
47.3

 1

VLIW – A Case Study of Parallelism Verification

Allon Adir, Yaron Arbetman,
Bella Dubrov, Yossi Lichtenstein,

Michal Rimon, Michael Vinov
{adir, arbetman, bella, yossil, michalr, vinov@il.ibm.com}

IBM Research Laboratory
Haifa, Israel

Massimo A Calligaro, Andrew Cofler,
Gabriel Duffy

{massimo-angelo.calligaro, andrew.cofler,
gabriel.duffy@st.com}

ST Microelectronics Design Center
Grenoble, France

ABSTRACT
Parallelism in processor architecture and design imposes a
verification challenge as the exponential growth in the number of
execution combinations becomes unwieldy. In this paper we report
on the verification of a Very Large Instruction Word processor. The
verification team used a sophisticated test program generator that
modeled the parallel aspects as sequential constraints, and
augmented the tool with manually written test templates. The system
created large numbers of legal stimuli, however the quality of the
tests was proved insufficient by several post silicon bugs. We
analyze this experience and suggest an alternative, parallel
generation technique. We show through experiments the feasibility
of the new technique and its superior quality along several
dimensions. We claim that the results apply to other parallel
architectures and verification environments.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Verification

General Terms
Design, Verification

Keywords
Functional verification, Processor verification, Test generation,
VLIW, Parallelism

1. INTRODUCTION
Although high-level parallelism in processor design is not new, it
recently hit the headlines when Intel announced that its future
processors will include multiple cores to increase performance and
limit power consumption[1]. At the same time that multi-cores
reached the desktop, IBM announced that its massively parallel
PowerPC-based computer, Blue Gene/L, is currently the fastest
super computer in the world[2]. Although these news stories focus
on the benefits, processor parallelism also results in difficult design
and verification problems because of the exponential growth in the

number of execution combinations. At this point, automation
becomes critical for design and verification.
This paper presents our study of a relatively simple parallel
technique in processor design. Very Large Instruction Word
(VLIW) processors execute, in parallel, short sequences of basic
instructions. The architecture provides increased performance, but
shifts much of the additional complexity from the design to a
software compiler that packs the basic instructions into VLIWs.
We show that even this type of processor architecture deteriorates
the quality of tests created by a sophisticated test generator[5] and
results in post-silicon VLIW related bug escapes. We found that
various methodological enhancements are ineffective and that a
parallel test generation technique is required to tackle the
architectural parallelism. Although conceptually simple, the new
technique is feasible only because of the limited nature of the
parallelism and the existence of a powerful constraint solver.
Because the new technique has not yet been used in full scale
industrial verification, we study it through various experiments and
demonstrate the quality of tests along several dimensions.

2. VLIW PROCESSORS
A Very Large Instruction Word (VLIW) architecture is a relatively
simple parallel mechanism that enhances performance. The
mechanism considers a short sequence of basic instructions as a
single "large-word" instruction and executes the constituent
instructions concurrently. The responsibility of packing basic
instructions into the large-word instruction is left to a software
compiler, allowing for a relatively simple hardware design.
Examples of VLIW architectures include Intel's Itanium processor
[1] and STMicroelectronics' ST1001 and ST200 processor families
[7][8]. We study a simplified version of the ST100 family, described
in Figure 1.
In our simplified VLIW architecture there are four slot-types in the
long-word instruction type; each slot-type allows some instruction
classes to be used. For example, slot type ST0 allows any type of
instruction from the LOAD, COPY and NOP instruction classes.
Although, some VLIW architectures allow different numbers of slot-
types and different bitwise lengths of the different slot-types, our
architecture is simple with four constant length slot types. However,
the VLIW-type we study imposes restrictions on the allowed

1 The ST100 is not formally a true VLIW machine, but rather a

scoreboarded LIW, in that it deals with virtually all of the data
dependencies in hardware [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

779

 780

combinations of instructions. The reason for these restrictions is the
limited number of execution units in the actual design. Therefore, in
our example, the fact that there are only two LOAD/STORE units
restricts the number of LOAD/STORE/COPY instructions in any
VLIW-type to two.

Figure 1. Simplified ST100 VLIW type

Further restrictions involve data and resource dependencies within a
single VLIW. Many VLIW architectures do not allow target-source
and target-target dependencies within a VLIW type. However, the
ST100 family lets the compiler pack instructions with target-source
register dependencies into a single VLIW, when it is known that the
register write precedes the register read.

3. SEQUENTIAL VLIW GENERATION
Test generation for VLIW should first create stimuli, which are
essentially valid VLIW instances. Such instances should be of high
quality; in particular, they should provide good coverage of the
architecture and the design. In this paper, we compare two
approaches to VLIW test creation. The first is a sequential
approach, where instructions are created one after the other, and
then packed into VLIWs. The second is a parallel approach, where
a full VLIW is created at once.
The sequential approach was implemented using Genesys, a model-
based test-generator from IBM [5] that was used by
STMicroelectronics for the verification of ST100 family and ST200
family VLIW designs [6]. A Genesys system includes an
architectural-definition model, which normally describes the
architectural specification of single instructions. The verification
team at ST Microelectronics augmented this model by adding, for
each instruction, constraints that specify the cases in which the
instruction positioning in a VLIW is illegal. An illegal combination
causes either an undefined behavior that is prevented by the
constraint or an exception. In order to avoid too many exceptions, if
the selected instruction cannot be placed in the current VLIW
position, Genesys may fail the instruction generation and try to
select another instruction. After successful generation of four
sequential instructions, the tool simulates the entire VLIW on a
reference model.
This sequential implementation of VLIW generation gives
acceptable results, as discussed in Section 5. However, the nature of
this method is myopic and frequently fails with inter-slot constraints,
resulting in exceptions, generation retries, or poor quality. For
example, an illegal combination may occur if a specific instruction is
requested for the final slot, because the generator is not aware of this
request while selecting the early slots. Similarly, if a specific target

register is required by the user for the last VLIW slot, the generator
may select the same register as a source in an earlier slot, failing the
instruction of the final-slot on an illegal source-target VLIW
dependency.

4. PARALLEL VLIW GENERATION
The parallel approach is an alternative method that generates all the
VLIW instructions together. It was implemented in Genesys-Pro, a
high-end IBM test generator [9], by formulating the full VLIW as a
single Constraint Satisfaction Problem (CSP) [10].
A CSP consists of a finite set of variables and a set of constraints
between these variables. Each variable is associated with a set of
possible values, known as its domain. A constraint is a relation
defined on a subset of these variables and denotes valid
combinations of their values. A solution to a constraint satisfaction
problem is an assignment to each variable a value from its domain,
such that all the constraints are satisfied. Each CSP is represented by
a constraint graph whose nodes are variables and whose arcs are
constraints.
A single VLIW is generated in three steps. First, the generator
selects the instruction types to put in each of the VLIW slots. This
problem is formulated as a CSP [10] that represents the VLIW-type
as a tree. Each possible association of a slot type to a VLIW position
is represented as a node in the CSP. The CSP variables defined for
each slot type are: the instruction, the bit length of the slot, and its
selected position within the VLIW. Constraints between these
variables reflect VLIW combination restrictions and slot lengths
restrictions for the instructions.
Figure 4 shows the CSP for the VLIW-type of Figure 1, and depicts
a possible solution. In our simple VLIW architecture slot sizes are
always 16 bits, thus the corresponding CSP variable has two
possible values it its domain -- 0 and 16, where 0 indicates that the
slot type was not selected for the VLIW. In a variable length VLIW
architecture, there may be more possible lengths.
The second step in parallel VLIW generation involves a
simultaneous selection of property values for all the instructions that
comprise the VLIW, by solving a second CSP. The properties of
each of the instructions are organized in a tree structure, with a node
for every resource used by the instruction. This results in a large
CSP that may be difficult to solve. In particular, the number of
constraints that handle the dependencies between properties of
different instructions grow with the square of the number of slots in
the VLIW. In practice, the number of slots is limited by the number
of hardware execution units and thus remains small.
The third step in this algorithm is simulation of the generated VLIW
on the architecture reference-model.

5. EXPERIENCE WITH SEQUENTIAL
GENERATION
The sequential test generation, described in Section 3, was used by
ST Microelectronics for the verification of a processor from the
ST100 processor family[6]. The weaknesses of the sequential
approach required a carefully staged methodology and manual
direction of the test generation process. The staged methodology
included four phases. After the instruction-level verification had
stabilized, the pre-fetching and decoding mechanisms were tested.
The goal was to generate all legal VLIW instruction combinations
and to cover all VLIW types. Correct execution, intra-VLIW data

 781

dependency rules, exceptions, and undefined results were all
ignored. The second phase started once the Pre-fetch/Decode unit
correctly handled all VLIW instructions. The goal was to verify the
parallel execution of instructions in the VLIW. The execution
pipeline was first verified with legal operand dependencies. Then
the processor's ability to recover from undefined results due to
illegal dependencies was tested.

Figure 4. Instruction-combination CSP

 In the third stage, the interaction of the VLIW mechanism with the
rest of the design was checked. VLIW instructions were injected
randomly into tests that target other mechanisms. For example, the
execution of a hardware loop instruction was tested in conjunction
with a VLIW jump instruction, randomly placed inside the loop
body. The fourth and final stage consisted of massive random VLIW
test-generation.
In addition to the staged methodology, the verification team at ST-
Microelectronics found it necessary to implement an instruction
selection mechanism, by directing Genesys to create specific
instruction sequences that correspond to legal VLIW combinations.
Employing the user test-requests and macros of Genesys, each
VLIW type was explicitly defined. The verification team spent about
12 person weeks in writing 382 such macros. During the first phase
of VLIW verification, this set of macros resulted in reasonable test
quality, although with limited randomness. However, for the
following stages an unwieldy number of macros was required. For
example, within the VLIW, a source-target data dependency is not
generally allowed, but the target of a LOAD instruction may be used
as a source of an arithmetic instruction. Testing this with each
possible VLIW combination would have required thousands of
macros, so only partial testing was performed. Furthermore, massive
VLIW random testing was impossible with the sequential test
generation method resulting in several post-silicon escape bugs.
Specifically, scenarios that combined hardware loops with VLIW
contained bugs that should have been found on the third stage.

6. EXPERIMENTING WITH PARALLEL
GENERATION
The VLIW parallel test generation method has not been used yet in
full scale industrial verification. In order to compare it with the
sequential method, this section describes an experiment with a
simplified four-slot VLIW architecture. We encoded five VLIW
types, and several sample instructions from each instruction class, to
get a VLIW with 116 legal combinations. Genesys-Pro [9] was used
to implement both the sequential and parallel generation methods to
neutralize differences between test generators.

The simplest measure of test quality we consider is the number of
NOP instructions in a VLIW. When a VLIW constraint cannot be
satisfied, the generator selects a NOP for the problematic slot.
Generating about 50,000 VLIWs with the sequential method, we
found that one third of VLIWs included one NOP, almost half the
VLIWs included two NOPs, and 8% included three NOPs in the
four slots. Only 7% of the VLIWs did not include any NOP at all.
In contrast, the parallel method, did not generate NOP instructions
in any of the 50,000 VLIWs2.
Turning to coverage, Figure 7 shows that the parallel method
achieved full coverage of the 116 combinations, by creating about
750 VLIW instructions. In contrast, the sequential method needed
about 6,250 VLIW instructions to get full coverage. However, the
parallel method is slower in generating each VLIW. This is because
it takes longer to solve the two CSPs representing a full four-slot
VLIW, than to solve four simple CSPs each representing a basic
instruction. The combination of fast coverage and slow CSP results
in a faster parallel method—it is about four times faster than the
sequential method in achieving full coverage.
 Figure 10 measures the density of generated VLIWs. In our
simplified architecture, there are 116 combinations. A perfectly
uniform generator would create 1/116 of all the VLIW instances for
each of the combinations. The same tests used to measure coverage
have been analyzed to check uniformity. As shows, the parallel
method is quite uniform—most combinations were generated
around the 1/116 mark, just below the 1/100 line. On the other hand,
the sequential method is considerably less uniform. Uniformity in
test generation is important because it allows the allocation of
verification resources to various tasks. Non-uniform generation may
give preference to easier tasks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1000 2000 3000 4000 5000 6000 7000

VLIWs generated

C
ov

er
ag

e

Sequential

Parallel

Figure 7. Coverage of all VLIW combinations

A more subtle measure of test quality in a parallel context is the
coverage of collision events within a VLIW. To demonstrate this
aspect, we divided the memory space into two regions, read-only
and read-write, experimenting with various division ratios. We
generated random VLIWs with various LOAD, STORE and other
instructions with a bias towards memory collisions of accesses to
common cache lines within a VLIW. Figure 11 summarizes the
results, in particular, the few collisions created by the sequential
generation and the fair number of collisions created with the parallel
method. The parallel approach selected addresses by solving all the
constraints in a single VLIW, including the bias ones. The

2 In our experiment, we directed both generator versions to avoid

NOP instructions as much as possible. However, a full
verification process should include some NOP instructions.

 782

sequential algorithm often failed, for example, to select an address in
the read-write memory region for a LOAD in the first slot, such that
the same address could also be used by a STORE in the final slot of
the VLIW. This became more difficult for the sequential method as
the read-only region became larger, whereas the parallel approach
retained a high success rate. Although only a synthetic experiment, it
shows the method’s ability to test complex parallel mechanisms by
memory collisions—a critical ability in preventing post-silicon
escape bugs, as reported in Section 5 and [3].

7. CONCLUSIONS
This paper reports on the verification of the parallel aspects in a
VLIW processor. We focused on the difficulties in test generation,
described a methodology that combines a sequential test generator
with manually written macros, and reported its drawbacks. In
response, we described a parallel test generation technique and
reported on experiments that demonstrate its superiority along
several dimensions of test quality.

0

1/200

1/100

3/200

1/50

1 11 21 31 41 51 61 71 81 91 101 111
Combination Number

Fr
ac

tio
n

of
 In

st
an

ce
s

Sequential

Parallel

Figure 10. VLIW combination density

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80

% read-only memory

%
 lo

ad
/s

to
re

 h
it

Sequential
Parallel

Figure 11. Memory collisions

Our results are applicable to the verification of other types of
parallelism in processor architectures, such as Superscalar, Multi-
threaded, and Multi-processor designs[4]. In particular, our
conclusion that manual enhancements to sequential test generation
are bound to fail, is general enough. When subtle scenarios and test
quality constraints are required, the degree of parallelism combined
with the number of quality constraints becomes large enough to
make the number of combinations unmanageable for simple
programming tools. Fundamental solutions are then required. Such
solutions depend on the power of the underlying solvers. For the
VLIW architecture studied, we found that the solver [9] is strong

enough and the slowdown in its performance is acceptable.
However, higher parallelism will entail more powerful solvers.
This paper contributes by presenting a new test generation technique
and by demonstrating its feasibility to VLIW. We show the
superiority of the new approach by several quality measures
including coverage, uniform test density, and achieving high
resource contention. However, this study is limited by IBM's unique
test generation environment. Conducting similar experiments with
standard industry verification environments [1],[12] would test how
well these tools are suitable for the verification of parallel design
constructs.

8. REFERENCES
[1] http://www.intel.com/pressroom/archive/releases/20040907cor

p.htm
[2] http://domino.research.ibm.com/comm/pr.nsf/pages/news.2004

1110_bluegene.html
[3] Adir, A. and Shurek, G. Generating Concurrent Test-Programs

with Collisions for Multi-Processor Verification. In
Proceedings of the IEEE International High Level Design
Validation and Test Workshop (HLDVT '02), 2002, 79-82.

[4] Sullivan, M., Wilson, P., Montemayor, C., Evers, R. and Yen,
J. Multiprocessor Design Verification with Generated Realistic
MP Programs. In Proceedings of IEEE 14'th Annual IPCCC,
1995, 389-395.

[5] Aharon, A., Goodman, D., Levinger, M., Lichtenstein, Y.,
Malka, Y., Metzger, C., Molcho, M. and Shurek, G. Test
Program Generation for Functional Verification of PowerPC
Processors in IBM. In Proceedings of 32nd Design Automation
Conference (DAC '95), 1995, 279-285.

[6] Malandain, D., Palmen, P., Taylor, M., Aharoni, M.,
Arbetman, Y. An Effective and Flexible approach to
Functional Verification of Processor Families. In Proceedings
of the IEEE International High Level Design Validation and
Test Workshop (HLDVT '02), 2002, 93-98

[7] http://www.st.com/st100
[8] Homewood, F., Faraboschi, P. ST200: A VLIW Architecture

for Media-Oriented Applications. Microprocessor Forum, Oct
2000.

[9] Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M.,
Vinov, M. and Ziv, A. Genesys-Pro: Innovations in Test
Program Generation for Functional Processor Verification.
IEEE Design & Test of Computers, Mar-Apr. 2004, 84-93.

[10] Bin, E., Emek, R., Shurek, G. and Ziv, A. Using Constraint
Satisfaction Formulations and Solution Techniques for
Random Test Program Generation. IBM Systems Journal, Aug.
2002, 386-402.

[11] Palnitkar, S. Design Verification with e. Prentice Hall, 2003.
[12] Haque, F., Michelson, J. and Khan, K. The Art of Verification

with Vera. Verification Central, 2001

