
TCAM Enabled On-Chip Logic Minimization

Seraj Ahmad
seraj@tamu.edu

Rabi Mahapatra
rabi@cs.tamu.edu

Department of Computer Science
Texas A & M University

College Station, Texas-77843

ABSTRACT
This paper presents an efficient hardware architecture of an
on-chip logic minimization coprocessor. The proposed archi-
tecture employs TCAM cells to provide fastest and memory
efficient implementation suitable for emerging on-chip mini-
mization applications. The paper presents a detailed design
of the on-chip minimizer and shows that it requires very
little hardware resources to achieve acceptable quality of
minimization. An incremental insertion and bulk deletion
is achieved in 0.25 µs and 3.8 ms respectively and a com-
paction of 100000 entries in 25 ms using just 300 TCAM
entries.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Algorithms implemented in hardware

General Terms
Algorithms, Design

Keywords
TCAM, Logic Minimization,On-Chip

1. INTRODUCTION
Logic Minimization has been traditionally applied to prob-

lems (such as logic synthesis) where the table to be mini-
mized is statically defined. However, several emerging ap-
plications require logic minimization on a rapidly changing
table. In addition, they also have very stringent timing and
memory constraints. Example of such applications include
routing table compaction, network access control list min-
imization and to some extent dynamic hardware/software
partitioning. Logic minimization problem is intractable mak-
ing the traditional algorithm unsuitable to these class of ap-
plications. Due to frequent update on the target table, the
algorithm must be suitable for performing fast incremen-
tal minimization. Also, in order to optimize the response

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

time, the algorithm is kept closer to the application and
share the limited memory and computing resources. This
makes software oriented approaches inadequate to fulfill all
the constraints.

There has been several attempts to use hardware-based
coprocessors to accelerate general purpose logic minimiza-
tion algorithms. Cong et al. investigate the acceleration
of tautology checking using FPGA [4]. Their approach is
however restricted to 8 or fewer variables and computes all
the minterms. Authors in [3] suggests a coprocessor design
based on FPGA to evaluate binate covering problem. These
FPGA based approaches are reported to achieve a speedup
factor ranging from 1.36 to 2.94 compared to their desktop
counterparts in a co-designed implementation of Espresso-II
[3]. Roman Lysecky et al. propose hardware acceleration of
ROCM, a lightweight minimizer targeted for on-chip logic
minimization due to its compact size and lower memory re-
quirement [8]. In co-designed ROCM implementation, the
six most frequently used loops accounting for 90% of the
execution time are pushed to hardware. These loops mainly
involve determination of tautology, cofactor and cube covers.
The implementation requires about 19000 gates and offers a
10 to 18 times speedup for reduction of routing tables. How-
ever the hardware design and implementation details of the
functional blocks are not provided for practical evaluation.

Although these acceleration strategies significantly speedup
the execution time, they are still not suited for minimiza-
tion of large routing tables expected to contain more than
several hundred thousand entries. For example, to minimize
a routing table containing 79743 entries using a co-designed
ROCM with a hardware speedup factor of 20 on a 400 MHz
XScale platform will still take 420 seconds, quite an over-
head for a backbone router which is either starting-up or
recovering from a failure. Also, the hardware assisted ver-
sion of these algorithm will still be unable to fulfill the peak-
rate and worst-case BGP update requirements. Authors in
[1] discuss a trie-based data structure which uses a combina-
tion of containment and d1 merge techniques to achieve min-
imization. Their technique achieves fast and memory effi-
cient compaction by employing a dynamic table partitioning
and garbage collection scheme at an acceptable compaction
loss. Their approach provides 100-1000 times speedup over
Espresso-II or ROCM for routing table compaction while re-
quiring about one tenth of the data memory. For example,
their implementation can minimize the same table contain-
ing 79743 entries in 2.38 seconds. Although m-Trie offers
decent performance but it may still be insufficient to provide
adequate number of updates without hardware acceleration.

678

42.1

This paper discusses a novel architecture to implement
m-Trie in hardware. The proposed architecture utilizes the
ternary content addressable memory(TCAM) cells to achieve
parallelization in m-Trie implementation. Most of the ta-
bles targeted for dynamic minimization are usually stored
in TCAM modules for either lookup or classification pur-
poses. This presents a good case for embedding the proposed
hardware-based minimizer in the TCAM modules itself. Ad-
ditionally, this work describes three techniques used in the
implementation of the hardware-based minimizer, which can
be adopted in commercial TCAMs to offer more powerful
lookup and classification capabilities required for pattern
matching applications.

The rest of this paper is organized as follows. Section 2
describes the architecture and operation of standard ternary
content addressable memories. Section 3.1 discusses en-
hancements needed for TCAM lookup architecture to sup-
port more powerful matching semantics. Section 3.2 dis-
cusses the proposed logic minimizer architecture. Section
3.3 discusses the cube Insertion/Deletion algorithms used
by the minimization controller. Section 4 discusses the case
study and experimental results. The conclusion and future
directions are discussed in Section 5.

2. PRELIMINARIES
Two level logic minimization problem involves exploring

the minimal representation of a boolean function written in
sum of product (or product of sum) form. Each of the prod-
uct term(also known as cubes) contains a number of binary
variables(or literals) in complemented or un-complemented
form selected from the set {x1 , x2 , x3 · · ·xW } of W variables.
If the cube contains all the W variables, then it is called a
minterm. Thus each of the cubes can be mapped to a fixed
length ternary string in {0, 1, x}∗ by encoding the comple-
mented, un-complemented and absent literals by 0, 1 and
x respectively. The proposed logic minimizer architecture
utilizes ternary content addressable memory (TCAM) cells
to support storage and comparison of minterms expressed
as fixed length ternary strings.

A NOR based TCAM cell is shown in Figure 1. It uses two
SRAM based storage cell to store states 0, 1 and x based on
the encoding scheme given in Table 1. Each TCAM cell is
provided with four transistor switches to assist comparison.

SRAM
Cell 0

SRAM
Cell 1

0d 1d0d 1d0sl 1sl

WORDLINE

VDD

GND

MATCH LINE

Cell 0
Comparator

Cell 1
Comparator

PRECHARGE

T1 T2

T3T4

Figure 1: A NOR-based TCAM Cell

These transistor switches prevent matchline from getting
shorted to ground when a match occurs. For example a
state 0 in TCAM cell will turn off the transistor T3. A
search for 0 applied on search lines sl0 and sl1 will turn off

Table 1: Encoding of Ternary Symbols in TCAM
d1 d0 T
0 0 x
0 1 0
1 0 1
1 1 xsr

transistor T1 blocking match line from getting shorted to
ground. However a search for 1 will turn on the transistor
T1 creating a path to ground through transistor T4. On the
other hand a state x in TCAM will turn off both T3 and T4
blocking all path to ground thus matching all search keys
applied to TCAM cell giving a don’t care match semantics
needed to encode the absence of a literal.

Pr
io

rit
y

En

co
de

r

Search Register

...

Sense Amplifiers

CASCADED MATCH LINES

SEARCH LINE

SEARCH LINE

TCAM Word

Figure 2: On-Chip Minimizer Architecture

A simplified TCAM architecture is shown in Figure 2.
Here an array of TCAM cells are arranged to form a TCAM
word. In order to perform word comaprison, all cells belong-
ing to a single word share a common match-line.

Since data being searched can match multiple words in
TCAM due to variable length matching, all the matchlines
are connected to a priority encoder. The priority encoder
selects the word at the lowest address among all the matched
words.

To initiate a search in TCAM, the matchline is pre-charged
to a high level. The data to be searched is stored in search
register and asserted. TCAM words which do not match the
search data causes the matchline to be discharged, which is
detected with the aid of a sense amplifier. Since the search
data is fed to large number of cells, TCAM uses searchline
drivers to handle the capacitive sink load caused by each
cell.

3. ON-CHIP MINIMIZER
The proposed logic minimizer architecture uses a TCAM

based lookup architecture to achieve parallel comparisons.
However, it adds several enhancements to existing TCAM
lookup architecture to implement the minimizer. We de-
scribe these enhancements in the following subsections.

3.1 Enhanced TCAM Lookup
TCAMs are mostly used to perform IP routing table lookup

in O(1) time. The lookup operation involves comparing a
fixed length binary string against a set of variable length
strings to find the a longest match. The variable length
strings are called IP prefixes and can be thought of as ternary
strings with x’s appearing only at the end.

However, it should be noted that TCAMs permits the
storage of x at any arbitrary position enabling it to perform

679

Table 2: Match Behavior For Ternary Symbols
0 1 x

0 y n y
1 n y y

xsr n n y

lookup of a binary string amongst any arbitrary ternary
strings instead of against only trailing ternary strings. Thus
IP lookup only uses a subset of the powerful search capabil-
ity provided by the TCAMs.

Theoretically, TCAM search semantics is equivalent to
searching the smallest cube containing a specified minterm
in a set of cubes. For performing logic minimization, TCAM
lookup mechanism needs to be enhanced to perform a cover,
contain and exact lookup of a ternary string amongst a set
of ternary strings. The exact ternary lookup is a hybrid
operation and is implemented in terms of cover and contain
operations, which is described next. We will denote the
TCAM providing the cover and contain functionality by T⊇
and T⊆ respectively.

3.1.1 Cover Lookup (⊇)
A cover lookup(⊇) operation can be defined as the prob-

lem of finding all the cubes covering a specified cube. In
order to perform cube cover lookup in TCAM, the search
register should be capable of holding 0 , 1 and x. This
can be easily accomplished by using 2 bits to represent each
symbol of the cube. The corresponding hardware overhead
is quite small and doesn’t impact the TCAM architecture
much. Since the encoding of x in TCAM and search register
are not same, we will use xsr for x in search register.

The 0, 1 , x and xsr symbols are encoded using the scheme
given in Table 1 for a TCAM cell shown in Figure 1. The
opposite encoding of ”don’t care” symbol x in TCAM and
search register results in match behavior shown in Table 2.
For example, consider the NOR based TCAM cell shown in
Figure 1. If a ”don’t care” is stored in search register, the
encoding scheme implies that it will turn on the transistor
T1 and T2. If a ”0” or ”1” is stored in the cell, it would cause
either T3 or T4 to be turned on thereby creating a discharge
path to ground (a mismatch). However, if the ”don’t care”
symbol x is stored in TCAM, it will turn off the transistor
T3 and T4 blocking any path to ground thereby matching
with either of 0, 1 and x. This match behavior enables
TCAM to search all the cubes covering the specified cube.

The proposed insertion algorithm ensures that the cubes
are always ordered according to their size. Thus a priority
encoder is sufficient to select the largest cube amongst all
the covering cubes.

3.1.2 Contain Lookup (⊆)
A contain lookup(⊆) operation can be similarly defined as

the problem of finding all the cubes contained in a specified
cube. In order to perform contain lookup operation, the
search register in table T⊆ is similarly enhanced using 2 bits
to allow storage of 0, 1 and xsr. However, it uses a different
encoding scheme as shown in Table 3 to achieve contain
lookup capabilities.

To illustrate, we again consider the NOR based TCAM
cell shown in Figure 1. If a don’t care is stored in search
register, the encoding scheme implies that it will turn off

Table 3: Encoding of Ternary Symbols in T⊆
d1 d0 T
0 0 xsr

0 1 0
1 0 1
1 1 x

the transistor T1 and T2 blocking all paths to ground, thus
matching a 0, 1 or x stored in TCAM. However, a 0 or
1 stored in the search register matches with only 0 or 1
stored in TCAM respectively. This runs contrary to normal
TCAM behavior but gives the desired contain-lookup capa-
bility. Further, all the contained cubes are discovered in one
cycle.

The algorithms proposed here do not require the capabil-
ity to find the largest cube contained in the specified cube.
Thus we can eliminate the extra hardware needed to select
the the largest cube.

3.1.3 Exact Ternary Lookup
An exact ternary lookup operation can be realized in terms

of cover and contain lookup operations. Suppose A⊇ be the
set of cubes in S, which covers a specified cube A. Also
suppose A⊆ be the set of cubes in S, which are contained in
the cube A. Thus we can express the cube A as follows:

A
x
= A⊇ ∩ A⊆

This relation forms the basis of the proposed O(1) exact
ternary lookup. In order to implement this relations, the
match lines in cover lookup table(T⊇) and contain lookup
table(T⊆) are joined together. Thus the entries which are
strictly contained in A or those which strictly covers A are
pulled down to zero resulting in a mismatch. This leaves
only the entry corresponding to the cube exactly matching
the specified cube remain at high level indicating a match.

The three lookup enhancements described here are uti-
lized by the proposed minimizer architecture to support m-
Trie based insertion/deletetion mechanisms required to im-
plement minimization algorithm.

3.2 Minimizer Architecture
Figure 3 depicts the high level minimizer architecture.

The coprocessor uses two TCAM tables T⊇ and T⊆ called
cover and contain lookup tables respectively. Any insert
or delete operation is carried out on both the tables. To-
gether, these tables are used to support cube merge and
containment operations. Both the tables are equally sized
and contain N TCAM words each. The optimal value of N is
discussed in the experimental results section. The character-
ization of these tables are given in the following subsections.

In Figure 3, an entry being searched can match multi-
ple entries in the TCAM. The proposed minimization algo-
rithm requires either iterating over all the matching entries
or just the first matched entry. To support this complex be-
havior, the architecture uses a Matched Entry flag for each
TCAM entry to remember the result of the last lookup op-
eration. The result of the match is then fed to a priority
encoder, which generates the location of the first matched
entry. Thus the minimization controller can process either
all the matched entries sequentially or just the first matched
entry.

680

D
at

a
B

us

Pr
io

rit
y

En
co

de
r

M
in

im
iz

at
io

n
C

on
tr

ol
le

r

Contain () Lookup TCAM⊆

Cover () Lookup TCAM⊇

Free Entry Flag

Matched Entries Flag

Contain (), Cover () and
Ternary Match () Selector

⊇⊆
=x

C
on

tro
l B

us

Search Register

Search Register

Figure 3: On-Chip Minimizer Architecture

The architecture also uses a Free Entry flag for each TCAM
entry to implement an address-input free write mechanism
as proposed in [10]. The flag is set to 1 for each unused
location. All the flags are fed to a priority encoder to select
the first unused location for a write operation. Since the
TCAM writes, cover lookup and contain lookup operations
are used sequentially in the minimization algorithm, a sin-
gle priority encoder is enough to handle these operations.
The minimization controller multiplexes the use of priority
encoder through a cover, contain, exact ternary and Free
Entry selector as shown in the Figure 3.

Each of these TCAM table is provided with a search regis-
ter to support simultaneous search in both the tables. Nor-
mally, the search register found in TCAM based coproces-
sors uses one bit per symbol and supports fixed length binary
search keys. Here, the search register used here are enhanced
to utilize two bits per symbol to be able to specify variable
length search keys. The search register input is fed through
a driver as discussed in Section 2, which helps to overcome
the long interconnect and sink load capacitances. Also, the
searchline may be segmented to improve the lookup delay.
Further improvement on lookup delay can be obtained by
segmenting the matchline.

3.3 Minimization Controller
The TCAM tables, search registers, priority encoder ar-

bitration are manipulated using a minimization controller
which implements the minimization algorithm logic. In or-

der to handle the dynamically changing tables, the mini-
mization is treated as a series of cube insertion and deletion.
Cube insertion and deletion utilize the enhanced lookup
functionality and derive their efficiency from increased search
parallelism. Following section describe the insertion/deletion
algorithm used by the minimization controller. The algo-
rithms are adapted from m-Trie based insertion/deletion al-
gorithm to work with TCAM tables.

3.3.1 Cube Insertion
In order to insert the cube c, the first step involves in

finding, if c is contained in some other cube. This is ac-
complished by performing a lookup of the specified cube in
the cover TCAM table T⊇ . If a covering cube c⊇ exists, the
cube c is simply dropped as it is already present inside a
larger cube. This step is captured in lines 1-4 in Algorithm
1.

The second step involves determining C, the set of all the
cubes which are contained in the cube c. This is accom-
plished by performing a lookup in the contain TCAM table
T⊆ . The insertion algorithm then iterates over all the cubes
c⊇ ∈ C and marks the location corresponding to these en-
tries as free. This step is captured in the lines 5-7.

The third step involves searching the cubes which can
be merged into the cube c. Please note that a cube c of
the form c1···i−1 · 0 · ci+1···W can be merged with another

cube c1···i−1 · 1 · ci+1···W at ith position and vice versa. The
algorithm therefore inverts a 0 or 1 symbols present in the

681

Table 4: Comparison of HWLM Performance against m-Trie and codesigned-ROCM
Base Tables codesigned ROCM m-Trie(sw) HWLM
Orig. Pruned Time Table Time Table Time Table TCAM size

(sec) Size (sec) Size (millisec) Size (No Of Entries)

paix 13914 11091 5.992 8984 0.240 8881 2.773 8969 116
pacbell 22165 16124 61.000 11604 0.310 11351 4.031 11642 138
maewest 29585 22042 46.466 16728 0.440 16354 5.511 16686 139

aads 33740 24795 50.671 18898 0.510 18531 6.199 18881 133
att 112412 79743 420.268 57175 2.380 57918 19.936 58772 137
bbn 124538 92773 142.917 70984 2.820 70716 23.193 71782 137

cube c to get the cube c′. It then performs a exact ternary
lookup of the cube c′ to find c′= . If the cube c′= is found, it is
simply deleted (i.e. associated entry is just marked free) and
the corresponding 0 or 1 symbol in cube c is promoted to
symbol x. The procedure iterates over all the 0 and 1 symbol
present in the cube c to explore all possible 0,1 promotions.
This is captured in lines 8-17. Finally, the modified cube c
resulting from third step is written in the TCAM.

The cube insertion algorithm spends one cycle in the lines
1, 2-4 and 5 each. It spends W cycles in the lines 5-7 in the
worst case. The lines 8-17 requires 2 cycles and W worst case
iterations. Thus the insertion algorithm requires 3 ×W + 4
cycles.

Please note that lines marked by arrows are needed by the
cube deletion algorithm.

Algorithm 1.

InsertCube(c)

1 c⊇ = lookup(c, T⊇)
2 if(c⊇ �= ∅)

→ count[c⊇]++
→ (c⊇)b0

| = (c⊇ ⊕ c)0 , (c⊇)b1
| = (c⊇ ⊕ c)1

3 return
4 endif
5 C = lookup(c, T⊆)

→ count[c] = 1, (c)b0
= 0, (c)b1

= 0
6 ∀c⊆ ∈ C

→ count[c] = count[c] + count[c⊆]
→ (c)b0

| = (c ⊕ c⊆)0 , (c)b1
| = (c ⊕ c⊆)1

7 delete(c⊆)
8 for(i = W ; i > 0; i = i − 1)
9 if(ci ∈ 0, 1)

10 c′ = c1···i−1 .ci .ci+1···W
11 c′=

x
= lookup(c′, T⊇) ∩ lookup(c′, T⊆)

12 if(c′= �= ∅)
→ count[c] = count[c] + count[c′=]
13 delete(c′=)
14 c =promote(c, i)
15 endif
16 endif
17 endfor
18 insert(m)
end

3.3.2 Cube Deletion
A cube c to be deleted may not be directly present in the

TCAM due to the way insertion works. For example, the

containment operation or symbol promotion may cause the
cube c to be merged into another cube which is in fact a
cover of the cube c. Hence the first step in cube deletion
algorithm involves lookup of cube c in the table T⊇ to find
a covering cube c⊇ . This is captured by the first line in
Algorithm 2.

The second step involves recovering the merging and con-
tainment information of the cube c from the cube c⊇ . The
cube deletion algorithm maintains a counter and two bitmaps
(b0 and b1) for each of the cube stored in TCAM. The
counter corresponding to each cube records the number of
cubes merged or contained into that cube. The bitmap b0

records the positions of symbol x which observe containment
of 0’s. Similarly, the bitmap b1 records the positions observ-
ing containment of 1’s. For example, the containment of
a cube 01x011xx into a cube 01xx1xxx can be recorded by
b0 = 00010000 and b1 = 00000100. These recovery informa-
tion are collected during the cube insertion as is highlighted
in Algorithm 1 by arrows.

Algorithm 2.

DeleteCube(c)

1 c⊇ = lookup(c, T⊇)
2 if(c⊇ �= ∅)
3 count[c⊇]=count[c⊇]-1
4 b = c⊇ ⊕ c
5 b = (b ⊕ (c⊇)b0

)|(b ⊕ (c⊇)b1
)

6 mask=1
7 for(i = W ; i > 0; i = i − 1)
8 if(b & mask)
9 ĉ = c1···i−1 .ci .ci+1···W

10 count[c⊇]=count[c⊇]-1
11 insert(ĉ)
12 endif
13 mask = mask � 1
14 endfor
15 delete(c⊇)
16 endif
end

Thus when the cube c is withdrawn from the covering cube
c⊇ , the counter corresponding to c⊇ is decremented. The
algorithm then computes a bitmap of the positions of c hav-
ing disagreements with c⊇ . It then excludes the positions
corresponding to 0 and 1 containment by xor-ing it with
bitmap b0 and b1. The resulting bitmap b reflects the po-
sitions where a 0 or 1 have been promoted to an x symbol
during merge stage of cube insertion. In order to restore
the effect of merge operation, x symbol at position i is split

682

into ci and c̄i giving rise to two cubes c1···i−1 .ci .ci+1···W and
c1···i−1 .ci .ci+1···W . This step is performed for all the posi-
tions indicated by the bitmap b. Finally, the covering prefix
c⊇ is deleted from the TCAM.

The cube deletion algorithm spends one cycle in lines 1,
2, 3-6 and 8-13 and 15. Further, it requires W worst case
iteration of lines 8-13. Thus the total number of worst case
cycles consumed by cube deletion algorithm is W + 4.

4. EXPERIMENTAL RESULTS
To establish the suitability of using the proposed on-chip

minimizer (HWLM), we estimated its performance on the
standard routing table traces used in [9] and [7]. We have
also included two large routing table traces from bbnplanet

and attcanada. The results for all the software approaches
were obtained on a cerfcube platform running embedded
Linux on a 400 MHz Intel XScale processor [6]. The result
for ROCM has been scaled up by a hardware acceleration
factor of 20 to obtain the codesigned-ROCM performance.
The results for the proposed minimizer was obtained for 32-
bit IP prefixes and assuming a 2.5ns lookup cycle which is
typical of today’s TCAM [2], [5]. The main results have
been summarized in Table 4. The first column gives the
original and pruned table sizes. The next two columns give
the execution time and size of the minimized routing table in
that order for codesigned-ROCM and software implemented
m-Trie algorithms. For HWLM, we mention the execution
time, size of the minimized routing table and the size of
TCAM minimization table required in that order. As we
can see here that HWLM achieves 100 times faster mini-
mization as compared to m-Trie based minimization, the
fastest known approach. The proposed architecture takes
only 20 milliseconds to minimize the attcanada routing ta-
ble containing 79743 entries.

The performance of cube insertion and cube deletion is
only limited by worst-case lookup time achievable in TCAMs.
The cube insertion requires 100 worst case cycles while cube
deletion algorithm requires only 36 worst case cycles for 32
bit IP prefixes. On a 2.5ns lookup TCAM, the cube inser-
tion will require 0.25 microseconds and deletion will require
0.09 microseconds. Thus the architecture supports a much
higher number of updates (1 million with adequate hardware
resources) per seconds as compared to thousands of updates
for other approaches.

The main overhead of the architecture is contributed by
the size of the TCAM table used. As we can observe from the
Table 4, TCAMs T⊆ and T⊇ , can be implemented with 150
entries each and still achieve 95% of the maximum achiev-
able compaction. However, in order to support 0.09 mi-
croseconds deletion, we may need up to 9446 entries as in
the case of attcanada routing table. Since the insertions
are fast enough, the cube deletion can be modelled as re-
minimization of the resulting table after withdrawing the
entries to be deleted. This will keep the number of entries
required to 150 but can still achieve a bulk deletion (con-
taining 100-1000 deletions) in 3.8 ms.

5. CONCLUSIONS
In this paper, we presented a TCAM enabled hardware ap-

proach to handle minimization for emerging On-Chip logic
minimization applications. In particular, we implemented
m-Trie based approach toward logic minimization in hard-

ware using a novel architecture. We obtained the minimiza-
tion and update performance of the proposed architecture.
The performance results indicate that the architecture gives
the best performance compared to other known approaches
till date. The proposed hardware architecture may be ex-
tended to support acceleration of other logic minimization
algorithm such as Espresso-II as a future work.

6. ACKNOWLEDGMENTS
We would like to acknowledge R. Lysecky and F. Vahid

at UCR for providing the ROCM code and routing table
traces to help us compare the performance. We would also
like to acknowledge various discussion with Dr. Sunil Khatri
to refine the paper.

7. REFERENCES
[1] S. Ahmad and R. Mahapatra. m-Trie - A Fast and

Efficient Approach to On-Chip Logic Minimization. In
Proc. Intl. Conf. on Computer Aided Design. IEEE,
November 2004.

[2] S. Choi, K. Sohn, M.-W. Lee, S. Kim, H.-M. Choi,
D. Kim, U.-R. Cho, H.-G. Byun, Y.-S. Shin, and H.-J.
Yoo. A 0.7fJ/bit/search, 2.2ns search time hybrid type
TCAM architecture. In Solid-State Circuits
Conference, 2004. Digest of Technical Papers,
volume 1, pages 498–542, Feb 2004.

[3] J. Cong and J. Peck. On Acceleration of Logic
Synthesis Algorithms using FPGA-based
Reconfigurable Coprocessors. Technical Report
TR-970010, Computer Science Department, University
of California, Los Angeles, CA, 1997.

[4] J. Cong and J. Peck. On Acceleration of the Check
Tautology Logic Synthesis Algorithm using an
FPGA-based Reconfigurable Coprocessor. In
Proceedings of the 5th IEEE Symposium on
FPGA-Based Custom Computing Machines (FCCM
’97), page 246. IEEE Computer Society, 1997.

[5] B. Gamache, Z. Pfeffer, and S. P. Khatri. A Fast
Ternary CAM Design for IP Networking Applications.
In 12th International Conference on Computer
Communications and Networks (IC3N-03), Dallas,
TX, volume 1, pages 498–542, October 2003.

[6] Intrinsyc. Cerfcube 255 with Embedded Linux.
http://www.intrinsyc.com/products/cerfcube.

[7] H. Liu. Routing Table Compaction in Ternary-CAM.
IEEE, Micro, 15(5):58–64, Jan/Feb 2002.

[8] R. Lysecky and F. Vahid. A Codesigned On-Chip
Logic Minimizer. In Proc. CODES+ISSS, pages
109–113. ACM, October 2003.

[9] R. Lysecky and F. Vahid. On-chip logic minimization.
In Proc. Design Automation Conference, pages
334–337. ACM, June 2003.

[10] H. Noda, K. Inoue, H. Mattausch, T. Koide, and
K. Arimoto. A Cost-Efficient Dynamic Ternary CAM
in 130 nm CMOS Technology with Planar
Complementary Capacitors and TSR Architecture. In
Symposium on VLSI Circuits Digest of Technical
Papers, pages 83–84, 2003.

683

