
41.1

 670

Formal Verification – Is It Real Enough?
Yaron Wolfsthal

IBM Haifa Research Laboratory
ISRAEL

wolfstal@il.ibm.com

Rebecca M. Gott
IBM Systems and Technology Group

Poughkeepsie, NY, USA
gott@us.ibm.com

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – verification.

General Terms
Design, Measurement, Verification.

Keywords
Formal Verification, Functional Verification.

1. INTRODUCTION
While Formal Verification (FV) of logic designs has been
described in an industrial context for over a decade, it has
not yet become a mainstream methodology. Our purpose in
this report is to summarize a body of experience in the
application of industrial-scale FV. We aim to present our
insights and recommendations to practicing engineers and
managers, who wish to evaluate the inclusion of FV as a
part of their design methodology. In doing so, we hope to
contribute to the understanding of the full potential of FV,
based on our positive experience with this paradigm (cf. [1-
2]). We focus on providing practical information about the
process of FV as possible within the limited scope of this
text1. Our analysis is based on observations and data
collected from the application of over 100 projects across
IBM and customers2.

2. SCOPE
For the foreseeable future, verification will continue to rely
on simulation. FV, in turn, can complement simulation, and
in certain cases can take a central role – e.g. in control-
dominated logic with limited datapath function. A recent
IBM report described a methodology where up to 40% of
the logic in a typical design project can be subjected to
formal analysis with careful planning [3]. This investment is
justified by the fact that the logic bugs detected by FV are
complementary to those found by simulation, hence
providing a worthy return on the investment.

1 We limit our discussion to FV techniques based on Model Checking.
2 The FV tool used in the referenced projects is RuleBase PE [2] with

PSL.

Copyright is held by the author/owner(s).
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
ACM 1-59593-058-2/05/0006.

3. BENEFITS EXPLAINED
Two highly acclaimed benefits of FV are that it increases
quality and shortens time-to-market. In closer analysis, the
underlying drivers of these high-level attributes are early
availability, higher coverage, and the enablement of
integration:

1 Early Availability – FV can typically start earlier than
simulation, as soon as the logic is compiled, since it
requires a very limited setup cost relative to simulation
testbenches.

2 High Coverage – inherently, FV can systematically cover
large state spaces, or significant parts thereof, thereby
allowing the detection of bugs which would have been
difficult to manually target with simulation.

3 Enabling Effective Integration – building on the above
points, when FV is used at the unit level, system simulation
time is significantly reduced, and stabilization is expedited.

4. HINDERING FACTORS
The main technical limitation of FV is well known – an
exponential state space explosion prevents the application
of FV as a comprehensive system-level verification
solution. Indeed, FV remains a unit level verification tool,
capable of addressing logic models of limited size. The
actual limits depend on the design at hand, the technique
used, and the verification goals (proof of design properties
vs. their falsification). As a yardstick, FV is used in our
projects for proving properties of design modules reaching
up to few thousands of state-holding elements, and semi-
formal techniques – focused at falsification –applied to
modules whose size is about an order of magnitude higher.

A second hindering factor in the application of FV is that
engineers and managers often exhibit reluctance to use
them. This, in our experience, is the combination of three
issues. First, formal methods have a (false) reputation of
being difficult to use. Secondly, the demonstration of the
value proposition requires an upfront investment. Lastly,
many design houses are comfortable with the “good
enough” nature of simulation, and readily forego the
potential benefits of FV, in favor of the familiar simulation-
only design methodology. The ongoing flow of reports on
the successful application of FV in the field appears to
increasingly, steadily, influence design teams to seriously

 671

consider the deployment of FV. In the accompanying
presentation, we aim to contribute to this cause by
quantitatively demonstrating successful application of FV in
our projects.

5. BUG CLASSIFICATION
The nature of bugs found by FV is exemplified below,
following a study of an IBM team who reviewed all bugs
found by FV during 12 months (several 100’s in all). This
study has yielded the following bug classification, which
sheds some light on the impact FV has on a design project:

Bugs Found Due to Schedule Advantage: as FV can
typically start earlier than unit simulation, some bugs
discovered by FV early in the verification cycle are simply
due to the fact the FV was the first to evaluate the logic.
The resolution of this class of bugs helps provide a more
stable model for the start of simulation.

Hole in Simulation Coverage: Once simulation has
started, bugs discovered by FV may expose holes in
simulation coverage. This class of bugs is important as it
drives appropriate improvements to the simulation
environment so that it will provide better coverage in the
larger system simulation context.

True Corner Case Bugs: As mentioned earlier, FV can
expose corner case bugs that are extremely hard to hit in
simulation, even with carefully planned simulation
environments developed with advanced tools. With that, FV
complements simulation.

Performance Bugs: These are cases where computation
results are intact, while the performance fails to meet
requirements. This is an important class of bugs since,
especially in the area of high-performance logic,
performance IS function and performance related problems
have been known to be a reason for silicon respins.

Impossible Bugs: Some bugs found by FV may be deemed
impossible (i.e. they arise from a sequence of input signals
considered illegal for the neighboring block). The
importance of those bugs is in that they encourage the
designer to consider and provide a fix. This provides a
protection against cases where behavior on the interface
may change at some future point in time, thus allowing the
currently impossible behavior and exposing the bug.

6. RECOMMENDATIONS FOR
DEPLOYMENT
Some recommendations on how to integrate FV as a stable
part of the overall verification process are listed below.

 Size the FV work at the start of the project, considering
simulation coverage schedules, logic availability, and logic
complexity. Staff the FV team accordingly.

 Commitment needs to remain throughout the project
cycle, including

 regressing FV as the design is modified, and

 continued communications with the design
team to ensure FV assumptions are current with
the design

 To better gauge FV’s impact, track the type of bugs
found as discussed in Section 5.

 The FV staff across projects should follow a common
form of documenting their work, and hold regular reviews
with the design and simulation teams. The FV
documentation should be incorporated into the larger
verification plan for the project.

 Design teams need to commit to providing adequate
design documentation for the FV staff to work from. It
greatly slows the verification process when the FV engineer
is forced to independently discern the function of the logic.

 A formal FV tapeout criterion should be defined for
projects with FV requirements.

3. SUMMARY
Formal Verification, in our experience, is a realistic means
to successfully address the growing complexities of
contemporary design. However, as the preceding discussion
suggests, it is no silver bullet. Introducing FV into the
design flow is a strategic decision that requires investment
in engineering resources (training and methodology
adjustment) as well as support and commitment from
management. When appropriately applied, FV is a powerful
verification vehicle which contributes to increasing design
quality and shortening time to market, with a notable return
on the investment in engineering resources.

REFERENCES
[1] Ben-David, S., Eisner, C., Geist, D., and Wolfsthal, Y. Model

Checking in IBM, Formal Methods in System Design 22, 2
(2003), 101-108.

[2] See pertinent experience reported at the RuleBase homepage
http://www.haifa.il.ibm.com/projects/verification/RB_Homep
age

[3] Ginzburg, Y., Using Sugar at the IBM Haifa Design Labs,
PSL/Sugar Consortium Meeting at DAC’03,
http://www.pslsugar.org/papers/ABV-in-IBM-Haifa.pdf

