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ABSTRACT 
Parallelism in processor architecture and design imposes a 
verification challenge as the exponential growth in the number of 
execution combinations becomes unwieldy. In this paper we report 
on the verification of a Very Large Instruction Word processor. The 
verification team used a sophisticated test program generator that 
modeled the parallel aspects as sequential constraints, and 
augmented the tool with manually written test templates. The system 
created large numbers of legal stimuli, however the quality of the 
tests was proved insufficient by several post silicon bugs. We 
analyze this experience and suggest an alternative, parallel 
generation technique. We show through experiments the feasibility 
of the new technique and its superior quality along several 
dimensions. We claim that the results apply to other parallel 
architectures and verification environments. 
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1. INTRODUCTION 
Although high-level parallelism in processor design is not new, it 
recently hit the headlines when Intel announced that its future 
processors will include multiple cores to increase performance and 
limit power consumption[1].  At the same time that multi-cores 
reached the desktop, IBM announced that its massively parallel 
PowerPC-based computer, Blue Gene/L, is currently the fastest 
super computer in the world[2].  Although these news stories focus 
on the benefits, processor parallelism also results in difficult design 
and verification problems because of the exponential growth in the 

number of execution combinations.  At this point, automation 
becomes critical for design and verification.  
This paper presents our study of a relatively simple parallel 
technique in processor design.  Very Large Instruction Word 
(VLIW) processors execute, in parallel, short sequences of basic 
instructions.  The architecture provides increased performance, but 
shifts much of the additional complexity from the design to a 
software compiler that packs the basic instructions into VLIWs.   
We show that even this type of processor architecture deteriorates 
the quality of tests created by a sophisticated test generator[5] and 
results in post-silicon VLIW related bug escapes.  We found that 
various methodological enhancements are ineffective and that a 
parallel test generation technique is required to tackle the 
architectural parallelism.  Although conceptually simple, the new 
technique is feasible only because of the limited nature of the 
parallelism and the existence of a powerful constraint solver.  
Because the new technique has not yet been used in full scale 
industrial verification, we study it through various experiments and 
demonstrate the quality of tests along several dimensions.  

2. VLIW PROCESSORS 
A Very Large Instruction Word (VLIW) architecture is a relatively 
simple parallel mechanism that enhances performance. The 
mechanism considers a short sequence of basic instructions as a 
single "large-word" instruction and executes the constituent 
instructions concurrently. The responsibility of packing basic 
instructions into the large-word instruction is left to a software 
compiler, allowing for a relatively simple hardware design.  
Examples of VLIW architectures include Intel's Itanium processor 
[1] and STMicroelectronics' ST1001 and ST200 processor families 
[7][8]. We study a simplified version of the ST100 family, described 
in Figure 1. 
In our simplified VLIW architecture there are four slot-types in the 
long-word instruction type; each slot-type allows some instruction 
classes to be used. For example, slot type ST0 allows any type of 
instruction from the LOAD, COPY and NOP instruction classes. 
Although, some VLIW architectures allow different numbers of slot-
types and different bitwise lengths of the different slot-types, our 
architecture is simple with four constant length slot types. However, 
the VLIW-type we study imposes restrictions on the allowed 

                                                                 
1 The ST100 is not formally a true VLIW machine, but rather a 

scoreboarded LIW, in that it deals with virtually all of the data 
dependencies in hardware [7]. 
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combinations of instructions. The reason for these restrictions is the 
limited number of execution units in the actual design.  Therefore, in 
our example, the fact that there are only two LOAD/STORE units 
restricts the number of LOAD/STORE/COPY instructions in any 
VLIW-type to two.  

 
Figure 1. Simplified ST100 VLIW type 

Further restrictions involve data and resource dependencies within a 
single VLIW. Many VLIW architectures do not allow target-source 
and target-target dependencies within a VLIW type. However, the 
ST100 family lets the compiler pack instructions with target-source 
register dependencies into a single VLIW, when it is known that the 
register write precedes the register read. 

3. SEQUENTIAL VLIW GENERATION 
Test generation for VLIW should first create stimuli, which are 
essentially valid VLIW instances. Such instances should be of high 
quality; in particular, they should provide good coverage of the 
architecture and the design. In this paper, we compare two 
approaches to VLIW test creation. The first is a sequential 
approach, where instructions are created one after the other, and 
then packed into VLIWs. The second is a parallel approach, where 
a full VLIW is created at once. 
The sequential approach was implemented using Genesys, a model-
based test-generator from IBM [5] that was used by 
STMicroelectronics for the verification of ST100 family and ST200 
family VLIW designs [6]. A Genesys system includes an 
architectural-definition model, which normally describes the 
architectural specification of single instructions. The verification 
team at ST Microelectronics augmented this model by adding, for 
each instruction, constraints that specify the cases in which the 
instruction positioning in a VLIW is illegal. An illegal combination 
causes either an undefined behavior that is prevented by the 
constraint or an exception. In order to avoid too many exceptions, if 
the selected instruction cannot be placed in the current VLIW 
position, Genesys may fail the instruction generation and try to 
select another instruction. After successful generation of four 
sequential instructions, the tool simulates the entire VLIW on a 
reference model. 
This sequential implementation of VLIW generation gives 
acceptable results, as discussed in Section 5. However, the nature of 
this method is myopic and frequently fails with inter-slot constraints, 
resulting in exceptions, generation retries, or poor quality.  For 
example, an illegal combination may occur if a specific instruction is 
requested for the final slot, because the generator is not aware of this 
request while selecting the early slots. Similarly, if a specific target 

register is required by the user for the last VLIW slot, the generator 
may select the same register as a source in an earlier slot, failing the 
instruction of the final-slot on an illegal source-target VLIW 
dependency.  

4. PARALLEL VLIW GENERATION 
The parallel approach is an alternative method that generates all the 
VLIW instructions together. It was implemented in Genesys-Pro, a 
high-end IBM test generator [9], by formulating the full VLIW as a 
single Constraint Satisfaction Problem (CSP) [10]. 
A CSP consists of a finite set of variables and a set of constraints 
between these variables. Each variable is associated with a set of 
possible values, known as its domain. A constraint is a relation 
defined on a subset of these variables and denotes valid 
combinations of their values. A solution to a constraint satisfaction 
problem is an assignment to each variable a value from its domain, 
such that all the constraints are satisfied. Each CSP is represented by 
a constraint graph whose nodes are variables and whose arcs are 
constraints.  
A single VLIW is generated in three steps.  First, the generator 
selects the instruction types to put in each of the VLIW slots. This 
problem is formulated as a CSP [10] that represents the VLIW-type 
as a tree. Each possible association of a slot type to a VLIW position 
is represented as a node in the CSP. The CSP variables defined for 
each slot type are: the instruction, the bit length of the slot, and its 
selected position within the VLIW. Constraints between these 
variables reflect VLIW combination restrictions and  slot lengths 
restrictions for the instructions.  
Figure 4 shows the CSP for the VLIW-type of Figure 1, and depicts 
a possible solution. In our simple VLIW architecture slot sizes are 
always 16 bits, thus the corresponding CSP variable has two 
possible values it its domain -- 0 and 16, where 0 indicates that the 
slot type was not selected for the VLIW. In a variable length VLIW 
architecture, there may be more possible lengths. 
The second step in parallel VLIW generation involves a 
simultaneous selection of property values for all the instructions that 
comprise the VLIW, by solving a second CSP. The properties of 
each of the instructions are organized in a tree structure, with a node 
for every resource used by the instruction. This results in a large 
CSP that may be difficult to solve. In particular, the number of 
constraints that handle the dependencies between properties of 
different instructions grow with the square of the number of slots in 
the VLIW. In practice, the number of slots is limited by the number 
of hardware execution units and thus remains small. 
The third step in this algorithm is simulation of the generated VLIW 
on the architecture reference-model.  

5. EXPERIENCE WITH SEQUENTIAL 
GENERATION 
The sequential test generation, described in Section 3, was used by 
ST Microelectronics for the verification of a processor from the 
ST100 processor family[6]. The weaknesses of the sequential 
approach required a carefully staged methodology and manual 
direction of the test generation process. The staged methodology 
included four phases. After the instruction-level verification had 
stabilized, the pre-fetching and decoding mechanisms were tested. 
The goal was to generate all legal VLIW instruction combinations 
and to cover all VLIW types. Correct execution, intra-VLIW data 
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dependency rules, exceptions, and undefined results were all 
ignored.  The second phase started once the Pre-fetch/Decode unit 
correctly handled all VLIW instructions. The goal was to verify the 
parallel execution of instructions in the VLIW. The execution 
pipeline was first verified with legal operand dependencies. Then 
the processor's ability to recover from undefined results due to 
illegal dependencies was tested. 

 
Figure 4. Instruction-combination CSP 

 In the third stage, the interaction of the VLIW mechanism with the 
rest of the design was checked.  VLIW instructions were injected 
randomly into tests that target other mechanisms. For example, the 
execution of a hardware loop instruction was tested in conjunction 
with a VLIW jump instruction, randomly placed inside the loop 
body. The fourth and final stage consisted of massive random VLIW 
test-generation. 
In addition to the staged methodology, the verification team at ST-
Microelectronics found it necessary to implement an instruction 
selection mechanism, by directing Genesys to create specific 
instruction sequences that correspond to legal VLIW combinations.  
Employing the user test-requests and macros of Genesys, each 
VLIW type was explicitly defined. The verification team spent about 
12 person weeks in writing 382 such macros. During the first phase 
of VLIW verification, this set of macros resulted in reasonable test 
quality, although with limited randomness.  However, for the 
following stages an unwieldy number of macros was required. For 
example, within the VLIW, a source-target data dependency is not 
generally allowed, but the target of a LOAD instruction may be used 
as a source of an arithmetic instruction. Testing this with each 
possible VLIW combination would have required thousands of 
macros, so only partial testing was performed. Furthermore, massive 
VLIW random testing was impossible with the sequential test 
generation method resulting in several post-silicon escape bugs. 
Specifically, scenarios that combined hardware loops with VLIW 
contained bugs that should have been found on the third stage. 

6. EXPERIMENTING WITH PARALLEL 
GENERATION 
The VLIW parallel test generation method has not been used yet in 
full scale industrial verification.  In order to compare it with the 
sequential method, this section describes an experiment with a 
simplified four-slot VLIW architecture. We encoded five VLIW 
types, and several sample instructions from each instruction class, to 
get a VLIW with 116 legal combinations. Genesys-Pro [9] was used 
to implement both the sequential and parallel generation methods to 
neutralize differences between test generators.    

The simplest measure of test quality we consider is the number of 
NOP instructions in a VLIW.  When a VLIW constraint cannot be 
satisfied, the generator selects a NOP for the problematic slot.   
Generating about 50,000 VLIWs with the sequential method, we 
found that one third of VLIWs included one NOP, almost half the 
VLIWs included two NOPs, and 8% included three NOPs in the 
four slots.  Only 7% of the VLIWs did not include any NOP at all. 
In contrast, the parallel method, did not generate NOP instructions 
in any of the 50,000 VLIWs2.  
Turning to coverage, Figure 7 shows that the parallel method 
achieved full coverage of the 116 combinations, by creating about 
750 VLIW instructions. In contrast, the sequential method needed 
about 6,250 VLIW instructions to get full coverage.  However, the 
parallel method is slower in generating each VLIW.  This is because 
it takes longer to solve the two CSPs representing a full four-slot 
VLIW, than to solve four simple CSPs each representing a basic 
instruction.  The combination of fast coverage and slow CSP results 
in a faster parallel method—it is about four times faster than the 
sequential method in achieving full coverage.  
 Figure 10 measures the density of generated VLIWs.  In our 
simplified architecture, there are 116 combinations.  A perfectly 
uniform generator would create 1/116 of all the VLIW instances for 
each of the combinations. The same tests used to measure coverage 
have been analyzed to check uniformity. As  shows, the parallel 
method is quite uniform—most combinations were generated 
around the 1/116 mark, just below the 1/100 line. On the other hand, 
the sequential method is considerably less uniform.  Uniformity in 
test generation is important because it allows the allocation of 
verification resources to various tasks. Non-uniform generation may 
give preference to easier tasks. 
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Figure 7. Coverage of all VLIW combinations 

A more subtle measure of test quality in a parallel context is the 
coverage of collision events within a VLIW.  To demonstrate this 
aspect, we divided the memory space into two regions, read-only 
and read-write, experimenting with various division ratios. We 
generated random VLIWs with various LOAD, STORE and other 
instructions with a bias towards memory collisions of accesses to 
common cache lines within a VLIW. Figure 11 summarizes the 
results, in particular, the few collisions created by the sequential 
generation and the fair number of collisions created with the parallel 
method. The parallel approach selected addresses by solving all the 
constraints in a single VLIW, including the bias ones.  The 
                                                                 
2 In our experiment, we directed both generator versions to avoid 

NOP instructions as much as possible. However, a full 
verification process should include some NOP instructions. 
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sequential algorithm often failed, for example, to select an address in 
the read-write memory region for a LOAD in the first slot, such that 
the same address could also be used by a STORE in the final slot of 
the VLIW.  This became more difficult for the sequential method as 
the read-only region became larger, whereas the parallel approach 
retained a high success rate. Although only a synthetic experiment, it 
shows the method’s ability to test complex parallel mechanisms by 
memory collisions—a critical ability in preventing post-silicon 
escape bugs, as reported in Section 5 and [3].  

7. CONCLUSIONS 
This paper reports on the verification of the parallel aspects in a 
VLIW processor.  We focused on the difficulties in test generation, 
described a methodology that combines a sequential test generator 
with manually written macros, and reported its drawbacks.  In 
response, we described a parallel test generation technique and 
reported on experiments that demonstrate its superiority along 
several dimensions of test quality.  
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Figure 10. VLIW combination density 
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Figure 11. Memory collisions 

Our results are applicable to the verification of other types of 
parallelism in processor architectures, such as Superscalar, Multi-
threaded, and Multi-processor designs[4]. In particular, our 
conclusion that manual enhancements to sequential test generation 
are bound to fail, is general enough. When subtle scenarios and test 
quality constraints are required, the degree of parallelism combined 
with the number of quality constraints becomes large enough to 
make the number of combinations unmanageable for simple 
programming tools.  Fundamental solutions are then required.  Such 
solutions depend on the power of the underlying solvers. For the 
VLIW architecture studied, we found that the solver [9] is strong 

enough and the slowdown in its performance is acceptable. 
However, higher parallelism will entail more powerful solvers. 
This paper contributes by presenting a new test generation technique 
and by demonstrating its feasibility to VLIW. We show the 
superiority of the new approach by several quality measures 
including coverage, uniform test density, and achieving high 
resource contention. However, this study is limited by IBM's unique 
test generation environment. Conducting similar experiments with 
standard industry verification environments [1],[12] would test how 
well these tools are suitable for the verification of parallel design 
constructs. 
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