syntax, (#:), is used to
embed test-bench code that is not tied to the execution of an
instruction. The parser builds test-bench code that monitors
instruction execution at runtime and matches the W stage program
counter (PC_W) values to the addresses of these instructions. When
a match occurs, the appropriate Vera code is executed.

This mechanism is complicated by the lack of address information at
the time the parser is run: as the assembly and linking process has
not yet occurred, the addresses of these instructions have not been
determined. To find the appropriate PC values, the parser inserts
labels into the assembly source at all such points (see the assembly
code shown in Figure 2), so that it may find them again once the
diagnostic has been finally linked into an executable. This
executable is then analyzed and the addresses of all such instructions
are recorded in a text file for use during simulation. The ETC
mechanism gives diagnostic writers a new level of control over the
verification infrastructure by enabling tight coupling between
pipelined instruction execution and external stimuli.

5. USING SMART DIAGNOSTICS
Using ETC in AVPs and MVPs has three major advantages. It
provides a mechanism to easily create hard-to-reach scenarios by
calling test-bench functions that can generate external stimuli. It
gives more flexibility in data checking inside the assembly program
by providing the ability to use test-bench functions that can be
linked to program execution. Finally, it increases the lifespan of
diagnostics across different projects by decreasing the test code size
and by providing success status based on the coverage goal, thereby
easily identifying broken or obsolete diagnostics that fail to cover

their targeted scenario. The following sections give a few detailed
examples of verification areas where we obtained the most benefit
from this technique.

5.1 Multi-Processor Synchronization
Verification

The Xtensa LX processor provides a multiprocessor synchronization
option for systems that use shared-memory communication
protocols. The synchronization instructions ensure that no load or
store access is allowed before all previous load-acquire accesses are
performed; similarly, before a store-release access is performed, all
previous load, store, acquire, and release accesses must be
performed. To test synchronization instructions in a single
processor test-bench is a challenging task. The verification of
configurations with dual load-store units becomes more interesting
because the order of memory accesses across different slots of a
FLIX packet with concurrent operations must be checked as well.
Checking the memory access order of all load or store instructions
separated by acquire and release instructions is achieved using ETC.
Figure 3 shows a program code snippet of a smart diagnostic that
verifies synchronization instructions using FLIX packets to generate
multiple memory accesses with wide instructions. This particular
processor configuration has two slots in its FLIX instructions, each
of which may contain a 32-bit load (L32I), store (S32I), or a no-op
(NOP) instruction. Many load-acquire (L32AI) and store-release
(S32RI) instructions are dispersed among these random FLIX
instructions. In the test, after every FLIX packet that contains a
memory access instruction in one or both of its slots, the
corresponding add_address call(s) are added as well, to store the
address of the memory access in the current address bucket. When a
synchronization instruction is encountered, the bucket number is
incremented, so that addresses of all memory access instructions
after it are collected in a separate bucket. During simulation, part of
the ETC code (not shown) will monitor the memory interface and
compare all addresses with the ones collected in different buckets to
make sure that the protocol is not violated. This example
demonstrates the use of ETC in writing efficient self-checking
diagnostics.

Aligned_test:
 NOP # @ set_buswaits(1,30);
L32I a2, a3, 0 # @ set_buswaits(1, 0);

#: task set_buswaits(integer rdy_dly,
#: integer rdy_not_dly) {
#: vps.control_rdy(1, rdy_dly, rdy_dly);
#: vps.control_not_rdy(not_rdy, not_rdy);
#: }

 Smart Diagnostic

Aligned_test:
VERA_LABEL0:

NOP
VERA_LABEL1:
 L32I a2, a3, 0

Assembly Code

task set_buswaits(integer rdy_dly,
 integer rdy_not_dly) {
vps.control_rdy(rdy_dly,rdy_dly);
vps.control_not_rdy(not_rdy,not_rdy);
 }
….

@(posedge CLK);
if(valid_W) {
 case(PC_W) {
 label[0]: set_buswaits(1,30);
 label[1]: set_buswaits(1, 0);

}

 Test-bench Code

}

while(1) {

}

Figure 1. Test Code Generation using ETC

// Target Addresses
// a4: 0x60000000
// a5: 0x60000040
// a6: 0x60000080
// a7: 0x60010000
 . . .
 MEMW #@ collect_addresses();
#: task collect_addresses() {
 {S32I a2, a5, 0; NOP;}
#: add_address(basket_id, 32'h60000040);
 L32AI a6, a7, 0 # Load Acquire
#: basket_id++;
 {L32I a2, a4, 4; L32I a2, a5, 8;}
#: add_address(basket_id, 32'h60000010);
#: add_address(basket_id, 32'h60000060);
 {L32I a3, a5, 8; S32I a2, a4, 0;}
#: add_address(basket_id, 32'h60000060);
#: add_address(basket_id, 32'h60000000);
 . . .
#: } // end task collect_addresses()

Figure 3. MP Synchronization Test

 792

5.2 TIE Ports and TIE Queues Verification
TIE ports and queues are new I/O interfaces in the Xtensa LX
processor. There are two types of TIE ports. State exports are
designer-defined states that can be made visible at the top-level pins.
Import wires enable designer-defined TIE instructions to read inputs
from designer-defined primary pins of the processor. TIE queues
are push or pop type interfaces with full or empty flow control
signals. An input queue definition includes a data signal (IQ), an
input control signal (IQ_Empty) and an output control signal
(IQ_PopReq). Empty indicates that the external queue has no data
to read, and PopReq indicates that the data is being read and popped
from the queue. Similarly, an output queue has data (OQ), an input
(OQ_Full), and an output (OQ_PushReq) control signals. Full
indicates that the external queue cannot be written any more, and
PushReq indicates that data is being written to the queue by the
processor. With TIE instructions, it is possible to push data to an
output queue if it is not full, or pop data from an input queue if it is
not empty.

Assertion of empty or full causes instructions that use these queues
to stall. A stalled queue instruction should not hold the previous
queue instruction from executing; otherwise a deadlock can happen.
The test code snippet shown in Figure 4 is an example of a
diagnostic which verifies that no deadlock occurs in this scenario.
In this test, the write instruction OQWRITE pushes to the output
queue OQ, followed by a read instruction IQCAT that pops from the
input queue IQ. The test uses ETC cleverly to control stalling of the
instructions. While the OQ_Full signal is asserted for only 100
cycles to temporarily stall the write queue instruction, IQ_Empty is
asserted indefinitely, and will stall the read queue instruction until it
is de-asserted. The ETC code monitors the push request count that
increments when the write queue instruction is un-stalled, making
sure that the read queue instruction that is stalled forever does not
block the previous write queue instruction, therefore creating a
deadlock. When the pop request is observed, the IQ_Empty signal
is released, resulting in the unblocking of the read queue instruction
and the graceful termination of the test. If deadlock does occur,
execution will stall indefinitely and some other monitor (not shown)
will fire, causing the test to fail. This example shows that ETC can
be used both for generating external stimuli and for monitoring the
processor states to steer program execution.

6. DIAGNOSTIC-BASED COVERAGE
Functional coverage is an integral part of our test-bench. Its
hierarchical nature encompasses the complete design. We used
Vera’s functional coverage feature in conjunction with Open Vera
Assertions (OVA) used as a temporal language when complex event
sequences were needed. Among many desirable features, dynamic
coverage feedback capability was essential to our goal-oriented
diagnostics.
Unit level coverage monitors were utilized in regressions to point to
weakly verified areas in general. Diagnostic-based coverage was a
new approach that integrated the coverage goal as a metric to decide
the pass or fail status of the tests. This approach had two
advantages: to easily identify broken or obsolete diagnostics that did
not achieve their intended purposes, and increase the performance of
directed-randoms by terminating the program as soon as the
coverage goal is reached.

Each goal-oriented diagnostic has a corresponding coverage rule
and a query function that can be called periodically during or near
the end of the simulation using ETC, which dynamically links the
assembly test to the coverage monitors residing in the test-bench.
Before our coverage methodology was in place, the diagnostic was
run for a length determined by the diagnostic’s author to be
sufficient to guarantee coverage of the targeted scenario. When
diagnostic-based coverage was added, the program is terminated as
soon as the coverage goal is reached, thereby decreasing the average
simulation time by more than 60%. Figure 5 shows 10 different
random simulation results of the same test program on the same
processor configuration. This approach was used to do a coverage
and simulation performance comparison that is presented in the next
section.

7. RESULTS AND CONCLUSIONS
To investigate the usefulness of ETC, we have compared the results
of directed or directed-random diagnostics using ETC to the ones
that are generated using our random test program generator (RTPG)
on two different processor configurations. The first processor (A) is
a full-featured configuration of Xtensa LX including all local
memories, a wide processor interface, a 7-stage pipeline, and two
load-store units. The second processor (B) has one instruction
RAM, one data RAM, and a 5-stage pipeline. Both processors use
designer-defined TIE instruction extensions accessing TIE ports and
queues.

0

20000

40000

60000

80000

100000
Coverage
No Coverage

Si
m

ul
at

io
n

C
yc

le
s

Performance Gain

Figure 5. Simulation Performance with Diagnostic-Based
Coverage

#Write opcode: IQCAT
NOP #@ deadlock();
NOP.N

IQCAT
OQWRITE $a14,$a12

EXTW
#:task deadlock() {
#: integer count;
#: tiewire.drive_OQ_Full(1'b1, 100);
#: tiewire.drive_IQ_Empty(1'b1, -1);
#: while(1) {
#: count = tiewire.OQ_PushReq_count();
#: if(count == 1) {
#: tiewire.release_IQ_Empty();
#: break;
#: }
#: @(posedge Xtensa_if.CLK);
#: }
#:}

Write Queue
Read Queue

Figure 4. TIE Queue Deadlock Test

 793

7.1 Coverage and Performance Improvements
We have simulated on both processors 22 ETC diagnostics that took
231,046 simulation cycles to run, and 100 RTPG diagnostics with
random external events (interrupts, bus errors, bus waits, random
toggling of queue control signals, random inbound PIF requests,
etc.) that took 3,820,219 simulation cycles. Coverage results of
selected goals are presented in Table 1. Because ETC diagnostics
are coverage oriented, most were able to attain 100% coverage in
much less simulation cycles, whereas random diagnostics had long
simulation times and poor coverage results.

To demonstrate the performance improvements more clearly with
the proposed technique, we have simulated a few selected
diagnostics with ETC and with fine-tuned random external events
on both processor configurations. The simulation results of three
selected diagnostics with and without ETC are presented in Figure
6. The first diagnostic is intended to verify the instruction fetch and
external interface units. The diagnostic sends a load to instruction
RAM that causes the current instruction fetch request to be
canceled. Bus contention is generated during the next fetch and an
interrupt causes this second fetch to be canceled as well, thereby
forcing the external interface unit to use different IDs for two back-
to-back fetch requests. The described scenario is difficult to achieve
with random bus waits and interrupts, therefore, ETC is used to slow
down instruction fetch responses, allowing plenty of time for the
interrupt to cancel the next request.
The TIE queue deadlock test described in Section 5.2 is also used to
compare simulation performance with or without ETC. With
random toggling of queue control signals IQ_Empty and OQ_Full,
it takes many simulation cycles, and fine adjustment of the random
weights, to create the deadlock scenario. With ETC, however, it is
possible to monitor and assert input signals precisely at the right
moment, thus creating the circumstances that might cause a
deadlock.
The final test program that we selected is responsible for covering a
long inbound processor interface (PIF) request to each configured
local memory interrupted by a load or store instruction that accesses
the same memory. Although creating many random inbound
requests in conjunction with load and store instructions is trivial,
making sure that this event happens to all configured memories
takes a long time. With ETC, and with help from our configuration
database, we created this case very quickly. It was possible to
control the type, size, destination address, and exact timing of the
inbound PIF requests injected by the system memory controller.

As seen in Figure 6, the simulation performance of the diagnostics
with ETC on the same configuration is about the same, and minor
variation across configurations can be explained by the difference in
the reset code sequence of different processors. On the other hand,
when random external events are used instead, the simulation times
vary considerably, and in some cases full coverage is not
guaranteed. On the average, the simulation performance is reduced
by 80% when ETC is used.
Another metric that somewhat represents the difficulty of the test
cases better is the coincidence number. The coincidence number is
the number of simultaneous or sequential events that need to happen
to achieve a corner case. For example for three individual events, A,
B, and C, the coincidence number of event (A&B) -> C, A and B
followed by C, is three. We have seen that ETC makes it easier to
create events with high coincidence numbers in directed or directed-
random diagnostics.
An alternative to using ETC is to program the test-bench using
magic stores, which have an unpredictable delay between the store
and the magic action. ETC is more maintainable because the bus
latency does not affect the diagnostic anymore; every new design
that has slightly different bus latency does not cause all the old
diagnostics to break because the timing is now different. This saves
considerable engineering effort in creating new diagnostics or
maintaining the old ones.
Although the results presented here seem to point otherwise, we
don’t intend to favor directed diagnostics using ETC over randoms,
and undermine the importance of random testing. One of the most
important advantages of random testing is that it can cover scenarios
overlooked by the verification engineer. Therefore, the ETC
technique cannot be a replacement for random testing, but can be
used as a powerful enhancement to the overall verification
methodology.

7.2 Conclusions
Verification of configurable processors requires an infrastructure
and a methodology that is robust and flexible to address the
increased complexity introduced by configurability. Our
methodology employs a modular test-bench and diagnostic suites
that are tailored to the configured processor under verification. To
enhance the performance and coverage of assembly tests in our
diagnostic suites, we developed a methodology to seamlessly
integrate diagnostics and test-bench modules, thus creating a unified
verification environment. This approach gave diagnostic writers a
lot of flexibility and power to create complex corner cases in less
code size and fewer simulation cycles, lessening the need to utilize

Table 1. Coverage Results Comparison

Processor A Processor B

Coverage Targets ETC RTPG ETC RTPG

Exceptions 100 34 100 28

TIE Queue Contention 100 50 100 50

Load/Store/Ifetch Arbitration 96 65 100 100

DMA Interleaved 100 78 100 100

Time spent for ETC simulations is 6% of the time spent for RTPG.

Si
m

ul
at

io
n

C
yc

le
s

Processor A Processor B

0

5000

10000

15000

IF
ET

C
H

TI
EP

O
R

T

D
M

A

IF
ET

C
H

TI
EP

O
R

T

D
M

A

ETC
No ETC

Figure 6. Simulation Performance with ETC

 794

random external events to achieve scenarios that are impossible to
generate by assembly programs alone. This methodology not only
improved overall coverage and simulation performance of our
diagnostic suites, but also increased longevity of diagnostics across
generations of processor implementations by enabling a diagnostic-
based coverage approach as a metric to decide the final result of the
simulation.

7.3 Future Work
This technique currently limits the synchronization of the test-bench
code at or after the commit (W) stage of the processor pipeline. It
may be possible, but certainly much harder to execute ETC code at
earlier stages such as instruction fetch (I), register read (R), or
memory read (M) stages, due to the speculative nature of these
stages after which the instruction may be replayed or even killed.
ETC also has limitations on dynamically scheduled superscalar
processors, because multiple instructions may be committed at the
same cycle, making synchronization of assembly and test-bench
code more difficult. Furthermore, the technique currently supports
only one way communication between the test and the test-bench
code. It is possible to extend this capability, for instance by enabling
backdoor writes to the system memory as a possible communication
path back to the diagnostic. Finally, because it mostly relies on
hand-written directed diagnostics, there is a potential risk of missing
unintentional bug coverage if random diagnostics are omitted
entirely from the verification methodology.
We are currently in the process of employing two new random
assembly test generators. The first one is a commercial tool
developed by a third party vendor, and the second one is an in-house
development effort. We believe that it is possible to extend the
capabilities of these generators using ETC. We also use several
small-scale, task-specific directed-random test generators; examples
include random loop generators, data cache stress testing, and
random TIE code generators. We are working on a dynamic
coverage feedback mechanism using ETC to change weights that
control these directed-random generators.

8. ACKNOWLEDGMENTS
Xtensa LX verification involved a large team of people whose
names are too many to be listed here. We appreciate the work of
everyone who contributed to this effort, especially the hardware
team whose ingenious and innovative minds turned the Xtensa LX
dream into a reality. We also thank everybody who gave feedback
on early drafts of this paper.

9. REFERENCES
[1] Bergeron, J. Writing Testbenches: Functional Verification of

HDL Models. Kluwer Academic Publishers, January 2000.
[2] Gluska, A. Coverage-Oriented Verification of Banias.

ACM/IEEE Design Automation Conference, pages 280-285,
June 2003.

[3] Bentley, B. Validating the Intel Pentium 4 Microprocessor.
ACM/IEEE Design Automation Conference, pages 244-248,
June 2001.

[4] Jani, D., Ezer, G., and Kim, J. Long Words and Wide Ports.
Hot Chips, August 2004.

[5] Rowen, C. Engineering the Complex SOC. Prentice-Hall
PTR, 2004.

[6] Puig-Medina, M., Ezer, G., and Konas, P. Verification of
Configurable Processors. ACM/IEEE Design Automation
Conference, pages 426-431, June 2000.

[7] Behm, M., Ludden, J., Lichtenstein, Y., Rimon, M., and
Vinov, M. Industrial Experience with Test Generation
Languages for Processor Verification. ACM/IEEE Design
Automation Conference, pages 36-40, June 2004.

[8] Gonzales, R. Xtensa: A Configurable and Extensible
Processor. IEEE Micro, 20(2), March/April 2000.

[9] Ho, R., and Horowitz, M. Validation Coverage Analysis for
Complex Digital Designs. IEEE/ACM International
Conference of Computer Aided Design, 1996.

[10] Fine, S., Ur, S., and Ziv, A. Probabilistic Regression Suites
for Functional Verification. ACM/IEEE Design Automation
Conference, pages 49-54, June 2004.

[11] Iwashita, H. Automatic Test Program Generation for
Pipelined Processors. IEEE/ACM International Conference
on Computer-Aided Design, pages 580-588, 1994.

[12] Synopsys Inc., Mountain View, California, Vera® User Guide.
March 2004

[13] Kohno, K., and Matsumoto, N. A New Verification
Methodology for Complex Pipeline Behavior. ACM/IEEE
Design Automation Conference, pages 49-54, June 2004.

[14] Hennenhoefer, E., Typaldos, M. The Evolution of Processor
Test Generation Technology. Obsidian Software Inc.

